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Abstract: The paper deals with Bayesian state estimation of nonlinear stochastic dynamic systems. The focus is aimed at
the stochastic integration filter, which is based on a stochastic integration rule. It is shown that the covariance
matrix of the integration error calculated as a byproduct of the rule can be used as a measure of nonlinearity.
The measure informs the user about validity of the assumptions of Gaussianity, which is adopted by the
stochastic integration filter. It is also demonstrated how to use this information for a prediction of the number
of remaining iterations of the rule. The paper also focuses on utilization of the integration error covariance
matrix for improving estimates of the mean square error of the estimates, which is produced by the filter.

1 INTRODUCTION

Nonlinear state estimation of discrete-time stochas-
tic dynamic systems is an important field of study,
which has undergone a rapid development in the last
two decades. The importance of this field stems from
its crucial role in many areas such as signal process-
ing, target tracking, satellite navigation, fault detec-
tion, and adaptive and optimal control problems. It is
an essential part of any decision-making process.

The system state completely characterizes the sys-
tem at a given time and usually is not directly measur-
able. The system behavior is described by a stochastic
dynamic discrete-time model consisting of a stochas-
tic difference equation characterizing dynamics of the
state and by a stochastic algebraic equation represent-
ing a relation between the state and the measurement.
The solution to the state estimation problem usually
follows the Bayesian approach or the optimization ap-
proach.

The Bayesian approach is built up on the Bayesian
recursive relations (BRRs) (Sorenson, 1974), which
provide the state estimate in the form of a conditional
probability density function (PDF) of the state condi-
tioned by the measurement. However, the exact solu-
tion to the BRRs can be found only for a few special
cases, such as a linear system with Gaussian distur-
bances. For a nonlinear or non-Gaussian system the
conditional PDF has a complex shape and the solu-
tion usually cannot be found in a closed form. Hence,
some approximations must be employed.

A group of approximate methods providing ap-
proximate conditional PDF capturing the complexity
of the conditional PDF with a great fidelity are called
global methods. They are represented namely by the
Gaussian sum method (Ristic et al., 2004), the point-
mass method (Kramer and Sorenson, 1988), and the
particle filter (Doucet et al., 2001). The practical use
of the global methods is limited especially due to their
extensive computational complexity.

Another group of methods is formed by assum-
ing Gaussian approximation of the conditional PDF
provided by the BRRs. Such methods are denoted as
Gaussian filters (GFs) (Ito and Xiong, 2000) or local
Bayesian methods (Arasaratnam and Haykin, 2009).
The GFs are represented namely by the quadrature
Kalman filter (Arasaratnam et al., 2007), the cuba-
ture Kalman filter (Arasaratnam and Haykin, 2009),
and the stochastic integration filter (SIF) (Dunı́k et al.,
2013b), which utilizes the iterative stochastic integra-
tion rule (SIR) (Genz and Monahan, 1998).

Contrary to the Bayesian approach, the optimiza-
tion approach assumes minimization of a certain de-
sign criterion, usually the mean square error (MSE),
leading to filters such as the extended Kalman filter,
the divided difference filter (Nørgaard et al., 2000),
or the unscented Kalman filter (Julier and Uhlmann,
2004). The optimization is usually feasible by enforc-
ing a linear structure of the filter.

Even though optimization methods and local
Bayesian methods were derived by different ap-
proaches, finally they provide formally same solution
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to the state estimation problem, which is computa-
tionally reasonable and therefore often used in prac-
tice.

The GFs perform well only for mildly nonlinear
functions, for which the Gaussianity assumption is
approximately valid. For strong nonlinearities the
assumption is only a rough approximation. During
the last decade several methods quantifying nonlin-
earity or non-Gaussianity, which have been applied
in monitoring the GF assumption validity, have ap-
peared (Mallick, 2004), (Li, 2012) and (Dunı́k et al.,
2013a). Such methods are usually based on eval-
uating effects of nonlinearities in neighborhoods of
conditional means or testing unimodal or non-heavy-
tailed properties of the conditioned PDFs.

The goal of the paper is to show that the SIF based
on SIRs possesses nonlinearity measuring capabilities
itself. The information can be used to give the user
an idea how strong nonlinear behavior the system ex-
hibits or how much the Gaussian assumption is vio-
lated and how much the estimates should be trusted.
Further, it will be shown that the information can be
utilized to predict computational requirements of the
SIRs employed by the filter to achieve a desired ac-
curacy. And above all, the information will be used
to make the estimate of the MSE provided by the SIF
more precise.

