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Abstract: The S-Transform which is used in many fields, is better in the methods of time-frequency analysis. Although 
the S-Transform improves the time-frequency analysis, it also increases the algorithm complexity, resulting 
in rapidly increasing the computing time and needing more memory. Therefore, the S-Transform is difficult 
to be applied for real-time procession of signal. Based on the characteristics that human being is insensitive 
to the voice frequency resolution, in this paper, we propose a compressing algorithm of the S-transform. 
Through re-sampling frequency, the algorithm decreases data size, the computing time and computer memory 
usage in the S-transform. The application of the algorithm in MFCC analysis shows the results is reliable 
under the condition of re-sampling frequency resolution 82f HzΔ < . 

1 INTRODUCTION 

The beginning of research on speech features was in 
the 1930s (Cheng et al., 1996). Lendbergh and his 
colleagues first conducted the research on the 
personal speech features. After decade, many kinds of 
coefficients about speech features were proposed, 
including the most important one, Mel Frequency 
Cepstral Coefficients (MFCC) (Davis et al., 1980). 
The MFCC was put up based on the ability of 
auditory feeling in 1980 by Davis and Mermelstein, 
is better in speech recognition and has been widely 
applied in the speech research. Since 1995, 
computation of MFCC has been improved based on 
time-frequency analysis and Neural Network (Abdalla 
et al., 2013).  

In 1996, the S-Transform(ST) is proposed 
(Stockwell et al. 1996), aiming at processing the 
seismic wave in earthquake exploration. ST is the 
expanding of Short Time Fourier Transform (STFT) 
(Liu et al., 2000) and Wavelet Transform (WT) (Qian, 
et al., 2008). ST is better than other methods (Chen et 
al., 2006, Lin et al., 2013) in time-frequency 
resolution. According to the previous research (Lin et 
al., 2013), ST has a more straightforward relationship 
with Fourier Transform comparing with WT and a 
clear physical significance which transform 

coefficients are invariant frequency (Vidakovic et 
al.,1995). The well performance of ST leads to its 
extensive use (Assous et al., 2006). However, ST 
increases algorithm complexity (Brown et al., 2010), 
needs more computing time and computer memory, 
and that is less practical in MFCC while quick 
response needed. 

For reducing computation cost of ST, some 
efficient algorithm of ST are put forward. Through 
eliminating redundant data, Brown et al. (2010) 
suggest a fast ST that improves ST efficiency, but its 
frequency is different from general ST, so how to get 
real frequency is a problem (Zhang, 2013). 
Depending on the features of Power Quality 
Disturbances, Yi et al. (2009) proposed a incomplete 
S-transform(IST) that also is efficient than general 
ST, but IST only treats main frequency, so it can only 
be applied in special situation. 

Basing on the features that speech is wide 
frequency band and most people can recognize 
limited frequency band, we propose an efficient 
algorithm of ST that replaces a small section in 
frequency domain with a point in the section, the 
method decreases computation cost of ST in MFCC, 
and was called Compressing S transform (CST). 
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2 S TRANSFORMATION AND ITS 
IMPROVEMENT 

2.1 S Transformation 

ST of continuous time signal ( )h t  can be represented 

as (Stockwell et al., 1996) 
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In this formula, t and τ is the same parameters about 
time, and f is the frequency. 

Obviously the width of the window (the product 

of 
2

f
π  and the real exponential) will decrease with 

increasing frequency. Because the narrowed integral 
window for the different frequencies, it will expose 
different resolution. It means that ST can do multi-
scale analysis. For (1), its Fourier transformation is 
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Here, α  is the frequency after convolution. 

2.2 The Compressing S Transform 

Using the discrete version on (2) , we have  
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From (5), the algorithm complexity of ST is 
2( lo g )o n n  larger than FFT ( log )o n n . The 

memory need for ST is 2( )o n . Here 
sn F T= ⋅ , T is 

duration of speech signal and Fs is the sample 
frequency. 

Table 1 is the running time and memory of ST for 
actual speech signal that sample frequency is 14 KHz. 
The table shows that run time and needed memory 
will increase sharply with increasing duration of 
speech. For example, 60 seconds speech needs nearly 

5000 multiple run time and 3800 multiple memory 
needed with 1 second speech signal. 

Table 1: Computation Cost of ST. 

Sample 
Length（second） 

Runs 
(*10^9) 

Similar 
memory(GB) 

1s 1.87 0.73 

2s 8.03 2.92 

10s 232.3 73.01 

60s 9625.2 2628 

Generally, the frequency range of speech is 20 Hz 
to 20 kHz, and the human hearing is far more 
sensitive to sound between 100Hz and 500Hz, and the 
frequency resolution of the human hearing is about 

1.8f HzΔ ≈ . It means we are unable to receive the 

information a speech that frequency is too high or too 
low. Depending on the features of speech and human 
hearing, this article re-samples frequency points of 
ST to compress the amount of data in ST operation 
within an acceptable range of error, and improves the 
operation efficiency of ST. we call the ST with 
compressing data size as the compressing algorithm 
of ST or compressing ST, Abbreviated as CST. 
Through re-sampling, CST does not need to process 
all time-frequency data. 

