
Map-reduce Implementation of Belief Combination Rules

Frédéric Dambreville
Ensta Bretagne, 2 rue de Verny, Brest, France

DGA MI, Bruz, France

Keywords: Belief Functions, Combination Rules, Statistic, Map-reduce.

Abstract: This paper presents a generic and versatile approach for implementing combining rules on preprocessed belief
functions, issuing from a large population of information sources. In this paper, we address two issues, which
are the intrinsic complexity of the rules processing, and the possible large amount of requested combinations.
We present a fully distributed approach, based on a map-reduce (Spark) implementation.

1 INTRODUCTION

Thhis paper addresses the issue of generic computa-
tion of belief combinations in the context of a large-
scale networked community of agents (eg. in a so-
cial network) or sensored sources (eg. surveillance
camera). These agents or sensors produce informa-
tion, which are preprocessed under the form of belief
functions assigned to representative propositions. A
preprocessing of the networked agents/sensors and of
the produced information then infers a large collec-
tion of belief function clusters, which are representa-
tive of agent/sensors viewpoints on a common topic.
The combination of belief functions of a cluster by
means of dedicated combination rules infers a refined
analysis of the relative viewpoints, including agree-
ment and disagreement, on the considered topic.
Emerging works (Zhou et al., 2015a) have been done
on the application of belief function to the analysis
of interaction between agents of a social network on
the basis of shared semantic content. These works
are especially based (Zhou et al., 2015b) on evidential
clustering of agents resulting in a fuzzy identification
of communities. These clustering algorithms opti-
mize the evidential similarities/disimilarities between
agents, but do not deeply involve combinations of be-
liefs and the semantic it could extract. Of course, an
issue of belief functions application, especially when
sources are combined, is the efficient computation of
many cases of combination in order to evaluate each
connection between networked agents.
In the domain of surveillance, (Liu et al., 2009)
have underlined eight challenge of a video network.
Among them are the uncertainty of events, inconsis-

tency or conflict between multiple sources, the com-
position of elemental events, and the scalability of the
system. (Hong et al., 2014) have applied evidential
networks to the problem of video surveillance in a
controlled application (Smart transport). The struture
implied by the networks makes possible an efficient
reduction of the computational complexity.
When dealing with unstructured network, computa-
tional approaches for computing raw combinations in
numbers is a necessary tool. Now, the issue of the
generated conflict has been challenged by many evo-
lutions of the historical conjunctive and Dempster-
Shafer rules (Dubois and Prade, 1986; Lefevre et al.,
2002; Smarandache and Dezert, 2005; Florea et al.,
2006; Martin and Osswald, 2007). The develop-
ment of generic implementation (Dambreville, 2009)
of combination rules is a challenge in itself. Our
work consider both issues by extending a previous
work (Dambreville, 2009) dedicated to the generic
implementation of rules. In the continuation of this
work, this paper considers the problem of parallel
and pooling computation by factoring the combina-
tion process, and a map-reduce (Dean and Ghemawat,
2008) approach is proposed within the framework
Apache SPARK (Zaharia et al., 2010). In order to
factor some combination rules, new algebraic struc-
tures (eg. multisets in the case of Dubois&Prade rule)
are used as a processing space instead of the proposi-
tional framework of belief functions.
Section 2 introduces basic concept on belief func-
tions. Section 3 presents our new contribution for a
parallel and pooling implementation of combination
rules and our previous work (Dambreville, 2009) is
also introduced. Section 4 presents some limited tests.

144
Dambreville, F.
Map-reduce Implementation of Belief Combination Rules.
DOI: 10.5220/0005987001440149
In Proceedings of the 5th International Conference on Data Management Technologies and Applications (DATA 2016), pages 144-149
ISBN: 978-989-758-193-9
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

2 BELIEF FUNCTIONS

Belief functions are representations of imprecise and
uncertain information over an algebraic framework, a
lattice in its most general form. Most authors consider
belief functions over powersets, as a Boolean algebra,
and this is our hypothesis here. From now is given the
finite set Ω, the universe or frame of discernment.

2.1 Belief Assignments

The imprecise and uncertain information are char-
acterized by basic belief assignment (bba), m, over
propositions of the framework. Thus, a bba is defined
as the attribution of pieces of belief to subsets of Ω:

m≥ 0 and ∑
X⊆Ω

m(X) = 1 .