The rest of the paper is organized as follows: Sec-
tion 2 is devoted to a brief introduction to the nonlin-
ear state estimation, its solution by the GFs, and mea-
sures of nonlinearity and non-Gaussianity. The SIR is
briefly presented in Section 3. Section 4 presents the
revealed capability of the SIF to measure nonlinearity
and its application. Next, in Section 5 the utilization
of this information to provide an improved estimate
of the MSE is outlined and the paper is concluded by
Section 6.

2 STATE ESTIMATION AND
GAUSSIAN FILTERS

The aim of this section is to formulate the nonlin-
ear state estimation problem, to present its general
solution by means of the BRR, to describe the GFs,
and to present two measures of nonlinearity and non-
Gaussianity proposed in literature.

2.1 Formulation of the Nonlinear State
Estimation Problem

Let a discrete-time nonlinear stochastic system be

considered in the following state-space form

xk+1 = fk(xk)+wk, k = 0,1,2, . . . , (1)
zk = hk(xk)+vk, k = 0,1,2, . . . , (2)

where the vectors xk ∈ Rnx , and zk ∈ Rnz repre-
sent the state of the system, and the measurement at
time instant k, respectively, fk : Rnx → Rnx and hk :
Rnx →Rnz are known vector functions, and wk ∈Rnx ,
vk ∈ Rnz are mutually independent state and mea-
surement white noises. The PDFs of the noises are
Gaussian with zero means and known covariance ma-
trices (CMs) Σw

k and Σv
k , respectively, i.e., p(wk) =

N {wk;0nx×1,Σw
k }1 and p(vk) =N {vk;0nz×1,Σv

k}, re-
spectively, where 0a×b denotes an a× b matrix of
zeros. The PDF of the initial state is Gaussian and
known as well, i.e., p(x0) = N {x0; x̄0,P0}. The ini-
tial state is independent of the noises.

State estimation aims at searching the state xk
based on measurements up to the time instant `, which

will be denoted as z` 4= [zT
0 ,z

T
1 , . . . ,z

T
` ]

T . Due to the
stochastic nature of the system, the state estimate is
described by the conditional PDF p(xk|z`). In this
paper, the filtering (k = `) and the one-step prediction
(k = `+1) problems will be considered only.

To find the filtering estimate p(xk|zk) the Bayesian
approach is used, and the following BRRs provide the
solution (Sorenson, 1974):

p(xk|zk) =
p(xk|zk−1)p(zk|xk)∫

p(xk|zk−1)p(zk|xk)dxk
, (3)

where the one-step prediction PDF is

p(xk|zk−1) =
∫

p(xk−1|zk−1)p(xk|xk−1)dxk−1, (4)

and p(xk|xk−1) = pwk−1(xk − fk−1(xk−1)) and
p(zk|xk) = pvk(zk−hk(xk)).

An analytical solution to (3) and (4) is an intri-
cate functional-domain problem. It can be analyti-
cally computed for a few cases only. Such a case
is given by linear functions and Gaussian PDFs in
the system equations (1) and (2). So, for a nonlin-
ear or a non-Gaussian system, approximate solutions
are mostly necessary.

2.2 Gaussian Filters

The GFs suppose that the joint prediction PDF
p(zk,xk|zk−1) is at each time instant Gaussian
(Arasaratnam and Haykin, 2009)

p(zk,xk|zk−1) = N
{[ zk

xk

]
;
[ z̄k|k−1

x̄k|k−1

]
,

[
Pzz

k|k−1 PxzT
k|k−1

Pxz
k|k−1 Pxx

k|k−1

]}
.

(5)

1For the sake of simplicity all PDFs will be given by their
argument, if not stated otherwise, i.e., p(wk) = pwk (wk).
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Then the filtering PDF p(xk|zk) and the one-step pre-
dictive PDF p(xk|zk−1) are also Gaussian

p(xk|zk) = N {xk; x̄k|k,Pxx
k|k}, (6)

p(xk|zk−1) = N {xk; x̄k|k−1,Pxx
k|k−1}. (7)

The GFs compute the first two moments of (6) and
(7), i.e., the conditional means x̄k|k = E[xk|zk] and
x̄k|k−1 = E[xk|zk−1] and the conditional CMs Pxx

k|k =

cov[xk|zk] and Pxx
k|k−1 = cov[xk|zk−1].

