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Abstract: Planned active debris removal and on-orbit servicing missions require capabilities for capturing objects on 
Earth’s orbit, e.g., by the use of a manipulator. In this paper we demonstrate the application of a trajectory 
optimization algorithm for free-floating satellite-manipulator systems in two cases: a planar system with 
2 degrees of freedom manipulator and a spatial system with a manipulator having four degrees of freedom. 
For the case with planar system, results of experiments performed on an air-bearing microgravity simulator 
are shown. Quadratic norm connected with the power consumption of manipulator motors has been used as 
a cost functional that is minimized. Optimal trajectories are compared with straight-line trajectories and it is 
shown that the optimization allows reduction of the power use of manipulator motors (for the planar system 
30 trajectories based on randomly selected initial and final end-effector positions were analysed and the cost 
functional was, on average, reduced by 49.4%). The presented method could be modified by using cost 
functional that would, e.g., minimize disturbance on the satellite. 

1 INTRODUCTION 

Capabilities for capturing objects on Earth’s orbit by 
unmanned satellites are required in planned active 
debris removal and on-orbit servicing missions. 
European Space Agency (ESA) is studying the 
concept of active debris removal to prevent 
predicted growth of space debris population on Low 
Earth Orbit. Studies show that current debris 
population is likely to increase due to collisions 
between existing space debris (Liou, Johnson, and 
Hill, 2010). Thus, removal of large intact objects 
from orbit might be necessary in the coming years. 
On-orbit servicing missions are proposed to prolong 
the operational lifetime of satellites. Repairing 
satellite with unmanned servicing vehicle could be 
economically feasible (Sullivan and Akin, 2012). 
Specific active debris removal and on-orbit servicing 
missions have been proposed in recent years, e.g., by 
Hausmann et al. (2015). Many of the proposed 
mission concepts rely on the use of a manipulator for 
performing capture manoeuvre. 

Design of a manipulator for orbital operations is 
a challenging task, since such manipulators are 
complex mechatronic systems that must operate in 
space environment and must have a very low mass. 

Control of a satellite-manipulator system during 
capture manoeuvre is also one of the major 
challenges in on-orbit servicing. The motion of the 
manipulator influences both the position and the 
orientation of the manipulator-equipped satellite. 
This effect must be taken into account during 
manipulator trajectory planning and control. 
Reaction torques and forces induced by the motion 
of the manipulator must either be fully compensated 
by the guidance, navigation and control subsystem 
(GNC) of the satellite or this subsystem must be 
switched off during the manoeuvre. In the latter 
case, the satellite is in free-floating state (Dubowsky 
and Papadopoulos, 1993). 

In our study we focus on the subject of end-
effector trajectory planning for a free-floating 
manipulator. Methods that allow optimization of 
planned trajectory are especially interesting and 
several approaches to optimal trajectory planning 
and control were developed in the last decade, e.g., 
by Aghili (2008) and Flores-Abad et al. (2014a). 
Another benefit of optimization techniques is that 
they could also be used to minimize manipulator 
disturbances on the manipulator-equipped satellite 
(Kaigom, Jung and Rossmann, 2011). The broad 
review of on-orbit servicing technologies presented 

92
Rybus, T., Seweryn, K. and Sąsiadek, J.
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by Flores-Abad et al. (2014b) includes a section 
devoted to trajectory planning. In our paper we 
follow the approach for optimal trajectory planning 
that was proposed by Seweryn and Banaszkiewicz 
(2008). This approach is based on the Generalized 
Jacobian Matrix (GJM), introduced by Umetani and 
Yoshida (1989) for systems with zero linear and 
angular momentum. Seweryn and Banaszkiewicz 
extended GJM for systems with non-zero and not-
conserved linear and angular momentum (e.g., with 
additional forces from thrusters acting on the 
satellite during the realization of the end-effector 
trajectory). They proposed an optimization 
algorithm that is based on the calculus of variations. 
The cost functional trades off for power use of 
motors in the manipulator joints as well as for 
additional conditions constraining the end-effector 
motion. Rybus, Seweryn and Sąsiadek (2016) 
presented several improvements to this algorithm, 
the most important being the modification of the 
boundary conditions of the optimization problem to 
allow imposing constraints for the end-effector 
velocity. During the capture manoeuvre the end-
effector velocity at the moment of grasping must 
match the velocity of the grasping point on the target 
satellite; thus, it is required to define the final end-
effector velocity during the trajectory optimization. 
The original algorithm was also extended to include 
the time of the manipulator motion as a parameter 
that is optimized. As a result, it is possible to 
compute the optimal time for the capture 
manoeuvre. The trajectory optimization algorithm is 
suitable for a general case of a manipulator with n 
degrees of freedom, but Rybus, Seweryn and 
Sąsiadek (2016) illustrated the presentation of their 
algorithm with only a simple example (i.e. a planar 
manipulator with 2 degrees of freedom).  

