
RESTful Encapsulation of OWL API

Ramya Dirsumilli1 and Till Mossakowski2
1Department of Computer Science, Otto von Guericke University, Magdeburg, Germany

2Institute of Knowledge and Language Engineering, Otto von Guericke University, Magdeburg, Germany

Keywords: Web Ontology Language (OWL), OWL API (Application Programming Interface), REpresentational State
Transfer, Modularity, Logical Consequences, Consistent Ontology, Ontohub.

Abstract: OWL API is a high level API for working with ontologies. Despite of its functionalities and numerous
advantages, it is restricted to a set of users due to its platform dependency. Being built as a java API the
OWL API can only be used by java or related platform users. The major goal of this paper is to design a
RESTful web interface of OWL API methods, such that ontology developers and researchers independent of
platform could work with OWL API. This RESTful OWL API tool is designed to exhibit all the
functionalities of OWL API that do not deal with rendering the input ontology such that it doesn't behave as
an ontology editor, instead supports web ontology developers and open ontology repositories such as
Ontohub.

1 INTRODUCTION

OWL API, a high level java based Application
Programming Interface (API) supports creation,
manipulation and serialization of OWL ontologies.
Being available since 2003, OWL API has
undergone a number of changes and now is based on
OWL2. Application developers and researchers from
many fields have successfully used and are using
OWL API to support and work with ontologies.
Regardless of its prominence amongst ontology
developers, the OWL API still remains domain
specific as it is a java API. Java API is a standard
interface, which can only be accessed by developers
in building java powered applications. This
constraint limits the usage of OWL API to a
particular technology. But managing and working
with ontologies cannot be restricted to a single
platform users, instead making it available as a
platform independent API could benefit several
ontology based applications and web-based ontology
repositories like Ontohub, Bioportal, etc. This paper
is an attempt towards generating OWL API methods
in the form of a web service, such that OWL API
can be accessed independent of domain to parse and
verify ontologies.

"A web service is a software system designed to
support interoperable machine-to-machine
interaction over a network" (Booth et al., 2004). It

provides a standard mode of inter-operations
amongst various software applications that run on
different platforms and in different frameworks.
Web services are mostly APIs that are built to either
extend existing applications, or some times to create
a plug-in for an entirely new application. While
there are many web services such as SOAP, WSDL,
etc., and mechanisms like RPC (Remote Procedure
Calls) available to design web-based API, REST
(Representational State Transfer) is a lightweight
alternative. REST is a web architectural style that is
framed with a group of constraints for designing
network applications. REST is more likely to be
called light-weight due to its platform independency,
language independency, running on HTTP
standards, and usage in presence of firewalls.

Therefore, using the concepts of RESTful web
services and wrapping selected methods of OWL
API, the RESTful OWL API is designed. Selected
methods that do not deal with rendering the ontology
are encapsulated to exhibit functionalities. And the
encapsulated methods are encased into web service
such that they exhibit RESTful features. The
RESTful OWL API comprises of 14 different
methods that are designed on top of OWL API
which will parse the input ontology and return
results based on selected method. The results could
be any feature of the input ontology based on the
method that is called.

150
Dirsumilli, R. and Mossakowski, T.
RESTful Encapsulation of OWL API.
DOI: 10.5220/0005987201500157
In Proceedings of the 5th International Conference on Data Management Technologies and Applications (DATA 2016), pages 150-157
ISBN: 978-989-758-193-9
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

2 OWL2

OWL2 Web Ontology Language by definition is,
“an ontological language for the semantic web with
formally defined meaning” (W3C, 2012). Similar to
OWL1, OWL2 is also designed to make ontology
development and sharing via web easier.

2.1 OWL2 Ontologies

The OWL2 structural specification document
contains the conceptual structure of ontologies
defined in it. Also the functional style syntax that
follows closely the structural specification and
allows OWL2 ontologies to be written in compact
form is defined. The OWL2 ontologies have the
possibility to be viewed as an RDF graph. This
relationship of viewing OWL2 as an RDF graph is
specified by "mapping to RDF graphs" document.

RDF/XML is the primary exchange syntax for
OWL2 which is the only syntax that must be
supported by all tools. Although RDF/XML
provides interoperability amongst OWL2 tools there
exists other concrete syntaxes which can also be
considered. Turtle is one such syntax which is based
on RDF, OWL2XML is another syntax which uses
XML serialization, and Manchester syntax, an
editing tool with clearly readable syntax used by
several ontology editors. Besides its major purpose
that is, to specify the structure of the language, the
functional style syntax can also be considered for
serialization.

