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Abstract: One of the numerous ways of addressing the Android malware threat is to run malicious applications in a sand-
box environment while monitoring metrics. However, dynamic malware analysis is usually concerned with
a one-time execution of an application, and information about behaviour in different environments is lacking
in the literature. We fill this gap with a fuzzy-like approach to the problem: by running the same malware
multiple times in different environments, we gain insight on the malware behaviour and his peculiarities. To
implement this approach, we leverage a client-server sandbox to run experiments, based on a common suit of
actions. Scenarios are executed multiple times on a malware sample, each time with a different parameter,
and results are compared to determine variation in observed behaviour. In our current experiment, variation
was introduced by different levels of simulation, allowing us to compare metrics such as failure rate, data
leakages, sending of SMS, and the number of HTTP and DNS requests. We find the behaviour is different
for data leakages, which require no simulation to leak information, while all results for other metrics were
higher when simulation was used in experiments. We expect that a fuzzing approach with others parameters
will further our understanding of malware behaviour, particularly for malware bound to such parameters.

1 INTRODUCTION

The Android operating system was the most popular
platform for mobile devices in 2015. Since Android
applications may be distributed via many unofficial
markets and not only through the official Google Play
Store1, it contributes to put Android forward as the
most targeted operating system by malware (PulseSe-
cure, 2015). In order to study malware behaviour and
protect Android against this rising threat, sandboxing
has been used to analyze malware behaviour at mul-
tiple levels. A number of hybrid analysis tools for
Android are available to investigate an application be-
haviour. However, given the rate at which malware hit
the markets, time is of essence and in order to process
all the new apps popping every day, these tools an-
alyze the application once and subsequently present
the saved report when a known app is resubmitted for
processing.

However, studying the same malware in different
contexts to compare its behaviour has not been done
before. Such an approach would allow us to better

1https://play.google.com/store

understand what triggers malware characteristics, like
malware depending on specific events or parameters
to expose their malicious activity. We therefore ex-
plore how repeated experiments on the same sample,
with a given parameter modified each time, could help
unveil malware behaviour where a single experiment
would not. We test our approach in a client-server
sandbox, using virtual Android devices where a sam-
ple is installed following a sequence of actions called
scenario, where a selected parameter is changed from
one experiment to the other. In our present exper-
iment, we modulate the level of user simulation to
compare our metrics.

In this paper, we will first present, in Section 2,
related work about publicly available sandboxes per-
forming dynamic analysis. Then, a brief description
will follow, in Section 3, of our sandbox environment,
its possible configurations, our dataset and the data
collection process. Afterwards, a description of the
experiment will be presented in Section 4 as well as
the scenarios used. Finally, our preliminary results
will be discussed in Section 5, together with future
work in Section 6, and concluding remarks in Section
7.
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2 RELATED WORK

Before the first Android malware was discovered in
August 2010 (Dunham et al., 2014), sandboxing tech-
niques were already useful to fight PC-based digi-
tal threats (Bayer et al., 2009; Bayer et al., 2006;
Willems et al., 2007). Malware then started to spread
to the mobile world, and static (Arp et al., 2014;
Arzt et al., 2014; Gonzalez et al., 2014; Zheng and
Sun, 2013) and dynamic (Burguera et al., 2011; Enck
et al., 2014; Rastogi et al., 2013) analysis tools were
adapted to face the new challenge. Afterwards, hybrid
systems using both static and dynamic analysis (Zhou
et al., 2012; Eder et al., 2013) sprang to life and ma-
tured into the following public sandboxes analyzing
Android malwares.

First among them is ANDRUBIS (Neugschwandt-
ner et al., 2014), a system performing both static and
dynamic analysis on a large scale. Using similar tools
as our sandbox, and keeping tracks of numerous met-
rics, ANDRUBIS analyzes an app once, and if sub-
mitted again, the report from the first run is presented
to the user. Mobile-sandbox (Spreitzenbarth et al.,
2013) is another hybrid analysis system tracking na-
tive API calls. As their goal is to detect malware via
a new metric, they process their apps once.

CopperDroid (Reina et al., 2013) is also part of
the dynamic analysis sandbox family and their ap-
proach is closer to our own, as they compare appli-
cations behaviour with and without user simulation.
They are thus able to demonstrate the usefulness of
simulation during an experiment, whereas we pushed
this logic to multiple scenarios and are interested in
putting results into perspective. Tracedroid (van der
Veen et al., 2013) is also a hybrid analysis service,
based on method traces as an extension on the vir-
tual machine. As the other tools, they aim at pro-
cessing a quantity of apps, to then label and sort out
malware. To our knowledge, Android sandboxing is
mostly used to detect malware from good applications
and not to observe behaviour in different contexts.
Moreover, once a malware is processed, it is not ana-
lyzed again.