In this paper we demonstrate the use of the 
aforementioned algorithm for the optimization of 
end-effector trajectory of a spatial manipulator with 
4 degrees of freedom, mounted on a free-floating 
satellite. As torques required to position the end-
effector are much higher than torques needed for 
obtaining the desired end-effector orientation, we do 
not consider the optimization of end-effector 
orientation. In the presented numerical example we 
use mass and geometrical properties of the prototype 
robotic arm WMS1 LEMUR presented by Seweryn 
et al. (2014). WMS1 LEMUR has 7 degrees of 
freedom: four joints are responsible for obtaining the 
end-effector position (one joint is redundant) and 
three joints are responsible for obtaining the end-
effector orientation. In this study we use the 
trajectory planning algorithm for the first four joints. 

Demonstrating that the optimization method 
proposed by Seweryn and Banaszkiewicz (2008) and 
extended by Rybus, Seweryn and Sąsiadek (2016) 
can be successfully used for a real spatial 
manipulator is the main contribution of this paper. 
Following Rybus and Seweryn (2015), we also 
present the results of an experimental study, in 
which trajectory optimization was performed for a 
real planar free-floating system with a manipulator 
with 2 degrees of freedom. The planar air-bearing 
microgravity simulator described by Rybus et al. 
(2013) was used for this purpose. In order to assess 
the advantages of the optimization algorithm in this 
simplified planar case we compared the optimal 
trajectory with a straight-line trajectory for 30 
randomly selected initial and final positions of the 
end-effector.   

The paper is organized as follows. In Section 2, 
equations describing the dynamics of a free-floating 
satellite-manipulator system are presented, while the 
trajectory optimization algorithm is shown in 
Section 3. Equations contained in these two sections 
were earlier presented by Rybus, Seweryn and 
Sąsiadek (2016). The results of experiments 
performed on the microgravity simulator are shown 
in Section 4. Application of the optimization 
algorithm for the manipulator with 4 degrees of 
freedom is presented in Section 5. Discussion is 
presented in Section 6 and the paper concludes with 
Section 7. 

2 FREE-FLOATING 
SATELLITE-MANIPULATOR 
SYSTEMS 

A free-floating satellite equipped with a manipulator 
with n degrees of freedom is presented in Fig. 1, 
where coordinate systems and selected geometrical 
parameters of the satellite-manipulator system are 
shown. In this section we follow the approach 
presented by Seweryn and Banaszkiewicz (2008) 
and by Rybus, Seweryn and Sąsiadek (2016).  

All equations are expressed in the inertial 
reference frame (denoted as CSine in Fig. 1). The 
end-effector position is expressed as:  

∑
=

++=
n

i
iqsee

1

lrrr , (1)

where rs is the position of the satellite center of 
mass, rq is the position of the first kinematic pair of 
the manipulator with respect to the satellite, and li is 
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the position of the i+1 kinematic pair in respect to 
the ith kinematic pair. 

 
Figure 1: A schematic view of the satellite-manipulator 
system. 