In case of closed world hypothesis, it is assumed that
the belief put on empty set is zeroed, ie. m(/0) = 0 .
This paper does not discuss further about such hy-
pothesis, but its involvement does not imply any dif-
ficult generalization. However, we refer subsequently
to m(/0) as the conflict related to m, and consider rules
which are based on a redistribution of the conflict.
Given M sources providing information by means of
bba m1:M , the fusion of these information are com-
puted by combinations rules. In the case of a closed
world, the classical combination rule of Dempster-
Shafer (Dempster, 1968; Shafer, 1976) is derived
from the conjunctive rule by means of a normaliza-
tion based on the conflict. Without lost of gener-
ality (Smets, 1990), Dempster-Shafer rules could be
rewritten as a conjunctive rule without normalization
in the case of open world.

2.2 Combination Rules

Given two sources of information, characterized by
their respective bbas, m1,m2, the conjunctive combi-
nation of m1 and m2 is defined by:

m1 ?m2(X) = ∑
Y1,Y2:Y1∩Y2=X

m1(Y1)m2(Y2) .

The conjunctive rule only works for open world hy-
pothesis, since it is possible to have m1 ? m2(/0) > 0
while m1 (/0) = m2 (/0) = 0.
By interpreting m1 ? m2(/0) as a measure of conflict
and redistributing it, many alternative rules have been
proposed. As example, Dubois & Prade rule (Dubois
and Prade, 1986) and PCR5/PCR6 rule (Smarandache
and Dezert, 2005; Martin and Osswald, 2007) redis-
tribute the conflict with different approaches:

• Dubois & Prade Rule. The rule proposed by
Dubois and Prade extends the conjunctive rule
by redistributing disjunctively the conflict. Ap-
pendix 5 presents its original definition,

• PCR Rules. The PCR combination rules, pio-
neered by Dezert and Smarandache (Smarandache
and Dezert, 2005), are based on a local propor-
tional redistribution of the conflict.

As an example of implementation, we consider
specifically Dubois & Prade rule, generalized to many
sources, but the approach is generic and addresses a
potentially large scope of rules.

3 IMPLEMENTATIONS

It is assumed that the bba m1:M , to be fused, are taken
amongst a set of bba m̃1:N , where 2 ≤M� N. Typ-
ically, mi = m̃ j[i] , where the selection map j ∈ {1 :
N}{1:M} is injective in general. The combination of
m1:M is done for selection j. The number of con-
cerned selections could be very large. Our main con-
cern and challenge is to implement the computation
of combination rules for all selections as a distributed
process. A map-reduce approach (Dean and Ghe-
mawat, 2008) is considered for this computation. A
first approach is based on a previous work.
Section 3.1 introduces the generic formalism of ref-
eree functions (Dambreville, 2009) for defining com-
bination rules. On this basis, section 3.2 presents a
map-reduce implementation of the combination rules.
Section 3.3 enhances the formalism of referee func-
tions with Markov properties, and improves the defi-
nition of the combination rules, with recursive com-
putational properties. On this basis, section 3.4
presents a map-reduce and recursive implementation.

Notation: Indicator functions are defined by:

I [P] =

{
0 if P is false
1 if P is true

(1)

3.1 Formulation based on Indicators

(Dambreville, 2009) proposed a generic formulation
of combination rules by means of conditional func-
tions (referee functions), denoted F(X |Y1:M;m1:M),
which have a computational meaning as indicator
functions. In this framework, the combinations of bba
m1:M is expressed under the form:

⊕ [m1:M|F] (X) = ∑
Y1:M⊆Ω

F(X |Y1:M;m1:M)
M

∏
i=1

mi(Yi) .

(2)

Map-reduce Implementation of Belief Combination Rules

145

In this formulation, a distinction is made between
the rule processing expressed by the summation, and
the rule definition which is expressed by the condi-
tional indicator F . It is easy, then, to imply a generic
distributed implementation of this summation, and
we propose an implementation within Spark frame-
work (Zaharia et al., 2010). This generic definition
by means of indicator function is quite general how-
ever, as shown in (Dambreville, 2009), and typically,
there are referee functions defined for conjunctive or
disjunctive rules, D&P rules, PCR6 rule, and more.
For the concern of this paper, we present only the ref-
eree function related to D&B rules.

3.1.1 Alternative Definition of D&P Rule

The rule of Dubois and Prade (Dubois and Prade,
1986) is naturally generalized to more than two
sources by redistributing the conflict on the disjunc-
tion of the best consensuses:

m1⊕DP · · ·⊕DP mM =⊕ [m1:M|FDP] , (3)

where:

FDP(X |Y1:M;m1:M) = I

[
X = argmax

ω∈Ω

M

∑
i=1

I [ω ∈ Yi]

]
.