2.2 Entities

The names of classes, properties, datatypes and
individuals are represented as IRIs in OWL2 and are
collectively known as entities. The OWL2
ontologies are built on top of such entities and
datatypes.

The set of entities that occur in ontology are
referred as signature in DL.

2.3 Semantics

Although the abstract structure of OWL2 ontologies
is defined in OWL2 Structural Specification
document, their meaning is not defined. The OWL2
Direct Semantics and OWL2 RDF-Based Semantics
are two different ways of assigning meaning to
OWL2 ontologies along with a theorem that
corresponds to provide a link between them. The
reasoners and other OWL2 tools use these two
semantics.

A meaning is assigned directly to RDF graphs by
the RDF-based Semantics which leads to indirect
structuring of ontologies via mapping to RDF
graphs. The RDF-based semantics can be directly
applied to any OWL2 ontology without any existing
restrictions.

A meaning is assigned directly to ontology
structures in Direct Semantics. This results in a
semantics which are compatible to the model
theoretic semantics. Direct Semantics of OWL2 is
based on DL, therefore it supports the concepts of
DL semantics.

Interpretations: Before discussing the semantics of
DL, basic knowledge of "what are interpretations?"
plays a major role in understanding the semantics.
An Interpretation I consists of a set ∆I called the
domain of I and an interpretation function. I that
maps each atomic class/concept A to set

AI ⊆ ∆I

each atomic property/Role R to a binary relation,

RI ⊆ ∆I * ∆I and

each individual name a to an element,

aI ∈ ∆I

(Krötzsch et al., 2012).
The interpretation of basic entities is the base of

interpretation of complex concepts and roles.

Logical Consequences: An axiom which holds in
all the interpretations that satisfy the ontology is a
Logical consequence. As the number of axioms in
ontology increases, the number of interpretations
that could satisfy the axioms decreases. Contrarily,
more number of Logical Consequences follow from
fewer interpretations.

Inconsistent Ontology or Unsatisfiable Class: In
situations, where no interpretation can satisfy the
axioms in an ontology the ontology is considered as
inconsistent ontology.

Conservative Extension: This can be explained by
considering two ontologies T1 and T2. The ontology
generated by merging these two ontologies that is,
T1 ∪ T2 can be considered as conservative extension
of T1 , w.r.t. a signature S only if every S-
consequence of T1 ∪ T2 , is already a consequence of
T1. In other words, the merged ontology T1 ∪ T2 is an
S-conservative extension of T1 , if T1 doesn't change
even after adding T2 to it, as far as consequences
over S are concerned.

Module Extraction: The concept of module
extraction is, extracting a set of axioms from the
ontology, which are relevant to the signature

RESTful Encapsulation of OWL API

151

specified. Considering an ontology O, and module
M, then M⊆O is a module of O with respect to
Signature S if O is an S-conservative extension of M.

2.4 Profiles

The profiles of OWL2 can be termed as the
sublanguages which offer important benefits in
particular applications. There are three different
profiles defined in OWL2: OWL2 EL, OWL2 QL
and OWL2 RL. Each of these profiles is defined as a
syntactic restriction over the OWL2 Structural
Specification. All these profiles trade various aspects
of OWL’s expressive power in exchange to different
computational benefits.
OWL2 EL: Polynomial time algorithms are enabled
for all standard reasoning tasks.
OWL2 QL: Conjunctive queries are enabled to be
answered in log space (AC0) by using standard
relational database technologies.
OWL2 RL: Implementation of polynomial time
reasoning algorithms is enabled using rule extended
database technologies that are operated directly on
RDF triples.

3 OWL API

Originally, the OWL API provides a suite of
interfaces in addition to a reference implementation
which facilitates the use of OWL in a wide variety
of applications. A set of inference engines are
present at the core of OWL API for manipulating,
reasoning and inspection with OWL ontologies.
Further, loading and saving of ontologies in varieties
of syntaxes is supported by OWL2. Nevertheless,
none of the model interfaces in the API are biased or
reflects any particular concrete model or syntax. The
OWL API design is directly based on the OWL2
Structural Specification. This results in the ontology
simply being viewed as a set of annotations and
axioms. The names and hierarchies of interfaces for
entities, axioms and class expressions in the OWL
API closely correspond to the structural
specification. Presently, there is nearly a direct
relationship between the core OWL API model
interfaces and the OWL2 Structural Specification,
which means that the high level OWL2
specifications can be directly related to the design of
the API.