As our approach implies multiple runs with vari-
ations in parameters, environments and network con-
figurations, we find that fuzzing is somehow related
to our work. Per definition, fuzzing is an automated
technique that provides boundary test cases and mas-
sive inputs of data in order to find vulnerabilities (Au
et al., 2012). In the Android world, the framework
AndroidFuzzer was developed in the cloud to that
intent. Some tools focused on a particular area of
testing, such as permissions (Au et al., 2012), ac-
tivities or intents (Sasnauskas and Regehr, 2014; Ye

et al., 2013). However, to the best of our knowledge,
fuzzing has not been extended to the analysis or de-
tection of malwares.

3 METHODOLOGY

In order to observe variations in application be-
haviour, we use a client-server sandbox (Gagnon
et al., 2014a; Gagnon et al., 2014b) that executes an
experiment in a particular context. An experiment
is defined as the execution of a scenario (a series of
actions to configure, install, test, and collect data on
apps) applied to all samples of our dataset. The server
side of the sandbox is responsible for the management
of the experiment (i.e., running all scenarios against
all available apps), whereas clients manage runs (i.e.,
the execution of the selected scenario for a particular
app of the pool). The client-server architecture was
selected for its scalability, for it is as simple as adding
a client to process more applications in the same time.
A server-controlled experiment also ensures that all
runs in an experiment will execute the same scenario
with the same parameters (network configuration, an-
droid version, etc), since the configuration of the ex-
periment is done on the server and applied to each
client available for the experiment. Thus, the sandbox
architecture lowers the variability in an experiment to
allow a sound comparison between runs of a same ex-
periments and between experiments on the same mal-
ware.

3.1 Client-server Architecture

First, our sandbox server works as a controller over
the whole experiment. To begin with, all parame-
ters are defined in the configuration file, to prepare
the environment (network configuration and android
version) and the parameters (scenario to use, dataset
to analyze, etc.) needed for the experiment. Once
configured, the server will start and monitor the pool
of clients. Each new client will register itself to the
server pool of clients, thus notifying the server of its
availability to perform a part of the experiment. As
soon as the server detects that a client is ready to exe-
cute a run, it will give that client the scenario to exe-
cute and the application to analyze.

At that moment, the client starts its run by loading
the scenario and the application to install and analyze.
The scenario is parsed by the client, to extract its pa-
rameters and actions to perform (see following Sec-
tion 3.2 for more details). Following that, the analysis
phase starts with the sequence of actions to execute.
Once the client concludes the action phase, data col-
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lected (see following Section 3.4) by multiple tools
is bundled into a result file and the server is notified
that results are ready to be stored. Finally, the client
changes its status back to available, thus letting the
server knows it is ready to execute another run.

Thus, the server pushes runs to available clients
until all the applications in the dataset are processed,
completing the experiment. Gathered data is then
stored into our results database, where it is available
for post-processing and analysis.

3.2 Experiment Scenario

The scenario, an XML document, contains two parts:
the environment configuration and the action se-
quence to execute. The environment configuration
indicates which Android virtual device (AVD) must
be used, thus specifying the version of Android to
use, and what network services should be provided
(e.g. DNS and HTTP proxies). The action sequence
is basically an ordered list of commands that will be
launched by the client to successfully perform a credi-
ble simulation of the application. Each scenario starts
with the same set of instructions, to prepare the en-
vironment for the experiment. For example, starting
the AVD, waiting for the boot sequence to complete
and starting the monitoring of metrics are parts of the
initialization sequence.

Once this preparation phase is over, the second
phase, the installation of the app to test and user sim-
ulation, starts. When a scenario includes user simu-
lation steps, the Application Exerciser Monkey2 tool,
is used. Its capacity to generate pseudo-random and
system-level events to navigate the application under
scrutiny makes for a basic simulation. Finally, once
all actions have been executed, the data collection
phase is launched and a report with all the metrics is
sent back to the sandbox server.

Also, an important element of a virtual sandbox is
the level of network simulation, specified in the sce-
nario. For the experiments mentioned in this paper,
the sandbox was equipped with a DNS proxy (relay-
ing DNS queries/reponses to a real server) as well
as a gateway to redirect all outgoing network traffic
generated by the mobile applications to our own fake
server. The fake server only allows the establishment
of TCP handshake to take place for any connections.
By properly completing TCP handshake, we expect
some apps to perform requests (e.g., HTTP GET re-
quests) and want to observe their characteristics.