The GF algorithm can be written in the following
form:

Algorithm 1: Gaussian Filter.

Step 1: (initialization) Set the time instant k = 0 and
define a priori initial condition by its first two moments

x̄0|−1 , E[x0] = x̄0, (8)

Pxx
0|−1 , E[(x0− x̄0|−1)(x0− x̄0|−1)

T ] = P0. (9)

Step 2: (filtering, measurement update) The filtering
mean x̄k|k and CM Pxx

k|k are computed by the means of

x̄k|k = x̄k|k−1 +Kk(zk− z̄k|k−1), (10)

Pxx
k|k = Pxx

k|k−1−KkPzz
k|k−1KT

k , (11)

where
Kk = Pxz

k|k−1(P
zz
k|k−1)

−1 (12)

is the filter gain and the measurement prediction z̄k|k−1
is given by

z̄k|k−1 = E[zk|zk−1]. (13)

The predictive CMs Pxz
k|k−1 and Pzz

k|k−1 are computed as

Pzz
k|k−1 = E[(zk− z̄k|k−1)(zk− z̄k|k−1)

T |zk−1]

= E[(hk(xk)− z̄k|k−1)

× (hk(xk)− z̄k|k−1)
T |zk−1]+Σv

k , (14)

Pxz
k|k−1 = E[(xk− x̄k|k−1)(zk− z̄k|k−1)

T |zk−1]. (15)

Step 3: (prediction, time update) The predictive mean
x̄k+1|k and CM Pxx

k+1|k are given by

x̄k+1|k = E[xk+1|zk] = E[fk(xk)|zk], (16)

Pxx
k+1|k = E[(xk+1|k− x̄k+1|k)(xk+1|k− x̄k+1|k)

T |zk]

= E[(fk(xk)− x̄k+1|k)(fk(xk)− x̄k+1|k)
T |zk]

+Σw
k . (17)

Let k = k+1.
The algorithm then continues by Step 2.

The particular GFs vary in the way they compute
the integrals determining the predictive characteristics

of the measurement (13-15) and the predictive char-
acteristics of the state (16, 17). Mostly, the integrals
cannot be calculated analytically. For example, the in-
tegrals can be approximated by the SIR, which leads
to the SIF.

2.3 Measures of Nonlinearity and
Non-Gaussianity

The GFs are designed under the Gaussianity assump-
tion (5), which will become invalid due to the non-
linearities present in the system. This may conse-
quently severely degrade the performance of the fil-
ter, disrupt its accuracy or credibility. Hence, it is
convenient to monitor working conditions of the fil-
ter, which affect validity of the assumption. For this
purpose the measures of nonlinearity (MoNL) or non-
Gaussianity (MoNG) render an applicable tool. The
MoNL and MoNG may be used for sequential moni-
toring of the GF assumption and an impact of approx-
imations along a trajectory of the GF.

Two examples of MoNL, which will be later used
for a comparison, are described below. The described
MoNL evaluate the nonlinearity of a function y =
g(x), where x is a random variable with a mean x̄ and
a CM Pxx defining a region, where the nonlinearity
will be analyzed. The MoNL can be used in the fil-
tering or the predictive step of the GF (Algorithm 1).
In the filtering step the function g(x) is equal to is
hk(xk), i.e., g(x) = hk(xk), and in the predictive step
g(x) = fk(xk).

Differential Geometry Measure based MoNL

The MoNL based on a differential geometry mea-
sure (DGM) was originally proposed in (Bates and
Watts, 1988) for the nonlinear parameter estimation
and later it was extended for the nonlinear state esti-
mation (Mallick, 2004). The MoNL directly assesses
the curvature2 of the nonlinear function at a given
point. The state-independent version of the measure
is defined as

MoNLDGM
i =

‖X T
i G̈Xi‖
‖ĠXi‖

, (18)

where Xi ∈ Rnx , {Xi}q
i=1 is a set of q user-defined

points somehow respecting the probabilistic descrip-
tion of x , Ġ = ∂g(x)

∂x |x=x̄ is the Jacobian of g(x), and

G̈ = ∂2g(x)
∂x∂x |x=x̄ is the Hessian of g(x).

