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Abstract: We have recently shown that one can obtain the number and sizes of modules of a software system from the 
eigenvectors of the Modularity Matrix weighted by an affinity matrix. However such a weighting still 
demands a suitable definition of an affinity. This paper obtains the same results by means of a Laplacian 
Matrix, directly based upon the Modularity Matrix without the need of weighting. These formalizations are 
different alternatives leading to the same outcomes based upon a central idea: modules are connected 
components. The important point is that, independently of specific advantages of given techniques, there is 
just one single unified algebraic theory of software composition – the Linear Software Models – behind the 
different approaches. The specifics of the Laplacian Matrix technique, after its formal enunciation, are 
illustrated by calculations made for case studies. 

1 INTRODUCTION 

Software engineering is an exercise in composition 
(Fall, 2016). A software system is composed from 
subsystems, which are made of sub-subsystems and 
so on for each hierarchy level of the system, down to 
indivisible components. The problem to be solved is 
which components are needed to satisfy the system 
required functionalities. It is widely accepted that 
modularity is essential to solve this problem. 

Our Linear Software Models approach uses 
Modularity Matrices linking component structures to 
their functionalities, see (Exman, 2012 and 2013). 
The outcome is a set of modules in the respective 
hierarchical level of the software system.   

Recently we have shown that numbers and sizes 
of the referred modules can be precisely obtained 
from eigenvectors of the Modularity Matrix suitably 
weighted by an affinity matrix (Exman, 2015). 

In this paper we show that the same numbers and 
sizes of modules are obtained from the eigenvectors 
of a Laplacian Matrix, directly derived from the 
Modularity Matrix, without the need of weighting. 
In this Introduction we review properties of the 
Modularity Matrix and the Laplacian Matrix. 

1.1 Modularity Matrix Concepts 

Modularity is the antithesis of coupling between 
software components. Thus, a theory of modular 
composition must clearly define coupling. An 
intuitive notion of coupling is given in the Design 
Patterns GoF book Glossary (Gamma et al., 1995): 
coupling is the degree to which software 
components depend on each other. In our Linear 
Software Models, this is translated to "coupling is 
linear dependence" among software components.  

To apply the theory, a Modularity Matrix 
(Exman, 2014) is constructed for each software 
system. The matrix displays relations between the 
software system architectural entities: column 
structors, and row functionals. Structors generalize 
UML classes and functionals generalize methods.  A 
1-valued matrix element means that the column 
structor provides a functional in the respective row. 

To avoid couplings, a standard Modularity 
Matrix must have all its structors and respectively all 
its functionals linearly independent. From linear 
algebra it follows that the standard Modularity 
Matrix is square. If certain structor sub-sets provide 
sub-sets of functionals disjoint to other sub-sets, the 
matrix is strictly block-diagonal. These blocks are 
the desired independent modules. 
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In a standard Modularity Matrix modules are 
irreducible – cannot be broken into smaller modules. 
All the matrix elements outside modules are zero-
valued, the modules are orthogonal thus mutually 
linearly independent. One easily shows that 
eigenvectors of a suitably weighted Modularity 
Matrix precisely reflect module sizes. This spectral 
approach (Exman, 2015) is illustrated in Fig. 1. 
 

 

Figure 1: Schematic Modularity Matrix with a fitting 
eigenvector – The square block-diagonal matrix has 4 
numbered modules (blue background). The eigenvector at 
the right-hand-side of the matrix precisely reflects the size 
of module #2 (with hatched background). 

1.2 Laplacian Matrix Concepts 

A generic Laplacian matrix is defined upon a graph. 
For software systems the graph is undirected, and 
edges link the referred architectural units – structors 
and functionals – where each unit is a vertex in the 
graph. Formally the Laplacian L is given by: 
 

L D A   (1)
 

where D  is the Degree Matrix – showing the degree 
deg( )iv  of vertex iv  in its diagonal element iiD – 

and A  is the Adjacency Matrix – showing for each 
,i j pair of vertices whether they are adjacent in the 

graph. Adjacent vertices have a 1-valued Aij matrix 

element and 0-valued otherwise.  
Laplacian properties of interest are: 

 L  is symmetric; 

 The number of zero-valued eigenvalues of the 
Laplacian Matrix is the number of graph 
connected components. 