The OWLOntology interface provides access to
efficiently obtain the axioms that are contained
within an ontology. The method of storing axioms is

provided by different implementations of the
OWLOntology interface.

3.1 Parsing and Rendering OWL
Ontologies

The concept of aligning OWL API with the
structural specifications of OWL2 derives a major
benefit of no commitment to a single syntax. Despite
of single syntax such as RDF/XML exists which the
OWL implementation supports, there exists many
other syntaxes which are optimized for various
purposes. An out of the box support is included in
the OWL API for the purpose of reading and writing
ontologies in various syntaxes, which also includes
RDF/XML, OWL/XML, Turtle, The Manchester
OWL Syntax , KRSS Syntax, OBO flat file format
and the OWL Functional Syntax. A registry of
parsers and renderers which makes it easy for the
OWL API to add support to custom syntaxes, are
used by its reference implementation. When the
ontology is loaded at the run time, the appropriate
parser is automatically selected. Also, the ontologies
are saved back after the parsing in the same format
from which they were parsed by default, but there
exists possibility of converting the ontologies such
that they perform syntax conversion tasks like a
“save as” operation in editors.

3.2 Reasoner Interfaces

Reasoning is one of the most interesting elements
while working with the OWL ontologies. In general,
the purpose of the reasoners is to
 check the consistency of the ontologies,
 check for any unsatisfiable classes existing in

signature of an ontology, class and property
hierarchy computations, and

 Check the entailment Logical Consequences.

To support the interaction between OWL reasoners
and OWL API, there exist various interfaces.
OWLReasoner is the major interface that provides
the methods to perform the previously mentioned
tasks.

3.3 Profile Validation in OWL API

The OWL2 specifications provide various profiles,
which in turn corresponds to syntactic subsets of the
OWL2 language. The profiles that are defined as the
OWL2 profiles in the document are the OWL2 EL,
OWL2 QL and OWL2 RL.

A complete programmatic access by client

DATA 2016 - 5th International Conference on Data Management Technologies and Applications

152

software is allowed by profile API, along with fine
grained objects which represents particular reasons
for profile violations. Also, there exists an web
based profile validator which performs the profile
validation on an ontology and its imports closure
was written with the OWL API and is available in
(McGuinness et al., 2007).

4 RESTful SERVICES

4.1 What Is REST?

REST is the 'Representational State Transfer', a
concept described by Roy Fielding about the web's
architectural style. This web's architectural style is
framed with constraints which are grouped into six
categories. They are:
 Client-Server
 Uniform Interface
 Layered System
 Cache
 Stateless
 Code-on-demand (Fredrich, 2012).

4.2 RESTful API

A web API which is built on the REST architectural
style is the RESTAPI.

URIs
Uniform Resource Identifiers (URIs) are used in
REST APIs to address resources. URIs in the present
web range from masterwork that transparently
communicate the API's resource model such as-
http://www.library.com/books/harry-potter/first-
series

Compared to those that is much harder for users to
understand such as-
http://www.library.com/48gg0-h9p6-1sfc-
7823a7754f94

http Methods for RESTful Services:
A major part of the 'uniform interface' constraint
constitutes of http verbs. It also provides the action
counterpart to the noun-based resource. POST, GET,
PUT ad DELETE are the most commonly used and
primary http verbs. These verbs represent create,
read, update and delete (CRUD) operations
respectively. There are other http verbs such as
OPTIONS and HEAD present, but are not frequently
used.

GET: It is the verb used to 'read' or 'retrieve' a

representation of a resource. An XML or JSON
representation and a HTTP response code 200 (OK)
is returned by GET in a non-error path. The code
404 (NOT FOUND) or 400 (BAD REQUEST) is
returned in case of error path.
Example: GET http://www.library.com/listbooks
This retrieves the data based on the arguments
passed, which is it lists the books present in the
library.