End-effector linear and angular velocities are given 
by the following equation:  
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In the above equations vs and ωs are the linear and 
angular velocities of the satellite, θ�  is the n-
dimensional vector containing angular velocities of 
the manipulator joints, JS is the Jacobian of the 
satellite (6 x 6 matrix), while JM  is the standard 
Jacobian of a non-space manipulator expressed in 
the inertial reference frame (6 x n matrix), I denotes 
the identity matrix, 0 denotes the zero matrix, 
ree_s = ree – rs, ~ denotes a matrix which is equivalent 
of a vector cross-product, ki and ri are the unit 
vector of angular velocity and the position of the ith 
kinematic pair, respectively. The angular momentum 
of the satellite-manipulator system can be expressed 
as:  

PrLL ×+= s0 , (5)
where L0 is the initial angular momentum of the 
system. The momentum P and the angular 
momentum of the satellite-manipulator system are 
given by the following equation:  
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where: 
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Here it should be noted that the matrices H2 i H3 are 
influenced not only by the state of the manipulator, 
but also by the state of the satellite. The submatrices 
A, B, D, E and F are defined as: 
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where rs_q = rs – rq and ri_s = ri – rs, ms and Is are the 
mass and inertia matrix of the satellite, respectively, 
mi and Ii are the mass and inertia matrix of ith 
manipulator link, respectively, JTi is the translational 
component of the manipulator Jacobian JM, while JRi 
is the rotational component of this Jacobian. In a 
free-floating system, the linear and the angular 
momentum are usually assumed as zero. Such 
assumption was taken, e.g., by Dubowsky and 
Papadopoulos (1993), Umetani and Yoshida (1989), 
and Lindberg, Longman, and Zedd (1993). 
However, in the approach introduced by Seweryn 
and Banaszkiewicz (2008) and presented herein, the 
momentum and angular momentum are not equal to 
zero. Instead, in eqn. (6) the momentum and the 
angular momentum are described by the time 
dependent functions fm and fam defined as: 

∫= dtsm Ff  and ∫ += dtsssam FrHf ~ , where Fs and Hs 

are forces and torques acting on the satellite. These 
could be forces and torques generated by the satellite 
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manoeuvring thrusters or external disturbances (e.g., 
forces and torques resulting from the gravity 
gradient).  

The end-effector velocity is: 
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The following equation relates the angular velocities 
of joints with end-effector velocity in the CSine:  
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The satellite velocity is given by:  
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As in (Seweryn and Banaszkiewicz, 2008) and 
(Rybus, Seweryn and Sąsiadek, 2016), we use 
Langrangian formalism to derive dynamics 
equations for the system. For the considered case of 
a system free-floating in space, the potential energy 
is neglected. We use the generalized coordinates 
(Junkins and Schaub, 1997):  

[ ]Tssp θΘrq = , (17)

where Θs is the orientation of the satellite. Following 
Seweryn and Banaszkiewicz (2008) we describe the 
orientation of the satellite by Euler angles, as their 
use is more intuitive and straightforward than the 
use of quaternions or orientation matrices. In the 
range of motion considered herein, the risk of 
obtaining singular configuration is very limited 
(there is no tumbling motion of the manipulator-
equipped satellite). The Lagrange equation is:  
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where T is the kinetic energy of the system 
expressed as:  
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and Q is the vector of generalized forces:  

[ ]Tss uHFQ = , (20)

where u is the control vector composed of driving 
torques in manipulator joints. In eqn. (19) the N 
matrix is given by:  
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Equation (18) is used to derive the generalized 
equations of motion for the satellite-manipulator 
system: 
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where M denotes the mass matrix expressed as:  
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while C is the Coriolis Matrix with components 
given by: 
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where ( )pijm qM∈  and nkji …1,, = .  
In eqn. (22) there are no potential forces, as the 

considered system is the state of free fall. Equation 
(22) can be used to determine the control vector u(t). 

3 TRAJECTORY 
OPTIMIZATION 

The approach to the end-effector trajectory 
optimization that we use in our study was presented 
by Seweryn and Banaszkiewicz (2008), with 
improvements introduced by Rybus, Seweryn and 
Sąsiadek (2016) to enhance the capabilities of the 
algorithm. The optimization problem is how to drive 
the end-effector from its initial state to the desired 
final state while minimizing the optimization 
criterion.  