Therefore, the measure assesses the contribution
of the Taylor series expansion (TSE) second order

2Amount by which a curve deviates from a tangent
(hyper-)plane.
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term3 relative to the TSE first order term which de-
fines the tangential (linear) approximation of the func-
tion. The measure (18) can be evaluated at multiple
points Xi and, its maximum can be selected for as-
sessing nonlinearity of g(x), i.e.,

MoNLDGM = max
i∈{1,2,...,q}

MoNLDGM
i . (19)

Least-Squares based MoNL

In (Dunı́k et al., 2013a) the weighted least-squares
(WLS) based MoNL was proposed assessing the
WLS residue, i.e., the difference between the nonlin-
ear function and its linear (least-squares) approxima-
tion defined by parameters

θ∗ = argmin
θ
(Y−Xθ)T W(Y−Xθ), (20)

where X =

[
[X0, ...,Xq]

1, . . . ,1

]T

, Y = [Y0, ...,Yq]
T , Yi =

g(Xi),∀i, Xi ∈ Rnx , Yi ∈ Rny , {Xi}q
i=1 is a set of user-

defined points, and W is a diagonal weighting ma-
trix respecting placement of the points Xi. Then, the
MoNL is given by

MoNLWLS = YT [W−WX(XT WX)−1XT W]Y.
(21)

The points {Xi}q
i=1 are suitably selected (user-

defined) weighted points to represent the probabilistic
description of x. The largest element can be selected
for assessing of nonlinearity g(x).

3 STOCHASTIC INTEGRATION
FILTER

The SIF (Dunı́k et al., 2013b) utilizes the SIR (Genz
and Monahan, 1998) for calculating the integrals aris-
ing in the GF algorithm (13)-(17). The main advan-
tage of the SIR is that it provides faster rate of con-
vergence than the simple Monte Carlo (MC) integra-
tion rule (Genz and Monahan, 1998). The SIF takes
this advantage from the SIR and guarantees asymp-
totically exact or in some cases (linear or polynomial
functions fk and hk, depending on the SIR degree) ex-
act calculation of the integrals. The integrals are cal-
culated utilizing approximate description of a random
variable representing a state estimate by a set of points
and the corresponding weights.

3The Hessian can be further decomposed into the compo-
nent in the tangential plane and the perpendicular compo-
nent (Mallick, 2004).

The SIF is given by the algorithm of the GF
(Algorithm 1), where the integrals (13)-(17) are ap-
proximately computed using SIR. Algorithm 2 illus-
trates the degree-3 SIR for computing an approximate
value of the integral

I(γ) = E[γ] =
∫

γ(x)N (x; x̄,Pxx)dx. (22)

for a given function y = γ(x),γ : Rnx → Rnγ , a mean
value x̄ and a covariance matrix Pxx of x.

Algorithm 2: Degree-3 Stochastic Integration Rule.

Step 1: Select a maximum number of iterations Nmax
or an error tolerance ε.
Step 2: Set the current iteration number N = 0, initial
value of the integral Î0(γ) = 0nγ×1, initial square error
of the integral V0 = 0nγ×nγ , and set ζ0 = x̄.
Step 3: Repeat (until N = Nmax or maxVN < ε2)
a) Set N = N +1.
b) Generate a uniformly random orthogonal matrix

QN of dimension nx × nx and generate a random
number ρN from the Chi distribution with (nx + 2)
degrees of freedom, i.e., ρN ∼ Chi(nx +2).

c) Compute a set of points {ζi}2nx
i=0 and appropriate

weights {ωi}2nx
i=0 according to

ζi = x̄−ρNSxxQNei, (23)
ζnx+i = x̄+ρNSxxQNei, (24)

ω0 = 1− nx

ρ2
N
, ωi = ωnx+i =

1
2ρ2

N
, (25)

where i = 1,2, . . . ,nx, ei is the i-th column of the
nx× nx identity matrix, and Sxx is a decomposition
of matrix Pxx so that Pxx = Sxx[Sxx]T .

d) Compute the following relations for the approxima-
tion of the integral value at current iteration SR(3)

(spherical-radial degree-3 SIR), the updated integral
value ÎN(γ), and the corresponding mean square er-
ror estimate VN , i.e.,

SR(3)(QN ,ρN) =
2nx

∑
i=0

ωiγ(ζi) , (26)

D =
SR(3)(QN ,ρN)− ÎN−1(γ)

N
, (27)

ÎN(γ) = ÎN−1(γ)+D, (28)

VN =
N−2

N
VN−1 +DDT . (29)

Step 4: Once the stopping conditions are fulfilled, the
approximate value of the integral I(γ) is ÎN(γ).