POST: It is the verb used to 'create' new resources.
POST particularly creates dependent resources, i.e.,
a dependent to some other resource. On creating
successfully a HTTP return status 201 along with a
location header with link to the newly created
resource is returned.
Example:
POST http://www.library.com/newbook/harry-
potter/second-series
A new book harry-potter second-series is added, that
is new resource is created.

5 RELATED TOOLS

Plenty number of researches have been and are still
working with OWL API, to utilize its features for
the semantic web. (Bergman, 2011) lists the
available tools built on top of OWL API. Few of
these tools are related to the current developed tool.
Hence, we take a look through these related tools.

Protégé: Protégé is an Ontology editor that is built
on top of OWL API and completely supports OWL2
Web Ontology Language (Musen, 2015).

WebProtégé: WebProtégé was built as a
“collaborative web-based platform that supports
ontology editing and knowledge acquisition, and that
can be easily tailored for domain-expert use”
(Tudorache et al., 2013).

OWLTools:"OWLTools leverages the full features
of OWL API and OWL Reasoner API, but provides
convenience methods for common tasks" (“OWL
Tools,” 2014).

OWL API Wrapper: The OWL API Wrapper
(Manuel, 2015) similar to OWL Tools is a
command-line utility. This tool wraps the OWL API
such that it can parse OBO, OWL and RDFS
ontologies.

OWL Toolkit: From (Xiao, 2015), the OWL
Toolkit is also a command-line utility built on top of
OWL API.

Web VOWL: "WebVOWL (Web-based
Visualization of Ontologies) is a web application for

RESTful Encapsulation of OWL API

153

user-oriented visualization of ontologies“ (Steffen,
2015).

Ontodev.owlapi: This tool provides a thin Clojure
wrap around the OWLAPI and other utilities such
as, Hermit reasoners, for working with RDF/XML
representations of OWL ontologies.

Apache Stanbol: Ontology developers can use the
components Apache Stanbol Ontology Manager,
Apache Stanbol Reasoner and any other required
service individually through the provided RESTful
web service.

Comparison of Apache Stanbol to current
RESTful OWLAPI
The components of Apache Stanbol that deal with
ontologies are designed towards individual
ontologies and also ontology networks.
Nevertheless, all the components are built as
RESTful web services, which is similar to the
current work. Hence using reasoner services of
Apache Stanbol has few similarities as using the
RESTful OWLAPI.

 The Apache Stanbol Reasoners allows manual
selection amongst different types of reasoners
that is rdfs, owl, HermiT etc.. RESTful OWLAPI
uses OWLAPI along with OWL Reasoner and
additionally HermiT Reasoner. But, the selection
of Reasoners in RESTful OWLAPI is not
manual.

 Apache Stanbol Reasoners are restricted to only
three methods, where as the RESTful OWLAPI
has wide methods described which deals not only
with reasoners, but also OntologyManagers,
DataFactory and other methods of OWLAPI

 The base of the modules of Apache Stanbol
Reasoner includes OWLAPI and Jena abstract
services. The RESTful OWLAPI is complete
encapsulation of OWLAPI alone.

 The consistency checker in Stanbol can only
verify the consistency of the input ontologies, but
cannot yet return any explanations of
inconsistency. The OWLAPI already implements
this process and is encapsulated in the RESTful
OWLAPI.

 The Apache Stanbol Ontology Manager is built
to work with ontologies and also ontology
networks. This allows the manager to control a
whole stream of ontologies. This is not possible
in the RESTful OWLAPI, as it is designed to
only work with a single input ontology at a time.

 A complete access through all the ontologies
stored in the Stanbol persistence layer or any
input ontology library is provided to the Apache

Stanbol Ontology Manager. The RESTful
OWLAPI can manage the input ontology and no
possibilities to hold on running ontologies like in
Apache Stanbol.

6 RESTful OWL API

RESTful OWL API is a web service to access the
methods of OWL API. The major goal while
building this tool is not only to wrap the selected
java methods of OWL API, but to enable the web
ontology developers to access these methods
through a web interface. Hence, the concepts of
REST are used to build the web service through
which all the protocols are passed. Although OWL
API supports creation, manipulation and
serialization of OWL ontologies along with
reasoning over ontologies, the RESTful OWLAPI
only encapsulates the methods which do not make
any changes in the original ontology. The
restrictions on encapsulating methods are framed
such that the tool should support open ontology
repositories and other web services that use
ontologies and should not stand as a web ontology
editor. Therefore the methods which include parsing
and reasoning over ontologies are the major focus in
this work.