The general form of the optimized functional G is:  
( ) ( )( )=tttG vp ,,uq  

( ) ( )( ) ( ) ( ) ( )( )[ ]∫ +
ft

t
vp

T
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0
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where qvp = [qv qp]T, 
dt

d p
v

q
q = , λvp = [λv λp]T, λp 

and λv denotes the Lagrange multipliers associated 
with qp and qv, respectively, while the function g 
describes the direct dynamics of the satellite-
manipulator system: 
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In eqn. (25) L is the cost functional to be minimized. 
The selection of the appropriate cost functional is 
not simple. This selection should be performed by a 
control engineer for the specific mission, taking into 
account the limitations and conditions defined for 
this mission. In papers related to space robotics, a 
criterion that assures minimization of changes of the 
satellite orientation is most commonly used, e.g., by 
Kaigom, Jung and Rossmann (2011), as any 
substantial changes of the satellite attitude should be 
avoided during the capture manoeuvre. However, 
some authors also take into account the power use of 
manipulator motors, e.g., Shah et al. (2013). In our 
study we follow the approach of Seweryn and 
Banaszkiewicz (2008) and we use quadratic norm of 
the control input as a cost functional: 

uuTL
2
1= . (27)

Such a simple cost functional, related to the power 
use of manipulator motors, is very common in 
automation and robotic. The presented method could 
easily be modified by using more complex cost 
functional that would allow for achievement of 
different goal. The Hamiltonian of the system is 
given by:  

gλT
vpLH += . (28)

The extremum of G is found for:  

0=
∂
∂

u
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From eqn. (29), the control vector u can be 
computed. We define a state vector as: 

[ ]Tpvpv λλqqx = , (30)

and obtain a set of 2(12 + 2n) differential equations 
that minimize the functional G and satisfy the 
boundary conditions: 
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A Boundary Value Problem (BVP) is formulated 
and a set of eqn. (31) is solved with 2(12 + 2n) 
boundary conditions and 12 additional equations, 
which must be satisfied by the BVP solver. The 
initial state of the system (qvp at the initial time t0) is 
determined by the first 12 + 2n boundary conditions, 
while the values of Lagrange multipliers at the final 

time tf are determined by another 12 + 2n equations. 
These Lagrange multipliers are calculated from the 
following equation:  
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Where the function ψ describes the final desired 
state of the end-effector (ψ = [ree Θee vee ωee]T). 
Additional 12 parameters v are determined by the 
algorithm to satisfy equations for ψ. 

4 APPLICATION OF THE 
OPTIMIZATION ALGORITHM 
FOR A PLANAR 
MANIPULATOR WITH 2 
DEGREES OF FREEDOM  

To demonstrate the trajectory optimization 
algorithm, we performed an experiment on the 
planar air-bearing microgravity simulator described 
by Rybus et al. (2013). This simulator is a test-bed 
that allows for experimental validation of trajectory 
planning and control algorithms for free-floating 
satellite-manipulator systems. In this test-bed, a 
model of a satellite-manipulator system is mounted 
on planar air-bearings that allow almost frictionless 
motion on a 2x3m2 granite plate. Thus, microgravity 
conditions are simulated in two dimensions. 
Currently, a satellite model equipped with a 
manipulator with 2 degrees of freedom is operated 
on this testbed. Its parameters are summarized in 
Tab. 1. A detailed description of the experiment 
performed on the planar air-bearing microgravity 
simulator was presented by Rybus and Seweryn 
(2015). In the performed experiment at the initial 
time t0 the velocities of manipulator joints and the 
velocity of the satellite are zero, thus the initial 
velocity of the end-effector is also zero. The desired 
final end-effector position is set 0.3m away from the 
initial position. The final end-effector velocity must 
be zero. The time of motion is set to 5s.  