1.3 Modules as Connected Components 

This paper’s purpose is to show that for: 

 strictly block-diagonal Modularity Matrix – the 
same results are obtained by means of the 
eigenvectors of the Laplacian Matrix; 

 case of outliers – a neat procedure is formulated 
to highlight residual coupling. 

 

The argument centrepiece is that modules are 
connected components. This is true for blocks of the 
block-diagonal Modularity Matrix (Exman, 2014), 
sub-lattices of a Modularity Lattice (Exman and 
Speicher, 2015) or sub-graphs obtaining a Laplacian 
Matrix in this paper. One follows the next steps: 
a) Generate a Bipartite Graph – from the 

Modularity Matrix; 
b) Obtain the Laplacian Matrix – from the 

generated graph; 
c) Software Modules are Connected Components 

– seen in the graph and in the corresponding 
Laplacian; 

d) Number of Modules – is set by the number of 
zero-valued Laplacian eigenvalues;  

e) Sizes of Modules – are given by the non-zero 
elements of Laplacian eigenvectors; 

f) Modules Sparsity – may demand module 
splitting to assure sparsity below a threshold, 
thereby highlighting outlier coupling in need of 
redesign. 

The above steps will be first intuitively illustrated by 
an introductory example. Then, formal proofs will 
be provided in a subsequent section. 

1.4 Organization of the Paper 

The remaining of this paper is organized as follows. 
Section 2 mentions related work. Section 3 displays 
an introductory example. Section 4 formulates 
theoretical considerations. Section 5 presents case-
studies. A discussion concludes the paper. 

2 RELATED WORK 

2.1 Modularity Analysis 

Various techniques are suitable for modularity 
analysis. Here is a short sample of approaches. 
Baldwin and Clark, in their “Design Rules” book 
(Baldwin and Clark, 2000), describe a Design 
Structure Matrix (DSM) upon which one adds an 
economic design model. DSM has also been applied 
to software engineering (Cai and Sullivan, 2006). 

Conceptual lattices were introduced in (Wille, 
1982) within Formal Concept Analysis (FCA). This 
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technique has been used for modularization and 
software system design, e.g. (Siff and Reps, 1999). 

In previous spectral work we have used 
eigenvectors of the Modularity Matrix symmetrized 
and weighted by an Affinity (Exman, 2015) to 
extract software system modules' numbers and sizes.  

2.2 Laplacian Matrix Techniques 

Spectral techniques based upon the Laplacian Matrix 
have been used in various contexts, including 
software engineering. A good survey on Laplacian 
matrices of graphs is (Merris, 1994). 

A tutorial on spectral clustering, with emphasis 
on Laplacian techniques is (von Luxburg, 2007). A 
more recent review on clustering methodologies for 
software engineering, of spectral methods in general 
and in particular the Laplacian is (Shtern and 
Tzerpos, 2012). 

Ng et al. (Ng et al., 2001) deal with spectral 
clustering, analysing an algorithm, explicitly 
referring to the Laplacian. Shokoufandeh et al. 
(Shokoufandeh, 2005) extract a Module Dependency 
Graph (MDG) from software source code for 
clustering into MDG partitions. Their 
Modularization Quality criterion is reformulated as a 
Laplacian eigenvalue problem. 

3 INTRODUCTORY EXAMPLE: 
PROTOTYPE PATTERN 

3.1 Prototype Modularity Matrix and 
Bipartite Graph 

The Prototype design pattern, is defined in the GoF 
book (Gamma et al., 1995). It creates new objects by 
copying a prototypical instance. Here it serves as an 
introductory strictly block-diagonal example.  

The Modularity Matrix’ structors in our example 
are a generic cloneable shape and a specific shape 
(say a circle or a square), a shapes’ cache to store 
prototype instances ready to be cloned, and a client 
which asks the prototype to clone itself. 

The pattern functionals include ‘cloning’, any 
‘specific shape calculation’, say its area, ‘loading or 
getting the cache’ and a ‘main’. A commercial Java 
Prototype code, similar to one fitting our model, is 
(Prototype, 2016). 

The Prototype Modularity Matrix in Fig. 2 is 
strictly block-diagonal. Fig. 3 shows the respective 
undirected bipartite graph obtained from this 
Prototype Modularity Matrix. 

 
Figure 2: Prototype Design Pattern Modularity Matrix –
There are 4 structors and functionals in this matrix. These 
form 3 modules (blue background): a- upper-left shape 
role; b- middle shapes-cache role; c- lower-right the 
prototype client. Zero-valued matrix elements outside the 
modules are omitted for clarity in all matrix figures.  