For a small enough section, the algorithm only 
picks up the intermediate point of section to participate 
in operation of ST. Setting parameter C as the 
compression rate, Fs is the sample rate, N is the data 
size before compression and T is signal duration, for 
section [ ](C 1)/2, (C 1)/2C Ck k− − + − , kC point will be 

picked up, then after resample, data size of ST will 
change from N to Nc, and frequency resolution will be  

 C
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When replaced section is small, approximately we 
have  
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Then, we have 
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here 
C

α is the re-sample value of α , and 

compression rate C is 

ICINCO 2016 - 13th International Conference on Informatics in Control, Automation and Robotics

540



 C s

c c

TFN

N N
= =  (12) 

From (10), the data size of ST will decrease C 
times that will lower computation cost.  

3 THE APPLICATION OF THE 
COMPRESSED ST IN MFCC 

MFCC is an analysis method on hearing system of 
human beings. For a time-domain speech signal, 
procedure of MFCC includes: pre-emphasis, framing, 
windowing, then for each frame, its Fourier amplitude 
spectrum will be filtered with Mel filter group, after 
that, all the filter output will be done with logarithm, 
Discrete Cosine Transform (DCT) and so on. 
Following is the Mel filter 
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Here, ( )mH k  is the Mel filter group, m is the mth Mel 

filter, f(m) is the centre frequency of mth Mel filter, k 
is frequency.  

3.1 MFCC with CST  

For general MFCC, how to select the frame length of 
speech signal and window are two problems that 
influence results of MFCC. The frame length must be 
short enough to meet short-time steady state, but is 
not too short to ensure sufficient frequency resolution 
for FT. It is difficult what the window function should 
be selected for the different window function will 
result in different MFCC. The application of ST in 
MFCC can simultaneously resolve two problems of 
general MFCC.  

For speech time-history y(t), after pre-emphasis, 
its time-frequency signal ( , )Y t f  can be got with ST. 
Then faming ( , )Y t f can be done in time domain 
according to (15) and need not to do FT for every 
fame. 
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Here,
f sN T F=  is the point number. Therein, [ ],Y i k

is the discrete ( , )Y t f . For CST, replace N with N/C. 
Every frame energy of y(t) is 
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The frame energy through Mel filter group is 
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For ( , )i mΩ , do logarithm, then compute the 

cepstrum of DCT transform, finally we have  
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Here i is the ith frame, n is the spectral line, ( , )mfcc i n  

is N-dimension characteristic vectors of MFCC. 

3.2 Error Analysis 

The application of CST in MFCC must cause the 
distortion of MFCC feature vector. Simply, the 
distortion can be expressed with the mean square 
error (MSE) as  

 ( )
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Here, ( , )D X Y  is MSE about MFCC feature vector 

Y, X with or without CST. 

4 RESULT VERIFICATION OF 
COMPRESSING ALGORITHM 

4.1 Operation Efficiency 

From (10), the computing time-consuming of CST is 
N/2C times of Inverse FFT with the algorithm 
complexity ( log )o n n . In FFT, split-radix FFT 

(Johnson, et al., 2007) is a better method with 
computational complexity ( 4 log 6 8N N N− + ). For 

CST, its time complexity is 2( log / )o n n C , space 

complexity is 2( / )o n C , and has / CN N× time-

frequency points，then its computational complexity 
is ( )4 log 6 8 / CN N N− + . So it can reduce run time and 

memory as C times in ST. 
Under the condition of Inter Core I7-4790 

processor, DDR3 1866 16GB memory, 64-bit 
MATLAB software, we processed some speech 
signals with duration from 1s to 4s at interval of 0.2s. 
For CST, its compression rates are set from 1 to 13 at 
interval of 2. For each speech time-history, six tests 
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are performed, and the average of memory 
consumption and run time is computed. 

The figure 1 illustrates the relationship among run 
time, compression rates and signal duration. The 
figure 2 illustrates the relationship among memory, 
compression rates and signal duration. 

 

Figure 1: Relationship of Compression rate, sample time 
and run-time (C is Compression rate that change from 
1,3,5,7,9,11 to 13). 

 

Figure 2: Relationship of Compression rate, sample time 
and memory (C is Compression rate that change from 
1,3,5,7,9,11 to 13).  