(4)
Set argmaxω∈Ω ∑M

i=1 I [ω ∈ Yi] is the subset of Ω,
whose elements receive the best vote derived from
their belonging to propositions Y1:M .

3.1.2 Computational Issues

There are actually two aspects to be considered, since
the computation may be computing-intensive as well
as data-intensive. On the one hand, it may be com-
puting intensive, since a belief assignment is a vec-
tor of dimension 2card(Ω); without approximation, the
complexity of any belief computation increases dra-
matically with the size of the frame of discernment,
and this issue is worsened with the number of bba to
be combined. As a perspective of a distributed inten-
sive computation of the rules, is the possibility to han-
dle complex belief representations and their combina-
tions for specific applicative use or conceptual stud-
ies. On the other hand, the computation may be data
intensive, in the case of multiple combinations among
a large collection of bba, typically issuing from lo-
cal processing related to a collection of sources of
information. In this kind of application, the many
sources of information produce pieces of data, from
which knowledges are extracted by the local process
in the form of bba in the context of a given logical
frame. Then, the extracted bba are combined accord-
ing to a combination plan, caracterized by a selec-
tion function, in order to evaluate the compatibility of

the sources or evaluate a confirmed knowledge. The
combination plan generally implies a large amount of
combination cases. Although our approach may be
applied to both case, our preliminary and limited tests
focus on the second scenario. Now, we do not ad-
dress here the question of the extraction, but only the
question of the combination.

3.2 Map-reduce Implementation

We implemented the generic fusion process (2) by
means of a Map-reduce principle (Dean and Ghe-
mawat, 2008). This implementation has been made
by means of SPARK (Zaharia et al., 2010) Resilient
Distributed Dataset (RDD) with the following steps:

Mapping steps: In these steps, the inner com-
putations are done, that is the joint belief as-
signments, ∏M

i=1 mi(Yi), and the definition maps,
F(X |Y1:M;m1:M). These computations are derived for
all considered selection maps j and all possible non-
zero propositional combinations, Y1:M . The amount of
data is potentially exponential with M.
• Define the set of selection maps j ∈ {1 : N}{1:M}

to be computed as a RDD of list, that is
J: RDD[List[Int]]. For this purpose, method
flatMap is applied to an iterator describing j,

• From selection map j and the definition of bba
m̃1:N , map to the collection of tuples:

(
j,
(
Yj(i), m̃ j(i)

)
i=1:M

)
.

Only cases, with non zero values for m̃ j(i)(Yj(i)),
are considered. Methods join and flatMap
are thoroughly used in this process, resulting
in M: RDD[(List[Int], List[(U,U=>Double)])],
where generic type U is used for encoding subsets,

• The referee function is applied through method
flatMap, and yields the collection of tuples:
(
(j,X),F

(
X
∣∣∣Yj(1:M), m̃ j(1:M)

)
∏

i=1:M
m̃ j(i)

(
Yj(i)

)
)

,

as the RDD, FM: RDD[((List[Int], U),Double)],

Reducing Step: In this step, all inner computations
are summed up according to summation, ∑Y1:M⊆Ω .
• At last RDD FM is reduced by key (j,X) with the

addition operator. As a result, the combined bba
are obtained as the collection of tuples:

(j,(X ,⊕ [m1:M|F] (X))) .

Method reduceByKey is used with +, yielding
FusedM: RDD[(List[Int], (U,Double))].

DATA 2016 - 5th International Conference on Data Management Technologies and Applications

146

At this time, the caching strategy is not monitored,
and only RDD J, defining the selection, and RDD FM,
defining the final result, are persistent.

3.2.1 Computational Issues

While this approach makes possible a fully distributed
computation of the inner elements of the combination
during the mapping steps, the amount of cases kept
in memory increases exponentially with the number
of sources to be combined. Even with a triple com-
bination, the approach consumes a lot of memory,
especially when the set of selected combinations is
densely connected. In order to address this issue, we
propose in next section to bring out and to implement
a Markovian property of the rule definition.