6.1 Resource Identifier

One of the major constraints of REST design
architectural style is the ability of global addressing
through resource identifiers. HTTP methods
required by REST design are addressed by Uniform
Resource Identifier (URI). A URI provides simple
and extensible means for identifying a resource
(Berners and Fielding, 2013).
Example: http://www.library.com/listbooks

Along with resource identification, the identifiers in
the URI can also represent the input arguments.
Therefore, from the above example,
"http://www.library.com" is the resource identifier,
followed by argument listbooks. Similarly in the
RESTful OWL API, resource identifier used is in
format:
http://www.example.server.com/:methodName/:code
d_IRI/:parameters/

In the above URI which is the format followed for
RESTful OWL API, identifiers indicate-
:example.server - Example server name of the
resource, which is
 http://owlapi.hets.eu/

DATA 2016 - 5th International Conference on Data Management Technologies and Applications

154

:method – The method to be implemented over the
input ontology.
:coded_iri – The input OWL ontology has to be
ontology from a web ontology repository like
Ontohub. The URI that identifies the ontology
should be converted into IRI (discussed in the
following section) such that it fits to be identified as
a single argument.
:parameters – Not all the methods in the RESTful
OWL API have additional parameters passed.
Therefore it doesn't stand to be a compulsory
attribute. Nonetheless, it has to be passed when
demanded by the method.

IRI
Internationalized Resource Identifier (IRI) is a new
protocol designed as an extension of URI, with a
wide repository of characters. In general, IRI is the
encoded URI and they can be mapped to URIs and
vice versa, hence in case of resource identification,
IRIs can be used in place of URIs. In RESTful OWL
API, IRI is used to identify input OWL ontology
instead of URI, as that it can be pointed as a single
argument. Therefore, while passing the input
ontology, the URI of OWL ontology must be first
converted to IRI; it can be done using
http://www.url-encode-decode.com/.
Example: when encoded the URI given above, it
returns,
http%3A%2F%2Fwww.url-encode-decode.com%2F

6.2 HTTP Methods

As discussed earlier, HTTP verbs stand to be major
asset for web services to attain „uniform interface“.
Although HTTP methods offer GET, POST, PUT
and DELETE, which intend to 'read', 'create',
'update' and 'delete' respectively, they are not all
used in the current tool. RESTful OWL API utilizes
the methods „GET“ and „POST“ which do not aim
at rendering the input OWL ontology.

6.3 Accept Headers

Much elegant approach while designing a RESTful
web interface is to include HTTP accept headers that
supports the output format. These headers are to be
implemented specifically for custom result and does
not have any specific format or standards to follow.
To indicate that the request is limited to a particular
set of desired type, accept headers point towards the
format of output. For example, “Accept: text/json”
indicates that the result with a set of JSON text in is
only returned.

RESTful OWL API accepts headers with JSON,
HTML or PLAIN (in few methods).
Syntax:
 Accept = "Accept:"
 #(media-range [accept-params])
 media-range = "text"
 accept-params = "JSON" or "HTML" or
"PLAIN" or "XML"
Example:

curl -X „Accept: text/JSON“ POST
http://owlapi.hets.eu/modularity/http%3A%2F%2Fo
ntohub.org%2Ftones%2Fwww.co-
ode.org%2Fpizza.owl/hasSpiciness/manowl

6.4 RESTful OWL API Design

In this section, we discuss in detail the procedures
followed along with input, outputs and examples on
how to use each of the methods.

Design:
The core of RESTful OWL API is the encapsulation
of the selected java methods of OWL API.
Additionally, to meet the RESTful interface
constraints, the URIs act as the source of input.
Arguments including OWL ontology IRI, method
name and any parameters required are passed
through the URI as input. Once the encapsulation is
achieved for the given input, the results are rendered
mostly into JSON and in some scenarios into XML
and returned as output. An overview of this design
can be seen in Figure below.

Figure 1: An overview of RESTful OWL API.

Input:
Server (s) is http://owlapi.hets.eu, provided.
Method Name (M) refers to the method to be
performed and Parameter P depends on M.
Coded_IRI is the OWL Ontology URI that is
encoded into IRI.