Note that the maximum in the stopping condition
maxVN < ε2 denotes the maximum over all elements
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of VN and that the points ζi and weights ωi are speci-
fied to satisfy

2nx

∑
i=0

ωiζi = x̄, (30)

2nx

∑
i=0

ωi(ζi− x̄)(ζi− x̄)T = Pxx. (31)

The SIF of higher and lower degrees can be found in
(Genz and Monahan, 1998).

Algorithm 2 is used for approximative calcula-
tions of (13)-(17) using the SIR, i.e., it produces esti-
mates of z̄k|k−1, Pzz

k|k−1, Pxz
k|k−1, x̄k|k−1 and Pxx

k|k−1. The
SIR estimates will be further denoted as the original
quantity with an extra hat over them, i.e., for example
ˆ̄zk|k−1 is an estimate of z̄k|k−1 produced by the SIR
of arbitrary degree and stopping condition. Analo-
gously, P̂xz

k|k−1 is an estimate of Pxz
k|k−1. The differ-

ences between the SIR estimates and original quanti-
ties will be denoted as the quantity with tilde, i.e.,

z̃k|k−1
4
= z̄k|k−1− ˆ̄zk|k−1

or analogously P̃xz
k|k−1

4
= Pxz

k|k−1− P̂xz
k|k−1. In the fol-

lowing sections an arbitrary degree SIR with an arbi-
trary stopping condition is assumed. For this reason,
the notation SR(QN ,ρN) will be used without the su-
perscript indicating the rule degree.

4 MEASURING NONLINEARITY
BY SIR

This section will analyze the byproduct of the SIR cal-
culation - the square error VN of the integral approx-
imate value ÎN(γ), which has been overlooked in SIF
design so far. First, certain aspects of Algorithm 2
will be clarified.

4.1 Square Error of Integral Value

The GFs require computation of the integral values
in the form of (22). The SIR of arbitrary degree (for
example Algorithm 2 for degree-3) approximates this
integral by a sample mean of spherical-radial rules

ÎN(γ) =
1
N

N

∑
j=1

SR(Q j,ρ j), (32)

which are given as a sum of np weighted semi-random
points4

SR(Q j,ρ j) =
np

∑
i=1

ωiγ(ζi(Q j,ρ j)) , (33)

where the notation ζi(Q j,ρ j) was used to explicitly
denote dependence of ζi on Q j and ρ j. The random-
ization is handled using

i) the random orthogonal matrix Q j, which governs
rotation in the state space,

ii) the scaling parameters, i.e., ρ j ∼ Chi(nx + 2) for
the degree-3 rule, which govern spread of the
points ζi.

The SIR also computes an estimate VN of the MSE of
the integral value approximation ÎN(γ). The error of
ÎN(γ) denoted as ĨN(γ) = IN − ÎN has zero mean and
its MSE is

E
[
ĨN(γ)ĨN(γ)T ]= var[ĨN ] = var

(
ÎN
)

=
1
N
var (SR(Q,ρ)) . (34)

Its estimate by the SIR is

VN =
1
N

ˆvar (SR(Q,ρ)) , (35)

where ˆvar(SR(Q,ρ)) is calculated as the sample vari-
ance of SR(Q,ρ) as

VN =
1
N

1
N−1

N

∑
i=1

(
SR(Qi,ρi)− ÎN(γ)

)(
·
)T

.

(36)

The notation (α)(·)T stands for (α)(α)T .

Theorem. For a linear function γ(x) = Γ · x, where
Γ ∈ Rnγ×nx , arbitrary mean value x̄, a CM Pxx and
∀N > 1, it holds that var(SR(Q,ρ)) = 0.

Proof. For arbitrary rotation matrix Q j and scaling
parameter ρ j, the arbitrary degree spherical-radial
SIR is

SR(Q j,ρ j) = ∑
i

ωiγ(ζi(Q j,ρ j))

= ∑
i

ωiΓζi(Q j,ρ j)

= Γ∑
i

ωiζi(Q j,ρ j)

= Γx̄, (37)

where the relation (30) was used. As SR(Q j,ρ j)
given by (37) does not depend on Q j and ρ j for a
linear function γ, it holds that var(SR(Q,ρ)) = 0.