3.3 Recursive Formulation

As an instrument for a recursive formulation of the
rules, the sets Ψ and Λ are defined for intermediate
computations. The rule is then defined on the basis of
three finite conditional functions:

(λi,Yi,mi) 7→ σ(λi|Yi;mi) ,

(ψn,λ1:n) 7→ R(ψn|λ1:n) ,

(X ,ψM) 7→ π(X |ψM) ,

for X ,Yi ⊆Ω, ψn ∈Ψ, λi ∈Λ and 1≤ i,n≤M. Func-
tions σ and π are respectively forward and backward
projectors from the space of proposition 2Ω to the
spaces of computation, Λ and Ψ. Function R is a ref-
eree function within the spaces of computation. In σ,
parameter mi is the bba related to information source
i, but any other contextual knowledge could be con-
sidered. Based on triplet [σ,R,π], rule ⊕[σ,R,π] is
defined as a composition of conditional inferences:

⊕ [m1:M|σ,R,π] (X) = ∑
ψM∈Ψ

π(X |ψM)

∑
Y1:M⊆Ω
λ1:M∈Λ

R(ψM|λ1:M)
M

∏
i=1

(mi(Yi)σ(λi|Yi;mi)) , (5)

for all X ⊆ Ω. Owing to definition (5), it is noticed
that, although Ψ and Λ may be infinite sets, the sum-
mations are actually finite: the values are zeroed ex-
cept for a finite number of them. On such definition,
the main computation burden comes from the condi-
tional inference R(ψn|λ1:n), while other inferences are
more or less easily factorized. In order to reduce the
computational burden, a Markov hypothesis is made
on R by introducing conditional function ρ:

R(ψn+1|λ1:n+1) = ∑
ψn∈Ψ

ρ(ψn+1|ψn,λn+1)R(ψn|λ1:n) ,

(6)

for ψ1:M ∈ Ψ, λ1:M ∈ Λ and 1 ≤ n < M. Under this
hypothesis, ⊕ [m1:M|σ,R,π] is computed recursively:

1. For λ1:M ∈ Λ and i = 1 : M , compute projection:

µi(λi) = ∑
Yi⊆Ω

mi(Yi)σ(λi|Yi;mi) , (7)

2. Compute ⊕ [m1:M|R] recursively within space Ψ:

⊕ [m1|R] (ψ1) = ∑
λ1∈Λ

µ1(λ1)R(ψ1|λ1) , (8)

⊕ [m1:n+1|R] (ψn+1) = ∑
λn+1∈Λ

µn+1(λn+1)

∑
ψn∈Ψ

ρ(ψn+1|ψn,λn+1) ⊕ [m1:n|R] (ψn) , (9)

for ψ1:M ∈Ψ, λ1:M ∈ Λ and 1≤ n < M,

3. Compute backward projection for all X ⊆Ω :

⊕ [m1:M|σ,R,π] (X) =

∑
ψM∈Ψ

π(X |ψM) ⊕ [m1:M|σ,R] (ψM) . (10)

Combined with map-reduce, the recursion improves
the efficiency of the distributed implementation.

3.3.1 Recursive Definition of D&P Rule

Unprojected definition (4) is not directly compatible
with a recursive decomposition. In order to take into
account the sources consensuses in a Markov decom-
position, the computation set is chosen as the set of
multisets of underlying set Ω.

m1⊕DP · · ·⊕DP mM =⊕ [m1:M|σDP,RDP,πDP] ,

where σDP is canonical map from sets to multisets,
πDP maps backward from multisets to top sets, and
RDP evaluates the vote by adding on the multisets:

• ΛDP = ΨDP = NΩ ,

• σDP(λi|Yi;mi) = I
[
λi = [I [ω ∈ Yi]]ω∈Ω

]
,

• πDP(X |ψM) = I
[

X = argmax
ω∈Ω

ψM

]
,

• RDP(ψn|λ1:n) = I

[
ψn =

n

∑
i=1

λi

]
.

Markov decomposition of RDP comes easily:

ρDP(ψn+1|ψn,λn+1) = I [ψn+1 = ψn +λn+1] .

3.4 Recursive Implementation

Recursive map-reduce implementations of the rules
are similar to the non-recursive approach described in
section 3.2. But in this case, each recursive step is
computed by means of a map-reduce sequence :

Map-reduce Implementation of Belief Combination Rules

147

Projection Steps: Each bba of (m̃k)k=1:N is com-
puted and mapped into its projection (µ̃k)k=1:N . This
projection is done by a map step and a reduce step:
• All bba are computed as a collection of tuples:

(k,(Yk, m̃k(Yk))) ,

as Bba: RDD[(Int, (U,Double))]. Generic type
U is used for encoding subsets. For this purpose,
flatMap is applied to an iterator of the bba,

• From Bba, the projected weights are then com-
puted as a collection of tuples:

(k,(λ,σ(λ|Yk; m̃k)m̃k(Yk))) .