For the planar system equipped with a 
manipulator with 2 degrees of freedom the solution 
that minimizes the cost functional L is obtained from 
20 first order differential equations (31) and 24 
boundary conditions (10 equations constraining the 
initial state, 10 equations for the final values of 
Lagrange multipliers and 4 equations for ψ). The 
driving torques for manipulator joints are computed 
from the algebraic equation resulting from (29). The 
trajectory planning is performed offline before the 
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experiment. We use a Matlab script with bvp4c 
solver (a finite difference code that implements the 
three-stage Lobatto IIIa formula). The optimal 
trajectory is compared with a simple straight-line 
trajectory. In this reference trajectory, the end-
effector velocity in the inertial reference frame is 
constant during the major part of the motion (1.25s 
is allocated for end-effector acceleration at the 
beginning and the same amount of time is allocated 
for reducing the end-effector velocity to zero). This 
straight-line trajectory is used as an initial guess of 
the solution of the BVP problem. Both the straight-
line and the optimal trajectories defined in the 
Cartesian space are transferred to the velocities of 
manipulator joints. During the experiment, joint 
controllers were used to assure trajectory realization 
in the configuration space and there was no feedback 
from the measurement of the end-effector position. 

The reference end-effector trajectory in the 
Cartesian space and the results of the experiment 
(i.e. positions of the end-effector measured by the 
visual pose estimation system) are presented in 
Fig. 2 (on the XY plane), in Fig. 3 and Fig. 4. The 
difference between the reference end-effector 
position and the end-effector position measured by 
the visual pose estimation system is shown in Fig. 5. 
It can be seen that for both trajectories the end-
effector position obtained from the experiment is 
very close to the planned reference trajectory (the 
error is less than 0.015m after 5s of motion). Fig. 6 
shows four frames from a video recorded during the 
realization of the optimal trajectory on the planar 
air-bearing microgravity simulator. The change of 
the satellite orientation, clearly visible in this figure, 
is caused by reaction torques and reaction forces 
induced by the motion of the manipulator. The free-
floating nature of the satellite-manipulator system 
was taken into account during trajectory planning 
with equations presented in Section 2. Thus, the end-
effector follows the desired trajectory despite the 
changes in satellite orientation. Finally, in Fig. 7 and 
Fig. 8, the reference positions of the manipulator 
joints during the realization of both trajectories are 
presented. Additionally, driving torques that should 
be applied in the manipulator joints are also 
presented in these two figures. The initial positions 
of the manipulator joints for both the straight-line 
and the optimal trajectories are the same (initial 
conditions were exactly the same for both 
experiments). In the presented case, the final 
position of the manipulator joints are also almost 
identical for the straight-line and the optimal 
trajectories (the difference is less than 0.1 degrees 
for both joints). The initial and final torques in the 

optimal trajectory are non-zero, but there is no 
boundary condition that would require zero control 
torques. Three phases of the straight-line trajectory 
(end-effector acceleration, motion with constant 
velocity and breaking) are reflected in control 
torques. The optimization algorithm (with the 
selected quadratic norm of the control input as a cost 
functional) resulted in smoother behaviour of the 
control input. Here it should be noted that in the test 
set-up the DC motors move the manipulator joints 
though harmonic drives, while in our computations 
the gear reduction ratio is not taken into account. 
The optimization procedure allowed for 60.2% 
reduction of the cost functional connected with the 
power use of the manipulator motors. 

To more thoroughly assess what the advantage of 
using the optimization method over utilization of a 
simple straight-line trajectory is, we analysed 30 
trajectories based on randomly selected initial and 
final end-effector positions. The area in which the 
end-effector positions were selected was limited to a 
rectangle defined by apexes: PA = [0.4m 0.2m]T and 
PB = [1.0m 0.8m]T (expressed in the inertial 
reference frame located at the initial position of the 
manipulator-equipped satellite centre of mass). The 
time of motion was set to 4s. All other parameters 
were the same as in the presented experimental 
example. For each pair of points, a straight-line 
trajectory was constructed and then used as an initial 
guess solution for the BVP problem. The cost 
functional L (quadratic norm of the control input) 
was calculated for each straight-line and optimal 
trajectory. The performed study found that for these 
randomly selected 30 pairs of points, the average 
reduction of the cost functional resulting from the 
trajectory optimization was 49.4%, while the lowest 
obtained reduction of L was 19.67%. 