2http://developer.android.com/tools/help/monkey.html

3.3 Applications Dataset

For these experiments, a set of 5519 apps was used. A
mix of legitimate applications and malware was com-
bined from various sources, with a bias towards mal-
ware applications: 3519 apps were labelled as mal-
ware while the remaining 2000 were deemed legiti-
mate applications. A thousand apps were selected on
both the Google Play Market1 (labelled the Google-
Play dataset) and AppsAPK3 (labelled AppsAPK
dataset), in a random fashion. For malware, The Mal-
ware Genome Project4 (Zhou and Jiang, 2012) (la-
belled MalGenome) dataset contains 1260 apps while
the DroidAnalytics (Zheng and Sun, 2013) (labelled
DroidAnalytics) dataset was the source for the re-
maining 2259 apps constituing our bank.

3.4 Data Collection

This client-server sandbox relies on different tools to
collect static and dynamic information during the ex-
periments. A processing of the Android manifest for
permissions used, broadcast receivers and intents is
performed. Of the dynamic analysis tools used, Taint-
droid (Enck et al., 2014) monitors the sensitive data
leakages to public channels. Equally, outgoing SMS
and phone calls are recorded, either through the use
of a monitoring agent installed on the AVD or an in-
strumented version of the Google Emulator. Finally,
the rest of the network traffic is recorded for post-
experiment analysis of protocols and requests used.

4 EXPERIMENT

As a preliminary study, three experiments were per-
formed, based on three different scenarios. Our first
scenario was the installation of the application only
(labelled InstallOnly). Our second scenario was in-
stalling the application and then launching it upon a
successful install (labelled InstallStart). Finally, our
last scenario included the installation of the applica-
tion, its launching and a simulation of random user
actions (labelled InstallSim).

These three scenarios were selected to constitute
a proof-of-concept that variations of parameters in
scenarios would lead to a means of comparing mal-
ware behaviour. Since most of the aforementioned
dynamic analysis tools are researching ways to ex-
pand their simulation engine, a difference in the level
of simulation appeared as a natural starting point for
our first experiments.
3http://www.appsapk.com/
4http://www.malgenomeproject.org/
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Our objective with using these scenarios is to bet-
ter understand at what point an application is suscep-
tible to perform an action that will be caught by one of
our data collection processes. We are also interested
is learning whether all metrics show similar variations
from different contexts. In other words, is it manda-
tory to simulate user interaction for every metric? Our
three scenarios represent an increasing degree of so-
phistication. An application exhibiting malicious be-
haviour during InstallOnly would be more vicious for
the end user (although easier to observe in a sandbox)
than one exhibiting malicious behaviour only during
InstallStart (or InstallSim).

5 RESULTS

Results for each run were collected and compared us-
ing the metrics presented in this section. Failure rate
of runs, apps sending SMS, sensitive data leaks and
network traffic (DNS and HTTP requests) were ana-
lyzed to picture malware behaviour in different con-
texts.

5.1 Failure Rate

The first metric we compared was the failure rate of
runs. To qualify as a success, all the steps of the sce-
nario in a particular run had to be completed. On
the contrary, if a scenario was unable to complete,
stopped or failed to execute a scenario step in the al-
lotted time, it was considered a failure.

For our experiment InstallOnly, 420 runs failed,
representing 8.3% of the applications submitted to
this experiment. The numbers climbed at 667 runs
(13.9%) for experiment InstallStart and 713 runs, for
18.4% of the runs in experiment InstallSim. Those in-
creasing rates may be explained by the complexity of
the scenario, as a simpler scenario, like scenario In-
stallStart, has fewer steps and less chances of running
into a problem, than a complex one.

Also, failed runs were divided by dataset, as il-
lustrated in Figure 1. Runs performed on applica-
tions from the MalGenome dataset for experiment In-
stallSim failed 4.2% of the time, while applications
from DroidAnalytics, the GooglePlay and AppsAPK
dataset showed a higher failure rate, at respectively
14.5%, 14.7% and 18.4%. Interestingly, when com-
paring scenarios InstallStart and InstallSim for each
dataset, the number of runs failing to complete were
very similar, for 3 out of 4 sets. Indeed, the number of
apps from the AppsAPK dataset failing to install with
the InstallOnly scenario was 139, but climbed at 184
apps with the InstallStart scenario.

Therefore, simulation of user actions does not
significantly increase failure rate when compared to
starting an app, but launching an application does
when compared to installing it only.

Figure 1: Percentage of applications failing, by experiment
and dataset.