RDD, MapBba: RDD[(Int, (L,Double))], is ob-
tained by applying flatMap to Bba. Generic type
L is used for encoding Λ-parameters,

• MapBba is reduced by key (k,λ) with the addition
operator. As a result, the projected bba, µ̃1:N , are
obtained as the collection of tuples:

(k,(λ, µ̃k(λ))) .
Method reduceByKey is used with +, yielding
ProjBba: RDD[(Int, (L,Double))],

Recursive Steps: First stage (8) is computed:
• For all prefixes, j(1), of a selection map j,
ProjBba is mapped to the collection of tuples:(

j(1),
(
ψ, µ̃ j(1)(λ)R(ψ|λ)

))
.

FusMapBba: RDD[(List[Int], (P,Double))], is
obtained by applying flatMap to ProjBba.
Generic type P is used for encoding Ψ-parameters,

• FusMapBba is reduced by key (j(1),ψ) with the
addition operator. As a result, values⊕

[
m̃ j(1)

∣∣R
]
,

are obtained as the collection of tuples:(
j(1),

(
ψ,⊕

[
m̃ j(1)

∣∣R
]
(ψ)
))

.

Method reduceByKey is used with +, yielding
FusProjBba: RDD[(List[Int], (P,Double))],

• Set n← 1,
and subsequent stages (9) are computed until n = M:
• Set n← n+1,
• For all prefixes, j(1 : n), of a selection map j,
FusProjBba is mapped to the collection of tuples:
(

j(1 : n),
(
ψ′, µ̃ j(n)(λ)ρ(ψ′|ψ,λ) ⊕

[
m̃ j(1:n−1)

∣∣R
]
(ψ)
))

.

FusMapBba: RDD[(List[Int], (P,Double))], is
obtained by applying flatMap to ProjBba.

• FusMapBba is reduced by key (j(1 : n),ψ) with
the addition operator. Values ⊕

[
m̃ j(1:n)

∣∣R
]
, are

obtained as the collection of tuples:(
j(1 : n),

(
ψ,⊕

[
m̃ j(1:n)

∣∣R
]
(ψ)
))

.

Method reduceByKey is used with +, yielding
FusProjBba: RDD[(List[Int], (P,Double))],

Backward Projection Steps: At last, the combined
bba are obtained from FusProjBba:
• For all selection maps j, FusProjBba is mapped

to the collection of tuples:
(

j,
(
X ,π(X |ψ) ⊕

[
m̃ j(1:M)

∣∣σ,R
]
(ψ)
))

.

Then, FM: RDD[(List[Int], (U,Double))], is ob-
tained by applying flatMap to FusProjBba,

• FM is reduced by key (j,X) with the addition oper-
ator. Combined bba are obtained as the collection
of tuples:

(j,(X ,⊕ [m1:M|σ,R,π] (X))) .

Method reduceByKey is used with +, yielding
FusedM: RDD[(List[Int], (U,Double))].

4 SOME TESTING CASES

In this preliminary work, some limited tests are made
only for the rule of Dubois & Prade. The tests have
been done with limited computation power, that is a 6-
thread virtual machine with 23 Gio of memory, oper-
ated on a i7-4770 GPU with 32 Gio of memory. These
tests are a first glimpse of the improvements by our
approach. But many optimization works are still in
progress and extensions to small clusters of comput-
ers are currently investigated.
A collection of bba is first generated randomly on
set Ω = {a,b,c,d}. Then, any triplet combination of
these bba are intended for the computation of Dubois
& Prade rule. The following table evaluates the com-
putation time (in seconds) for the entire triplet set
with different sizes, NN = N(N − 1)(N − 2)/6, and
different computation approaches: 1 thread and non-
recursive (1-nr); n threads and non-recursive (n-nr); n
threads and recursive (n-r).

NN 560 4960 41664 341376
1-nr 1.7 12 104 –
6-nr 1.23 5.25 37.9 3060
6-r 2.96 7.02 37.3 545

These results confirm the efficiency of the recur-
sive approach for large concomitant combination se-
quences. The recursive approach is however a burden
for small sequences. On this preliminary work, the
code has not been optimized. For this reason, the ta-
ble is not significant at this time in comparison with
other existing optimized libraries.
Moreover, these tests only considered the perfor-
mance of simultaneous computation of large set of
combinations, and especially, a full set of triple com-
binations. This implies important intermediate re-
sults caching. This case of use is then favourable to

DATA 2016 - 5th International Conference on Data Management Technologies and Applications

148

our third, recursive, algorithm, since this approach re-
duces the caching by definition. But many other as-
pects of this implementation have to be investigated,
in term of performance. Typically, the structure of the
set of combinations should be considered for optimiz-
ing the strategies of the computation flow. Moreover,
an incremental computation of the combinations, may
be also investigated through computation flows more
complex than map-reduce. From this viewpoint, the
reactivity of this parallel computation on possibly
complex single combinations is also a piece of per-
formance to be evaluated precisely or optimized in the
future, in regards to non-parallel approaches.