Table 1: Properties of the planar satellite-manipulator. 

 Parameter Value 
1 Satellite mass 12.9 kg 
2 Satellite moment of inertia 0.208 kg·m2 

3 Position of manip. mounting (rq) [0.327 0] m 
4 Manipulator link 1 mass 4.5 kg 
5 Manipulator link 1 moment of inertia 0.32 g·m2 
6 Manipulator link 1 length 0.62 m 
7 Manipulator link 2 mass 1.5 kg 
8 Manipulator link 2 moment of inertia 0.049 kg·m2 
9 Manipulator link 2 length 0.6 m 
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Figure 2: End-effector position on XY plane (straight-line 
vs optimal). 

 
Figure 3: X-component of the end-effector position 
(straight-line vs optimal). 

 
Figure 4: Y-component of the end-effector position 
(straight-line vs optimal). 

 
Figure 5: Difference between the reference end-effector 
position and position measured during experiment. 

 
Figure 6: Planar satellite-manipulator system during 
realization of the optimal trajectory on the air-bearing 
microgravity simulator. 

 
Figure 7: Reference position of manipulator joint 1 and 
driving torque applied in this joint (straight-line vs 
optimal). 

 
Figure 8: Reference position of manipulator joint 2 and 
driving torque applied in this joint (straight-line vs 
optimal). 
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5 APPLICATION OF THE 
OPTIMIZATION ALGORITHM 
FOR A MANIPULATOR WITH 
4 DEGREES OF FREEDOM  

In this section we present the results of trajectory 
optimization performed for the WMS1 LEMUR 
(Seweryn et al., 2014). A picture of this manipulator 
is presented in Fig. 9, while Tab. 2 summarizes its 
basic properties. It is a manipulator with 7 degrees 
of freedom. However, we perform trajectory 
optimization only for the first four joints. The 
driving torques required for the positioning of the 
end-effector are higher than the driving torques 
required for obtaining the desired orientation of the 
end-effector. For the manipulator with 7 degrees of 
freedom we present results of numerical simulations 
only. For the system with a manipulator with 4 
degrees of freedom the solution that minimizes L is 
obtained from 40 first order differential equations 
and 46 boundary conditions (20 equations 
constraining state at t0, 20 equations for λvp at tf and 
6 equations for ψ). 

The initial position of the end-effector (expressed 
in CSine located at the initial position of the servicing 
satellite centre of mass) is ree(t = t0)  = [0.8m  -0.1m  
0.4m ]T, while the desired final end-effector position 
is ree(t = tf)  = [0.8m  -0.1m  0.6m]T. The initial and 
final velocity of the end-effector is zero. There is no 
initial velocity of the servicing satellite. The desired 
time of motion is 4s. As in the case of the planar 
system, we use a straight-line trajectory as the initial 
guess for the BVP solution and for comparison with 
the optimal trajectory. The straight-line trajectory is 
divided into a 2s phase of end-effector acceleration 
(in CSine) and a 2s phase of breaking. The position 
and velocity of the end-effector for both trajectories 
are presented in Fig. 10 and Fig. 11. The positions of 
first four manipulator joints are presented in Fig. 12, 
while torques applied on these joints are shown in 
Fig. 13. In this example the driving torques required 
for the realization of both trajectories are far lower 
than the maximal available driving torques (15Nm).  

The optimization algorithm allowed 68% 
reduction of the cost functional L (from Lstr = 11.4  
to  Lopt = 3.56). Although the final end-effector 
position differs from the initial end-effector position 
only by Z-component, in Fig. 8 it can be seen that all 
components of the end-effector position changed 
during the realization of the optimal trajectory (X- 
and Y-components return to their initial values at the 
end). The boundary condition sets the final end-
effector velocity to zero - this is the main advantage 

of the modified algorithm in comparison to its 
previous version presented by Seweryn and 
Banaszkiewicz (2008). No condition is set on the 
final velocities of the manipulator joints. Thus, in 
the considered case the final velocities of the 
manipulator joints are not equal to zero. 