Encapsulation:
Encapsulation here refers to the process of wrapping
java methods in the OWL API to reproduce their
functionalities in the form of a RESTful web service.
In this section, we clearly discuss the methods
encapsulated along with procedures followed.

In the Encapsulation module, firstly the OWL
Ontology is extracted from the input IRI using OWL
API method. Then, method is encapsulated based on

RESTful Encapsulation of OWL API

155

the method name that is selected. If the parameters
passed meet the requirements of the method, and
then the result is returned by parsing the input
ontology based on method and parameters if any.
Following are the various methods that are present
in the RESTful OWL API.

The documentation and code to work with
RESTful OWL API can be found at,
https://github.com/ramyadirsumilli/rest_owl_api
And, it can be accessed through,
http://owlapi.hets.eu/.
Methods of RESTful OWL API include:
ExploreClasses: Retrieves list of OWL Classes from
input ontology.
Descendants: List of direct subclasses of each OWL
Class is retrieved from input ontology.
ConvertOntology: Converts format of input
ontology to any required format.
InferredOntology: An ontology is generated based
on inferred axioms in the input ontology.
Hierarchy: Hierarchy of the input ontology is
retrieved.
Modularity: Module ontology from the input
ontology based on input signature is generated.
PetInstances: Instances of OWL Classes along with
their properties are retrieved.
CheckProfiles: Input ontology is verified against all
the OWL Profiles.
VerifyProfile: Input ontology is verified against a
specified OWL Profile.
Explanations: Satisfiable and Unsatisfiable OWL
Classes along with explanations for unsatisfiability
in the input ontology are listed.
UnsatisfiedClassExplanation: Single input OWL
Class is verified for satisfiability and returns
explanations in case of Unsatisfiable OWL Class.
LookupRestrictions: Restrictions if any present on
the input OWL Class are retrieved.
ReadAnnotations: The annotations present in the
input ontology in specified language are retrieved.
LogicalConsequences: retrieves logical
consequences from the ontology.

7 APPLICATIONS

The motivation behind designing RESTful OWL
API is to make the methods of OWL API available
for ontology repositories and also for other
applications that are not written in Java, such that
they can manage, validate and know the ontologies.

7.1 Ontohub

Ontohub is an open ontology repository for
managing distributed heterogeneous ontologies. That
is, it supports in organizing, collection, retrieval,
mapping, development, evaluation and translation of
huge array of ontologies. Its distributed nature
makes it possible for communities to share and
exchange contributions easily. Additionally, its
heterogeneous nature enables integration of
ontologies that are formulated in various ontological
languages. Ontohub is an open source ontological
repository, where users can browse, upload, search
and annotate basic ontologies in several languages
using a web frontend.

Using the RESTful OWL API, the ontologies in
the Open Ontology Repository (OOR) Ontohub can
be parsed and exhibit features of OWL API, such as
verification of consistency of a ontology,
modularity, inference and so on. An added
advantage while using RESTful OWL API with
Ontohub is that, it doesn't intend at making any
changes in the ontologies uploaded in repository.
But, the ontologies in the repositories can work and
use all the functionalities exhibited by the
RESTfully Encapsulated OWL API.

7.2 Others

The RESTful OWL API exhibits most of the
features of OWL API in the form of a RESTful web
service. Therefore, any ontological repository or in
that case any ontology based web application that
requires validation or any other functionality of
OWL API can use the RESTful OWL API.

For instance the methods of RESTful OWL API
can be used in ontology matching, which plays a
major role in ontology integration. There are many
approaches for ontology matching, some require
module extraction as in (Solimando et al., 2014) and
few also depend on logical consequences such as
(Jiménez-Ruiz et al., 2009). While working with any
of these approaches in the form of an web service,
the RESTful OWL API could be called easily from
the web service instead of OWL API which
decreases the efforts of calling an java based API.

8 SUMMARY

RESTfully Encapsulated OWL API, a tool designed
to allow the access of OWL API methods through a
web service. The tool has been implemented to
provide the following features:

DATA 2016 - 5th International Conference on Data Management Technologies and Applications

156

 RESTful - It follows the constraints of RESTful
web architecture to act as a web API.

 Standalone - Although the core proposal of the
tool was to support the Ontohub, this service
along with providing support to Ontohub, also
stands as an independent framework. Therefore,
any service that deals with ontologies on the web
can utilize the functionalities of RESTful OWL
API.