5 CONCLUSIONS

In this paper, we proposed a generic distributed
processing approach for computing belief combi-
nation rules. The approach is based on a map-
reduce paradigm, and has been implemented in
scala/SPARK. It is derived from the concept of referee
function, introduced in a previous work with the aim
of separating the definition of the combination rule
from its actual implementation. This work has been
completed by the proposal of a new recursive formal-
ism for the definition of the rules, and an improved
map-reduce generic implementation of the rules pro-
cessing. Some tests have been made for the rule of
Dubois & Prade, which illustrated this computation
improvement. More tests will be investigated in the
future. Moreover, our intention is to extend this work
to general data flow paradigms for computation.

REFERENCES

Dambreville, F. (2009). Definition of evidence fusion rules
based on referee functions, volume 3. American Re-
search Press.

Dean, J. and Ghemawat, S. (2008). Mapreduce: Simpli-
fied data processing on large clusters. Commun. ACM,
51(1):107–113.

Dempster, A. P. (1968). A generalization of bayesian infer-
ence. J. Roy. Statist. Soc., B(30):205–247.

Dubois, D. and Prade, H. (1986). On the unicity of dempster
rule of combination. International Journal of Intelli-
gent Systems, 1(2):133–142.

Florea, M., Dezert, J., Valin, P., Smarandache, F., and Jous-
selme, A. (2006). Adaptative combination rule and
proportional conflict redistribution rule for informa-
tion fusion. In COGnitive systems with Interactive
Sensors, Paris, France.

Hong, X., Ma, W., Huang, Y., Miller, P., Liu, W., and Zhou,
H. (2014). Evidence reasoning for event inference in

smart transport video surveillance for video surveil-
lance. In 8th ACM/IEEE INternational Conference on
Distributed Smart Cameras, Prague, Czech Republic.

Lefevre, E., Colot, O., and Vannoorenberghe, P. (2002). Be-
lief functions combination and conflict management.
Information Fusion Journal, 3(2):149–162.

Liu, W., Miller, P., Ma, J., and Yan, W. (2009). Challenges
of distributed intelligent surveillance system with het-
erogenous information. In Workshop on Quantita-
tive Risk Analysis for Security Applications, Pasadena,
California.

Martin, A. and Osswald, C. (2007). Toward a combination
rule to deal with partial conflict and specificity in be-
lief functions theory. In International Conference on
Information Fusion, Qébec, Canada.

Shafer, G. (1976). A mathematical theory of evidence.
Princeton University Press.

Smarandache, F. and Dezert, J. (2005). Information fu-
sion based on new proportional conflict redistribution
rules. In International Conference on Information Fu-
sion, Philadelphia, USA.

Smets, P. (1990). The combination of evidences in the trans-
ferable belief model. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 12(5):447–458.

Zaharia, M., Chowdhury, M., Franklin, M., Shenker, S.,
and Stoica, I. (2010). Spark: Cluster computing with
working sets. In Proceedings of 2nd USENIX Con-
ference on Hot Topics in Cloud Computing, Berkeley,
CA USA.

Zhou, K., Martin, A., and Pan, Q. (2015a). A similarity-
based community detection method with multiple pro-
totype representation. Physica A: Statistical Mechan-
ics and its Applications, 438:519–531.

Zhou, K., Martin, A., Pan, Q., and Liu, Z. (2015b). Me-
dian evidential c-means algorithm and its application
to community detection. Knowledge-Based Systems,
74:69–88.

APPENDIX

A Dubois & Prade Rule

Dubois and Prade refined the conjunctive rule by re-
distributing disjunctively the conflict:

m1⊕DP m2(X) = ∑
Y1,Y2:

{
Y1∩Y2 6= /0
Y1∩Y2=X

m1(Y1)m2(Y2)

+ ∑
Y1,Y2:

{
Y1∩Y2= /0
Y1∪Y2=X

m1(Y1)m2(Y2) .

Map-reduce Implementation of Belief Combination Rules

149