Table 2: Properties of the spatial satellite-manipulator. 

 Parameter Value 
1 Satellite mass (assumed) 100 kg 

2 Satellite moment of inertia diag([2.8 6.1 7.4]) 
kg·m2

3 Number of manip. joints 7 
4 Total length of manipulator 3.1 m 
5 Total mass of manipulator 15.25 kg 
6 Maximal joint driving torque 15 Nm 

 
Figure 9: Prototype of the WMS1 LEMUR robotic arm 
and visualization of this manipulator on a servicing 
satellite. 

 
Figure 10: End-effector position (straight-line vs optimal). 

 
Figure 11: End-effector velocity (straight-line vs optimal). 

Application of Trajectory Optimization Method for a Space Manipulator with Four Degrees of Freedom

99



 
Figure 12: Positions of manipulator joints (straight-line vs 
optimal). 

 
Figure 13: Driving torques at manipulator joints (straight-
line vs optimal). 

6 DISCUSSION 

The use of the trajectory optimization algorithm for 
free-floating satellite-manipulator systems was 
demonstrated for two cases: (i) a planar system with 
a manipulator with 2 degrees of freedom and (ii) a 
spatial system with a manipulator with 4 degrees of 
freedom (with four joints responsible for obtaining 
desired end-effector position). In the first case the 
experiments were performed on the planar air-
bearing microgravity simulator. In the second case, 
only numerical simulations were performed, but the 
mass and geometrical properties of a real prototype 
of a space manipulator were used.  

As in the approach presented by Seweryn and 
Banaszkiewicz (2008) quadratic norm of the control 
input has been used as a cost functional that was 
minimized. Such approach is simple and common in 
automation and robotic. The presented method could 
be modified by using a more complex cost 
functional that would, e.g., minimize changes in the 
satellite orientation. In each case the optimal 
trajectory was compared with a straight-line 
trajectory and it was proven that the optimization 

algorithm allows for substantial reduction of the 
power use of the manipulator motors. Moreover, for 
the planar case the analysis was performed with 30 
trajectories based on randomly selected initial and 
final end-effector position and it was found that the 
average reduction of the selected cost functional 
resulting from the trajectory optimization was 
49.4%. In all presented cases the required driving 
torques for the manipulator joints were far lower that 
the maximal available control torques. However, it is 
expected that in the rigidization and detumbling 
phases after the orbital capture manoeuvre the 
required driving torques will be higher, as the large 
mass of the target object will be attached to the end-
effector. In such a case, the presented optimization 
method may prove to be very useful.  

There are two main weaknesses of the presented 
optimization algorithm: (i) it is not guaranteed that 
the global minima will be found, and (ii) the 
computational cost of the trajectory optimization is 
very high. The second issue could be especially 
problematic in case of algorithm implementation on 
flight hardware. However, the trajectory planning 
stage can be performed while the manipulator-
equipped satellite is waiting in a safe point (it might 
even be possible to perform such computations on 
Earth). 

Current work focuses on selecting more practical 
cost functional (e.g., to achieve minimization of the 
manipulator influence on the satellite) and 
performing trajectory optimization after the grasping 
of the target object. Precise evaluation of algorithm 
computational cost is also currently performed.  

7 CONCLUSIONS 

Manipulator trajectory planning is important for 
planned active debris removal and on-orbit servicing 
missions. The successful demonstration of the 
trajectory optimization algorithm on the 
experimental test set-up (the planar air-bearing 
microgravity simulator) was an important step in the 
development of this algorithm. The simulations 
performed for the spatial manipulator with 4 degrees 
of freedom with mass and geometrical properties of 
the prototype robotic arm (WMS1 LEMUR) were 
also useful for the algorithm validation. Thus, the 
results presented in this paper serve not only as an 
illustration and example of the optimization 
algorithm application, but allow as an assessment of 
the possibility of using trajectory optimization 
during one of the planned active debris removal and 
on-orbit servicing missions. 
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