When signal duration is longer than 4 seconds, the 
memory is not enough to store the data and some data 
must store in hard disk, the computation efficiency 
drops rapidly and the run time increases to 1514s. 
With the increasing compression, the needed memory 
and the run time decrease significantly. For instance, 
when the duration of speech is 3.6s, ST need 147s and 
about 13GB memory, CST with triple compression 
needs about 49s and 4.4GB memory which reduced 
66% run time, and with thirteen compression needs 
about 10.3s and 1GB which reduced 93% run time.  

4.2 The Influencing of Compressing  

Figure 3 is the time-frequency diagram of speech with 
44.1KHz sampling frequency. In the figure 3, (a) is 
uncompressing, (b) is 20 times compression. The 
bottom of 3(a) and 3(b) is the time-history of speech, 
the top is the time-frequency diagram, time-frequency 
energy distribution in the figure is corresponding with 
the time-history diagram. There is no significant 
difference between two time-frequency diagrams. 

 
(a) uncompressed time-frequency signal 

  
(b) 20 times compression time-frequency signal 

Figure 3: ST Time-Frequency analysis diagram. 

Figure 4 illustrates correlation of the MFCC 
results computed from un-compression and 
compression methods through linear regression 
analysis. Two diagram show the results with 50 times 
compression give the larger deviation that means that 
error of results will increase with increasing 
compression. 
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(a) 50 times compression 

 
(b) 20 times compression 

Figure 4: Comparing the MFCC results with different 
compression and uncompressing (horizontal ordinate is 
uncompressed, vertical ordinate is compression). 

Goodness of fit reflects level of similarity 
between two vectors, defined as 
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Here, y  is the average of y, and figure 5 show that 

the goodness of fit change with compression rate. In 
figure 5, (a) and (b) are the results respectively with 
male voice and female voice. 

For figure 5, the signal duration is 0.38s that 
eliminates zero energy points in speech. From 
diagrams, the goodness of fit will decrease with the 
compression rates increase. In the diagram, we can 
find some important points, for male, these points are 
C=31, 47, and for female, these points are C=18, 23, 
31, 47. These points maybe reflect some features of 
speech. From figure 5, we can get conclusion that the 
larger compression can be used for male in the same 
goodness of fit. 

 
(a) The result with male voice 

 
(b) The result with female voice 

Figure 5: The Change of Goodness of Fit with Compression 
ratio (in figure, horizontal ordinate is compression rate, 
vertical ordinate is goodness of fit). 

In speech recognition, a small difference of 
MFCC will result in large recognition error, so in 
order to ensure the reliability of the recognition 
results, we limit that the goodness of fit is not smaller 
than 0.99. Then for figure 5, we can find a key point 
where the compression C=31, as long as the 
compression is not larger than 31, either male or 
female, the goodness of fit will is larger than 0.99. For  
this key point, from (8), we have 

 82c

C
f Hz

T
= Δ <  (21) 

That means, as long as re-sampling frequency cfΔ  is 
less than 82Hz, the results will be reliable. 

5 CONCLUSIONS 

ST is excellent in time-frequency analysis for high 
resolution, energy concentration, and without cross 
terms. The application of ST can resolve two key 

0 20 40 60 80 100
0.96

0.965

0.97

0.975

0.98

0.985

0.99

0.995

1

1.005

X: 47
Y: 0.9976
X: 47
Y: 0.9976

X: 31
Y: 0.9977

Compression Rate(C)

G
oo

dn
es

s 
of

 F
it

(R
2 )

0 20 40 60 80 100
0.94

0.95

0.96

0.97

0.98

0.99

1

X: 18
Y: 0.9984

X: 23
Y: 0.9975

X: 31
Y: 0.9944 X: 47

Y: 0.9833

G
oo

dn
es

s 
of

 F
it

(R
2 )

Compression Rate(C)

The Compression Algorithm of the S-Transform and Its Application in MFCC

543



problems and improve accuracy in MFCC analysis, 
but also be hindered due to the enormous operational 
consumption.  

Based on the features of human hearing and speech 
is insensitive with speech signal resolution, the CST 
re-sampling the frequency points in ST frequency 
space to reduce data size in ST operation, effectively 
reduces the run time and memory consumption of ST. 
Applying CST in MFCC, the actual speech signal 
analysis proves while re-sampling interval satisfies

82f HzΔ < , the results of MFCC is reliable. 

In this article, we set that the goodness of fit is not 
smaller than 0.99, although it satisfies the reliability 
of MFCC, it is at the expense of efficiency. So, 
whether or not to adopt a smaller goodness value of 
fit, when goodness of fit reduces, what phenomenon 
will produce in recognition of speech based on 
MFCC, and what a smallest goodness value of fit is 
that can ensure in recognition of speech. Resolving 
these problem will contribute to the effective 
application of CST in MFCC. 
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