4Number of points is governed by the degree of the SIR.
For example, np = 2nx +1 for the degree-3 rule.
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Figure 1: Dependency of MoNLs on growing variance Pxx

for γ(x).

As a consequence of (35) the SIR algorithm pro-
vides a quantity for an estimation of the variance of
calculated SRs

var(SR(Q,ρ))≈ N ·VN . (38)

4.2 Relation of Square Error of
Estimated Integral with MoNL

The variance of the calculated SRs, var(SR(Q,ρ))
approximately given by N ·VN , can be viewed as a
measure of nonlinearity, because it is zero for a lin-
ear function and there is a reason to believe that for
a growing strength of nonlinearity of γ, the variance
grows as well. The quantity N ·VN will be denoted
as MoNLSIR. An illustration follows to support this
belief.

To facilitate analyzing of behavior of MoNLSIR

for different nonlinearities, the following approach
will be adopted: Instead of changing the function γ
for a fixed x̄ and Pxx, the nonlinear function γ will be
fixed and the variance Pxx will change. The variance
Pxx governs the region over which the nonlinearity is
analyzed and hence for growing Pxx, i.e., enlarging
the region, the nonlinearity should become stronger.

The following static example has been chosen:
Assume the function of interest y= γ(x) = x2, the ran-
dom variable x is given by mean value x̄ = 0.1 and
variance Pxx ∈ (0,2). The SIR was used to calcu-
late MoNLSIR with the parameter Nmax = 100. The
MoNLDGM and MoNLWLS used the same ζ-points to
calculate the value of the measure. In case of the
MoNLWLS, the weighting matrix was chosen as the
eye matrix. The Figure 1 depicts the results of the ex-
periment. All three measures inform the user of rising
influence of nonlinearity for growing variance Pxx.

4.3 Prediction of Number of Iterations
in SIR

In some cases, the user may specify the stopping con-
dition in Algorithm 2 by the error tolerance ε only,
i.e., without specification of the maximum number of
iterations Nmax. Throughout the iterations, it is possi-
ble to predict the number of steps required to achieve
all elements of VN to be lower than ε2. The proce-
dure is as follows: At each iteration N the variance
var(SR(Q,ρ)) can be estimated by N ·VN . Consider
NTOT being a number of iterations such that after NTOT
steps the variance VNTOT of ÎNTOT error will be approx-
imately

1
NTOT

var(SR(Q,ρ))≈ 1
NTOT

·N ·VN
4
= V̂NTOT (39)

and the maximum element of V̂NTOT will be smaller
than ε2, i.e., max(V̂NTOT)< ε2. Hence

max V̂NTOT = max
(

1
NTOT

·N ·VN

)
< ε2

N
NTOT

maxVN < ε2

ε2

N ·maxVN
< NTOT. (40)

Thus the total number of steps can be estimated by

NTOT =

⌈
ε2

N ·maxVN

⌉
, (41)

where d·e is the ceil function rounding to the nearest
larger integer.

The total number of steps NTOT gives the user the
information about how long it will take to obtain the
integral value ÎN with the desired accuracy ε.

5 MSE ESTIMATED BY SIF

In this section the SIF will be analyzed in the terms of
the MSE and based on the findings from the previous
section and calculation of the MSE estimate will be
proposed.

5.1 Theoretical values of MSE

The GFs compute the CM Pxx
k|k, which can be seen as

an estimate of the MSE, i.e.,

Pxx
k|k ≈MSE = E

[
(xk− x̄k|k)(·)T ] . (42)

Now, the true MSE will be calculated and compared
with the CM P̂xx

k|k calculated by the SIF.
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For convenience, consider the estimate x̄k|k (10) as
an affine function of zk, i.e.,

x̄k|k = Azk +b, (43)

where

A = P̂xz(P̂zz)−1, (44)

b = x̄−A ˆ̄z. (45)

Note that for clarity purposes the subscript k|k−1 will
be omitted for the predictive moments.

Substituting (43) into (42) yields

E
[
(xk− x̄k|k)(·)T ]= E[(xk−Azk−b)(·)T ]︸ ︷︷ ︸

E[ααT ]

=

= E
[
(xk− x̄−A(zk− z̄))(·)T ]

︸ ︷︷ ︸
E[(α−ᾱ)(α−ᾱ)T ]

+[x̄−Az̄−b][·]T︸ ︷︷ ︸
ᾱᾱT

.