As an illustration, each 1-valued element in the 
Matrix originates one edge, e.g. a 1-valued element 
in column S3 and row F3 of the matrix originates an 
edge between the S3 and F3 vertices in Fig. 3.  

 

Figure 3: Prototype Bipartite undirected Graph – It is 
obtained from the Modularity Matrix in Fig. 2. A structor 
Sj is linked to a functional Fi by a graph edge if the 
respective (i, j) Matrix element is 1-valued. Separate graph 
modules Mk, having no common edges, are highlighted 
by light blue background, as the diagonal matrix blocks. 

 
Figure 4: Prototype Laplacian Matrix – Laplacian rows 
and columns are labelled by vertices of the graph in Fig. 3. 
Adjacency values, in the top-right quadrant, are identical 
to the Modularity Matrix with a minus sign, and by 
symmetry also found in the bottom-left quadrant. Vertex 
degrees are in the Laplacian diagonal. 

3.2 Prototype Laplacian Matrix and Its 
Eigenvectors and Eigenvalues 

We use the Prototype Graph in Fig. 3 to generate the 
Prototype Laplacian Matrix seen in Fig. 4. The 
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Laplacian is symmetric as it uses all the graph 
vertices to label both the Laplacian columns and its 
rows. The graph edges provide Adjacency values – 
with a minus sign by eq. (1) in section 1.2 – and the 
number of edges per vertex gives the vertices’ 
degrees, the values in the Laplacian diagonal. 

The number of zero-valued eigenvalues of this 
matrix gives the number of connected components. 
Calculation obtains 3 such eigenvalues. The 
respective eigenvectors are seen in Fig 5. 

 

Figure 5: Prototype Laplacian Eigenvectors – These are 
the three eigenvectors corresponding to the three 
eigenvalues with zero values. Each of the eigenvectors 
directly shows one of the connected components, thus the 
respective Prototype modules, through the vertices in the 
modules. 

From the eigenvectors in Fig. 5 one sees that the 
connected components, viz. the Prototype modules 
are given by the following functionals and structors: 
a- F1+S1+F2+S2; b- F3+S3; c- F4+S4. 

4 THEORETICAL 
CONSIDERATIONS 

Here we make a three-step theoretical statement 
about modules of a standard Modularity Matrix: 
1. The standard Modularity Matrix modules are 

connected components; 
2. Modules’ number and sizes are respectively 

obtained from the Laplacian Matrix zero-valued 
eigenvalues and their eigenvectors; 

3. Outliers are dealt with by demanding low 
module sparsity. 

A procedure to obtain module sizes follows. 

4.1 Modularity Matrix Modules Are 
Connected Components 

We start with a definition of modules, given earlier 
in (Exman, 2014): 
 

 

The diagonal blocks are orthogonal, i.e. the 
structors of a given diagonal block are orthogonal – 
have zero inner product – to the structors of any 
other diagonal block in the matrix. This is also true 
mutatis mutandis for the functionals of a given 
diagonal block. For example, in the matrix of Fig. 2 
there are three such orthogonal blocks. 

Next, we show that a bipartite graph can be 
generated from a standard Modularity Matrix. 

 

 
 

Proof Outline: 
The proof is by construction. First, list all the matrix 
structors as a set of vertices, then all the matrix 
functionals as an opposing set of vertices. Scanning 
all matrix elements from top-left to bottom-right, for 
each 1-valued element add an edge linking the 
structor vertex to the respective functional vertex. 

This is illustrated by the graph in Fig. 3. 

Now we state a basic result of this paper, needed to 
show the feasibility of Laplacian Matrix analysis of 
Modularity. 
 

 
 

Proof Outline: 
A 1-valued Modulary matrix element is connected to 
another matrix element, if its structor has at least 
two 1-valued elements in its column or its functional 
has at least two 1-valued elements in its row.  

Modularity Matrix modules are diagonal blocks 
whose set of structors and functionals are disjoint 
from the respective sets of the other modules. Thus:  
a. All structors/functionals in each module are 

connected – Every 1-valued Modularity Matrix 
element in a module is connected to other matrix 
elements in the same module; 

b. Different modules are disconnected; 

Therefore the undirected bipartite graph generated 
from the Modularity Matrix has each of the modules 
as a connected component with no edges linking to 

Definition 1: Software Modules 
Software Modules of the standard Modularity 
Matrix, at a given abstraction level, are the 
disjoint diagonal blocks of structors/functionals. 