 Wrap OWL API - All the methods in the OWL
API that support working with a single input
ontology are encapsulated. That is, all the java
methods, which help in understanding an input
ontology by parsing through it and retrieving
data from the inputs by making no changes in the
core ontology are wrapped.

The tool helps in exploring ontology and retrieving
data such as, list of classes, or direct sub classes or
even the pet instances present in the input ontology.
Also, the reasoning services are supported by this
tool. Therefore, information like the reasons for
inconsistent ontology or explanations regarding
single class unsatisfiability can also be retrieved.
Additionally, the tool supports the methods
inference and modularity, which are key concepts of
the OWL API. These methods return a new ontology
based on the input ontology and parameters passed
along with it. Verification over a profile validation is
an added advantage, the tool along with cross
verifying input ontology with the OWL Profiles,
also returns a profile report that is generated by
wrapping the respective methods of OWL API.

Along with a support for ontology management
in open ontology repositories like Ontohub, the
RESTful OWL API stands to be a web service
offering functionalities of OWL API. Therefore, any
web developer or researcher using ontologies and
interested in working with OWL API as an interface
can use this tool (RESTful OWL API), and work on
top of it.

REFERENCES

Bergman, M. K. (2011). Thirty OWL API Tools.
Retrieved February 16, 2016, from
http://www.mkbergman.com/977/thirty-owl-api-tools/

Berners, T., & Fielding, R. (2013). Uniform Resource
Identifier (URI): Generic Syntax Status. Journal of
Chemical Information and Modeling, 53, 1689–1699.
http://doi.org/10.1017/CBO9781107415324.004.

Booth, D., Haas, H., McCabe, F., Newcomer, E.,
Champion, M., Ferris, C., & Orchard, D. (2004). Web

Services Architecture. Group, 22(February), 19–26.
http://doi.org/10.1023/B:BTTJ.0000015492.03732.a6.

Fredrich, T. (2012). RESTful Service Best Practices
Recommendations for Creating Web Services, 1–25.

Jiménez-Ruiz, E., Cuenca Grau, B., Berlanga, R., &
Horrocks, I. (2009). Towards a logic-based assessment
of the compatibility of UMLS sources. CEUR
Workshop Proceedings, 559, 2–5. http://doi.org/
10.1186/2041-1480-2-S1-S2.

Krötzsch, M., Simancik,1 F., & Horrocks, I. (2012). A
description logic primer. arXiv Preprint
arXiv:1201.4089, (June), 1–17. Retrieved from
http://arxiv.org/abs/1201.4089.

Manuel, S. (2015). OWL API Wrapper. Retrieved
February 16, 2016, from https://github.com/ncbo/
owlapi_wrapper.

McGuinness, D., Fox, P., Cinquini, L., West, P., Benedict,
J., & Garcia, J. (2007). Current and future uses of
OWL for Earth and Space science data frameworks:
Successes and limitations. CEUR Workshop
Proceedings, 258.

Musen, M. A. (2015). The Protégé Project. AI Matters,
1(4), 4–12. http://doi.org/10.1145/2757001.2757003.

OWL Tools. (2014). Retrieved February 16, 2016, from
https://github.com/owlcollab/owltools/wiki/OWLTool
s-Intro.

Solimando, A., Jim, E., & Guerrini, G. (2014). Detecting
and Correcting Conservativity Principle Violations in
Ontology-to-Ontology Mappings, 1–16.

Steffen, L. (2015). WebVOWL: Web-Based Visualization
of Ontologies. Lecture Notes in Computer Science
(including Subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics),
8982, 225–232. http://doi.org/10.1007/978-3-319-
17966-7.

Tudorache, T., Nyulas, C., Noy, N. F., & Musen, M. A.
(2013). WebProtégé: A collaborative ontology editor
and knowledge acquisition tool for the web. Semantic
Web, 4(1), 89–99. http://doi.org/10.3233/SW-2012-
0057.

W3C, O. W. L. W. group. (2012). OWL 2 Web Ontology
Language Document Overview (Second Edition),
(December 2012), 1–8. Retrieved from
http://www.w3.org/TR/owl2-overview/

Xiao, G. (2015). OWL Toolkit. Retrieved February 16,
2016, from https://github.com/ghxiao/owl-toolkit.

RESTful Encapsulation of OWL API

157