(46)

After applying the expectation operator the MSE is

E
[
(xk− x̄k|k)(·)T ]= Pxx−PxzAT

︸ ︷︷ ︸
A

−APzx
︸ ︷︷ ︸

B

+APzzAT
︸ ︷︷ ︸

C

+[x̄−Az̄−b][·]T︸ ︷︷ ︸
D

, (47)

where the estimator-related expressions were labeled
as A ,B ,C , and D . In the following paragraphs these
expressions will be analyzed separately by substitut-
ing (44) and (45) into the terms:

A =−PxzAT =−Pxz(P̂zz)−1P̂zx

=−(P̃xz + P̂xz)(P̂zz)−1P̂zx

=−P̃xz(P̂zz)−1(Pzx− P̃zx)− P̂xz(P̂zz)−1P̂zx

= P̃xz(P̂zz)−1P̃zx−P̃xz(P̂zz)−1Pzx−P̂xz(P̂zz)−1P̂zx,
(48)

B = AT (49)

C = APzzAT = P̂xz(P̂zz)−1(P̃zz + P̂zz)(P̂zz)−1P̂zx

= P̂xz(P̂zz)−1P̃zz(P̂zz)−1P̂zx + P̂xz(P̂zz)−1P̂zx,
(50)

D = (x̄−Az̄−b)(·)T = (A ˆ̄z−Az̄)(A ˆ̄z−Az̄)T

= P̂xz(P̂zz)−1z̃z̃T (P̂zz)−1P̂zx. (51)

Hence, (47) can be rewritten as

E
[
(xk− x̄k|k)(·)T ]= Pxx +A +B +C +D

= Pxx− P̂xz(P̂zz)−1P̂zx
︸ ︷︷ ︸

P̂xx
k|k

+2 P̃xz(P̂zz)−1P̃zx
︸ ︷︷ ︸

E

−P̃xz(P̂zz)−1Pzx−Pxz(P̂zz)−1P̃zx
︸ ︷︷ ︸

F

+ P̂xz(P̂zz)−1z̃z̃T (P̂zz)−1P̂zx
︸ ︷︷ ︸

G

+ P̂xz(P̂zz)−1P̃zz(P̂zz)−1P̂zx
︸ ︷︷ ︸

H

= P̂xx
k|k +2E +F +G +H︸ ︷︷ ︸

MSEerr
k|k

, (52)

which can be understood as the sum of the SIF esti-
mate P̂xx

k|k of Pxx
k|k and a sum of numerical integration

caused error terms 2E , F , G and H (denoted as the
MSEerr

k|k), which provides the error in approximation
of the MSE. By using the estimate VN of the integral
mean squared error related to calculation of ˆ̄z, P̂xz,
and P̂zz, which will be denoted as V ˆ̄z

N , VP̂xz
N and VP̂zz

N ,
respectively, the terms E , F , G and H of MSEerr

k|k can
be estimated as:

The term E can be calculated during computation of
VPxz

N using (36) as

P̃xz(P̂zz)−1P̃zx ≈

≈ 1
N

1
N−1

N

∑
i=1

(
SR(Qi,ρi)− P̂xz

)
(P̂zz)−1

(
SR(Qi,ρi)− P̂xz

)T
, (53)

where the SR approximate Pxz at i-th iteration.

The term F depends on the true CM Pxz. Thus the
expectation of F w.r.t. the Q and ρ used for P̂xz

computation is zero, i.e.,

E[F ] = E
[
−P̃xz(P̂zz)−1Pzx−Pxz(P̂zz)−1P̃zx]=0.

(54)

The term G can be approximated after applying the
expectation operator due to mutual independence
of P̂xz, P̂zz and z̃. Then, E[z̃z̃T ] is the variance of
z̄, which can be approximated by V ˆ̄z

N , i.e.,

G ≈ P̂xz(P̂zz)−1V ˆ̄z
N(P̂

zz)−1P̂zx. (55)

The term H cannot be replaced by its estimate as
P̂zz and P̃zz are clearly dependent. Here, the ap-
proach replacing P̃zz by its interval estimate will
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Figure 2: MSE interval estimates (blue solid line - low limit histogram, red solid line - high limit histogram) and true MSE
(black vertical dashed line) for several values of covariance P0.