Lemma 1: Undirected Bipartite Graph from 
standard Modularity Matrix 
It is possible to generate a unique undirected 
bipartite graph from a given standard Modularity 
Matrix, linking a set of vertices standing for 
structors to another set of vertices standing for 
functionals.

Theorem 1: Modularity Matrix Modules are 
Connected Components 
The modules of a software system in its standard 
Modularity Matrix are connected components 
which can be obtained from the corresponding 
generated undirected Bipartite Graph. 
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other modules. 

4.2 Modularity Lattice Modules from 
the Laplacian Matrix 

Once one has an undirected bipartite graph fitting 
the Modularity Matrix of a software system, one 
generates the graph Laplacian matrix and calculates 
number and sizes of the software system modules. 

 

 

Proof Outline:  
The straightforward proof is again by construction. 
From the undirected bipartite graph: 
a. Generate the Adjacency Matrix; 
b. Generate the Degree Matrix D;  
c. Generate the Laplacian by equation (1) of 
section 1.2, viz. L D A  . 

This construction is illustrated in Fig. 4. 

It is straightforward to obtain the number of the 
software system modules and their sizes from the 
Laplacian Matrix. This is given by the next theorem. 

 

 

Proof Outline: 
By theorem 1 modules are connected components of 
the undirected bipartite graph generated from the 
Modularity Matrix. The Laplacian is obtained from 
this bipartite graph. The current theorem directly 
follows from the Laplacian matrices spectral 
theorem, e.g. (von Luxburg, 2007) page 4, 
proposition 2. The number of a graph connected 
components is the number of its Laplacian zero-
valued eigenvalues. Component sizes are obtained 
from the respective eigenvectors. 

4.3 Dealing with Outliers through 
Laplacian Matrices 

The ultimate purpose of Modularity Analysis is to 
redesign software systems having design problems. 
As pointed out in previous papers (Exman, 2014), 
the Modularity Matrix highlights problematic spots, 
such as residual couplings, by means of outliers, i.e. 
matrix elements outside the desired modules. 

But, the question is first of all, what are the sizes 
of the modules? One could always enlarge a module 
size to include eventual outliers. Spectral 
approaches, either directly from the Modularity 
Matrix as in (Exman, 2015) or here by means of the 
Laplacian Matrix, answer this important question. 

In our previous work the criterion to determine 
whether a matrix element is an outlier was cohesion: 
 A legitimate module has low sparsity – i.e. the 

number of zero-valued matrix elements is less 
than the non-zero matrix elements. 

We continue to use the cohesion argument, now 
augmented by the connected component property, 
seen in the next extended definition. 

 

 
 

Theorem 1 in section 4.1 enables to check that a 
module is a Connected Component, using the 
undirected Bipartite Graph. The same graph allows 
checking the sparsity, as seen in the next Lemma. 

 

 
 

Proof Outline: 
Sparsity is defined as the ratio of zero-valued matrix 
elements to the total number of matrix elements in 
the module. Given that: a- each edge in the Bipartite 
Graph is originated by a 1-valued matrix element in 
the module; b- each module is square, i.e. the 
number of structors equals the number of functionals 
in the module; the Lemma is easily obtained. 

Lemma 2: Laplacian Matrix from the 
Undirected Bipartite Graph – a unique 
Laplacian is generated from the Undirected 
Bipartite Graph of a given software system. 

Theorem 2: Software System Modules’ 
Number and Sizes from the Laplacian Matrix  
The number and sizes of the modules of a 
software system at a given abstraction level is 
obtained from the Laplacian Matrix of the 
undirected bipartite graph of its Modularity 
Matrix as follows: 
a. The module number is the number of zero-

valued Laplacian eigenvalues; 
b. The module sizes are given by the respective 

indicator eigenvectors of the zero-valued 
Laplacian eigenvalues. 

Definition 2: Software Module Cohesion 
The cohesion of a Software System Module, at a 
given abstraction level, is determined by: 
a- Having low sparsity; 
b- Being a Connected Component. 

Lemma 3: Module Sparsity from Bipartite 
Graph 
The module sparsity in the Bipartite Graph is: 

                     Sparsity = 1 – (  Nedges     ) 
                Nstructors2 

where Nstructors is the number of structors and 
Nedges is the number of edges in the module. 
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4.4 Procedure to Obtain Modules 

From the cohesion criterion and the Module Sparsity 
Lemma, we finally formulate the necessary 
procedure to deal with outliers of a given software 
system through Laplacian Matrices. The procedure 
pseudo-code is shown in the next box. 
 

 
 

The above procedure obtains module sizes. The 
saved list of erased edges corresponds to the outliers. 
These point out to residual couplings to be solved. 

5 CASE STUDIES 

We describe two case studies that have been 
examined during our research. The first case study is 
the Observer Pattern, a canonical system. The 
second case study is an abstract software system 
illustrating how to deal with an outlier. 

5.1 The Observer Pattern: Modularity 
Matrix and Bipartite Graph 

The Observer software design pattern, is defined in 
the GoF book (Gamma et al., 1995). Its purpose is a 
many-following-one behavior. This case study 
enables comparison with our preceding spectral 
paper (Exman, 2015) in which the same pattern 
illustrated the approach based upon the Modularity 
Matrix symmetrized and weighted by an Affinity. 

The Observer structors are (abstract/concrete) 
subject and observer, (analog/digital) clock 
application GUI (Graphical User Interface), a 
subject resource (the internal clock) and an initiator 
to construct objects. The pattern functionals include 
the clock application Display “digital” and “analog”. 

The Observer Modularity Matrix in Fig. 6 is a 
standard strictly block-diagonal Matrix for Design 

Patterns. This is justified as a canonical system, i.e. 
patterns that were designed for reuse, based on wide 
applicability. The upper left block is the subject. The 
middle block is the observer. The lower right blocks 
refer to application specific GUI and the initiator.  

 
Figure 6: Observer Design Pattern Modularity Matrix. 
There are 8 structors and functionals in this matrix. These 
form 5 modules (in blue background): a- upper-left subject 
role; b- middle observer role; c- lower-right three strictly 
diagonal modules: specific application GUIs and initiator. 

 

Figure 7: Observer Bipartite Graph – The graph is 
obtained from the Modularity Matrix in Fig. 6. It has five 
modules, precisely fitting diagonal blocks in the Matrix, 
also highlighted by the light blue background. 

Figure 7 shows the undirected Bipartite Graph – 
structor vertices Sj are connected only to functional 
vertices Fi, and not among themselves. It is obtained 
from the Observer Modularity Matrix in Fig. 6. 
Structors with two 1-valued elements in a column – 
say S2 – originate two edges. Similarly functionals – 
say F5 – with two 1-valued elements in a row. 

5.2 The Observer Pattern: Laplacian 
Matrix and Eigenvectors  

We use the Observer Bipartite Graph in Fig. 7 to 
generate the Observer symmetric Laplacian Matrix. 

The number of connected components is given 
by the number of zero-valued Laplacian eigenvalues. 
Sizes of the observer modules, the connected 
components, are given by the respective 
eigenvectors in Fig. 9, with functionals and structors 
as follows: a- F1+S1+F2+S2+F3+S3; b- 
F4+S4+F5+S5; c- F6+S6; d- F7+S7; e- F8+S8. 
 

Design Procedure 1: Obtain Module Sizes 
 

Set Maximal-Sparsity-Threshold; 
Set Modules-Sparsity = 0; 
Obtain Bipartite-Graph of Software System; 
While  
(Modules-Sparsity > Maximal-Sparsity-Threshold) do 
  { Obtain Laplacian Matrix from Bipartite Graph; 
     Calculate Laplacian eigenvectors/eigenvalues; 
     Get eigenvectors with 0-valued eigenvalues; 
     Obtain Modules from these eigenvectors; 
     Calculate Modules-Sparsity; 
     If (Modules-Sparsity > Threshold) 

Split Module: erase edge of Bipartite-Graph; 
Save list of erased edges;} 
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Figure 8: Observer Laplacian Matrix – Laplacian rows and 
columns are labelled with all the graph vertices of Fig. 7. 
Adjacency values in the top-right quadrant are identical to 
the Modularity Matrix and also reflected in the bottom-left 
quadrant. Degree values appear in the Laplacian diagonal. 

 

Figure 9: Observer Laplacian Eigenvectors – These are 5 
eigenvectors corresponding to 5 zero-valued eigenvalues. 