be adopted. As P̃zz has multivariate Gaussian dis-
tribution with zero mean and matrix of variances
given by VP̂zz

N , P̃zz in H can be replaced by a ma-
trix where its each element is a 3-σ interval es-
timate of the corresponding element of P̃zz. This
matrix of 3-σ interval estimates will be denoted as
P̃zz. Then the term H can be approximated as

H ≈ P̂xz(P̂zz)−1P̃zz(P̂zz)−1P̂zx. (56)

Hence, the true MSE can be estimated by a 3-σ inter-
val estimate taking into account all errors of numeri-
cal integration being neglected so far. This interval is
given by substituting estimates (53) - (56) into (52),
i.e.,

E
[
(xk− x̄k|k)(·)T ]= P̂xx

k|k +MSEerr
k|k

≈ P̂xx
k|k +

2
N(N−1)

N

∑
i=1

(
SR(Qi,ρi)− ÎN(γ)

)

× (P̂zz)−1
(

SR(Qi,ρi)− ÎN(γ)
)T

+ P̂xz(P̂zz)−1V ˆ̄z
N(P̂

zz)−1P̂zx

+ P̂xz(P̂zz)−1P̃zz(P̂zz)−1P̂zx. (57)

The relation (57) represents the improved estimate of
the MSE provided by the SIF. This improvement is
facilitated by the SIR, which in addition to the ap-
proximate integration also calculates the MSE of the
calculation error VN . This quantity is not provided by
any other GF.

5.2 Example

In the following example MSEerr
k|k from the previous

section is illustrated. Again the same static scalar ex-
ample as in Section 4.2 has been chosen, i.e.,

z0 = x2
0 + v0, (58)

where v0 ∼ N (0,R) is the measurement noise with
zero mean Gaussian distribution and its variance is
R = 10−4, the random variable x0 is Gaussian with
x0 ∼ N (x0;0.1,P0), where P0 had been tested for
values 0.1,0.2, . . . ,0.9. The test scenario was per-
formed in the scope of NMC = 106 independent Monte
Carlo simulations of state x0 estimation. The filter-
ing estimate x̄0|0 and most importantly the filtering
CM Pxx

0|0 were obtained using the SIF with parame-
ters Nmax = 100 and ε = 10−4. The relatively high
simulation count secured high precision computation
of the true MSE value denoted as

MSEtrue =
1

NMC

NMC

∑
i=1

(x̄i
0|0− xi

0)
2, (59)

where superscript i denotes i-th Monte Carlo simula-
tion, xi

0 is the true state at the i-th simulation and x̄i
0|0

is its filtering estimate. The MSEtrue was compared to
the MSE estimate (57) calculated by the SIF.

The results are depicted in Figure 2, where his-
tograms of low (blue) and high (red) limits of the 3-σ
intervals are plotted. The true values of the MSE are
depicted as dashed vertical lines. The results confirm
for several values of P0, that the SIF is capable to pro-
vide quality interval estimate of the MSE. The SIF is
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thus very versatile estimator capable of high quality
self-assessment

6 CONCLUSIONS

The paper dealt with the Bayesian state estimation of
nonlinear stochastic dynamic systems and specifically
with the stochastic integration filter, which is based
on a stochastic integration rule. Within the iterative
algorithm of the SIF an instrument for measuring the
nonlinearity was discovered. The instrument uses a
quantity, which is a byproduct of the SIR, which has
been used in the stopping condition so far. Such in-
formation provides an information of how much the
nonlinearity in the system violates the Gaussian as-
sumption of the SIF. The paper also provided a re-
lation that can be used to predict the number of SIR
iterations required to achieve the accuracy requested
by the user.

Further, in the paper a method to calculate im-
proved estimates of the MSE was developed. It was
shown that the MSE contains additional terms besides
the conditional variance matrix provided by the stan-
dard GFs. By utilizing the SIR byproducts the addi-
tional terms can be estimated by interval estimate. By
including the additional term estimates the SIF is able
to provide more accurate information about its state
estimates. Both the new nonlinearity measure and the
improved MSE were illustrated using simple numeri-
cal examples.

The interesting part of the discoveries made in this
paper is that it opens wide area for a future work. The
SIF can be further improved in terms of saving com-
putational demands, when the measurement function
is almost linear, or when the function is strongly non-
linear an execution of the algorithm can be paused and
for example Gaussian sum approach can be adopted
to improve estimate quality.
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