5.3 Abstract System with Outlier: 
Modularity Matrix and Bipartite 
Graph 

The second case study is an abstract system with 
unnamed structors and functionals. An outlier 
element was added to the Modularity Matrix, 
coupling two modules. We follow Design Procedure 
1 in section 4.4 to find the modules and the outlier. 

The abstract system Modularity Matrix in Fig. 10 
has 3 modules and an added outlier, a 1-valued 
matrix element outside the modules. Its undirected 
Bipartite Graph is shown in Fig. 11. 

 

Figure 10: Abstract System with Outlier Modularity 
Matrix – The matrix has 3 modules (light blue filled). An 
added outlier in row F2, column S3, (dark blue 
background), couples the top-left and middle modules. 

 

Figure 11: Abstract System with Outlier Bipartite Graph – 
There are 3 modules (light blue background). The outlier 
is represented by a dashed (red) line linking the vertex S3 
to vertex F2, thereby coupling M1 with the M2 module. 

 

Figure 12: Abstract System with Outlier Laplacian Matrix 
– The outlier is represented by a dark (blue background) in 
the Adjacency values, and by (red) 3 degree digits. 

5.4 Abstract System with Outlier: 
Laplacian Matrix and Eigenvectors 

The Laplacian of the abstract system, shown in Fig. 
12, is obtained from the undirected Bipartite Graph. 

Eigenvectors fitting zero-valued eigenvalues, in 
Fig. 13, are just two: a- a module of size 4, obtained 
from the top-left and middle modules coupled by the 
outlier; b- another of size 1, in the bottom-right. 

 

Figure 13: Abstract System with Outlier eigenvectors – 
There are just 2 modules. In the 1st eigenvector the outlier 
couples two modules of size 2 into a larger module with 4 
structors and 4 functionals. 

By Design Procedure 1 in section 4.4, we 
calculate the modules’ Sparsity. The bigger module 
has 4 Structors (S1, S2, S3, S4) by the 1st 
eigenvector, due to the “outlier” connection seen in 
Fig. 11. By Lemma 3 in section 4.3, one obtains: 

Sparsity = 1 – (7/16) = 0.56 
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Assuming a reasonable Maximal-Sparsity-Threshold 
of 0.5 – i.e. the internal Sparsity of a module should 
be low, meaning high Cohesion – the bigger module 
is thus inferred to have an outlier. 

We next erase an edge linking vertices S3 to F2 
of the Bipartite Graph to split the module with too 
big Sparsity. The new eigenvectors are in Fig. 14. 

 

 

Figure 14: Abstract System without Outlier eigenvectors – 
There are now three modules. 

Recalculated Sparsity shows that the split 
modules have high Cohesion. But erasing the edge 
from S1 to F2, instead of the dashed “outlier” edge 
from S3 to F2 in the Bipartite Graph in Fig. 11, 
would also have reduced the Sparsity of the resulting 
modules. Thus, the outlier resolution may not be 
unique in algebraic terms. The software engineer 
may need to apply semantic knowledge about 
software components, to resolve couplings. 

6 DISCUSSION 

This work extended the formal meaning of software 
system modules adding a new criterion, Connected 
Components. One perceives that it appears in all 
Linear Software Models’ representations of software 
systems (Modularity Matrix, Modularity Lattice, 
Bipartite Graph, Laplacian Matrix). 

6.1 Evaluating Spectral Approaches 

This work uses Laplacian eigenvectors fitting its 
zero-valued eigenvalues to obtain number and sizes 
of modules. Eigenvectors and eigenvalues were 
calculated with the JAMA library (JAMA, 2016).  

Previously (Exman, 2015) we used eigenvectors 
of the Modularity Matrix symmetrized and weighted 
by an affinity. The same results were obtained by 
both approaches. They differ mainly by efficiency. 

While Modularity Matrix weighting demands an 
affinity definition, the Laplacian is neatly defined. A 
Modularity Matrix advantage is its smaller size, just 
one fourth of the corresponding Laplacian. 

Ongoing research investigates the Laplacian 
approach to larger software systems containing 
outliers coupling diagonal blocks. We intend to 
further formalize outliers’ treatment by the Fiedler 

vector (Fiedler, 1973). This will better evaluate the 
Laplacian approach for realistic systems design. 

6.2 Main Contribution 

This work shows that different spectral approaches 
produce the same numbers and sizes of software 
system modules. Behind diverse techniques, there is 
just one single basic algebraic theory of software 
system composition, viz. Linear Software Models. 
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