5.2 Sending SMS

As Figure 2 shows, no SMS were automatically sent
by apps labelled as legitimate in either of the three ex-
periments. On the other hand, malware were caught
sending SMS in two of the three experiments. More-
over, our results show that starting an application
is required for SMS to be sent, as no SMS were
sent under scenario InstallOnly. Indeed, SMS were
first recorded with scenario InstallStart applied to
dataset MalGenome and DroidAnalytics, in respec-
tively 1.11% and 1.19% of the runs. SMS were
also recorded with scenario InstallSim, where the rate
climbed at 8.8% of the runs on dataset DroidAnalytics
and 4.4% of the runs for MalGenome dataset. There-
fore, user actions simulation is in order to properly
conclude if an application is automatically sending
SMS.

Figure 2: Percentage of applications sending SMS, by ex-
periment and dataset.

Also, other metrics related to SMS were checked,
to extend the information on malware. When malware
sent SMS in scenario InstallSim (in 254 runs), an av-
erage of 2.5 SMS were sent per run. A convergence
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about SMS numbers and texts was also observed, as
only 23 numbers and 50 texts were found. A pattern
was visible in SMS sent to the same number or by the
same app, as shown in Table 1. No comparison has
been done on these metrics so far, as few apps in our
sample turned out to be sending SMS. However, on
a larger sample, this information may further help to
compare and sort SMS-sending applications. It may
also prove valuable when comparing metrics for fam-
ilies of malware, as is intended in our future work.

5.3 Data Leakages

Another metric taken during experiments is the leak-
ing of sensitive data to public channels. Results are
shown in Figure 3. As soon as sensitive data was de-
tected, the app was considered flawed. On the whole,
we found that 21,8% of applications (1205 out of
5519) had data leaks, in scenario InstallSim. Of these,
91.1% were malware (1098 apps out of 1205). Appli-
cations labelled as good also leaked sensitive data, in
a much lesser way than malware: only 8.9% of the
legitimate apps (107 out of 2000) were faulty. There-
fore, as the SMS metric, the data leaks metric is also
a good indicator of malware.

However, while comparing the results by scenario,
we found that the difference between the scenario In-
stallSim and InstallStart running on malware was not
really significant: while 1098 apps leaked data when
submitted to a thorough simulation, 1011 apps leaked
the data when launched. Our simulation scenario al-
lowed us to discover only 87 more applications than
our InstallStart scenario. This means, interestingly,
that for the data leak metric, user action simulation
is not necessary to gather a representative picture of
malware; starting the application is enough to find un-
reliable apps.

Figure 3: Percentage of applications leaking sensitive data,
by experiment and dataset.

5.4 Network Traffic

During a run, network traffic is also closely moni-
tored, to gather information about malware servers,
addresses they may contact, etc. In our present exper-
iment, DNS requests have been recorded as have been
the HTTP requests.

5.4.1 DNS Requests

The metric considered for DNS requests was the av-
erage number of requests made by an app, presented
in Figure 4. Results show that malware queried their
DNS servers 6.5 times, while good applications av-
eraged 3.9 requests while paired to the scenario In-
stallSim, once again the scenario showing the highest
numbers. The scenario InstallStart also show signif-
icant, but slightly lower, averages for DNS queries;
3.3 requests for malware against 2.4 requests by good
apps. However, looking at averages by dataset, we
observe that the DroidAnalytics dataset shows 7.6 re-
quests per malware, while the MalGenome dataset av-
erage (4.6 requests per malware) is similar to aver-
ages of the GooglePlay and AppsAPK dataset, (re-
spectively 3.8 and 4.1).

Figure 4: Average number of DNS requests sent, by exper-
iment and dataset.

When comparing numbers only for scenario In-
stallSim, it is hard to tell if the average number of
DNS requests is a good metric or not, given the di-
vergent behavior of the two malware datasets. Al-
though a high number of requests may indicate a mal-
ware when using scenario InstallSim, a lower number
is not necessarily associated with a good application.
Another interesting observation is the gap between
averages for scenario InstallSim and InstallStart, as
only the DroidAnalytics dataset shows a significant
increase from scenario InstallStart to scenario Install-
Sim.
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Table 1: SMS numbers and texts sent by some malware.

ID SMS Number SMS Texts

1

10621900,
10626213,
1066185829,
10665123085,
...

YXX1, YXX4, YXX2, C*X1, C*X2, 921X1, 921X2, 921X4

2 3353,
3354 70+224761

3
6005,
6006,
6008

jafun 806 1656764, jafun 806 1575475, jafan 806 2237145,
igame 806 1880612, gamejava 806 3979347, gamewap 806
2188482, ...

5.4.2 HTTP Requests

Since DNS and HTTP requests are closely related,
the same metric, average number of requests made
per application, was used as shown in Figure 5. Dur-
ing experiment InstallSim, where the higher averages
were compiled, malware requested HTTP services
16.4 times, while good apps showed an average of
9.5 HTTP requests. The same gap between malware
and goodware is found in experiment InstallStart, al-
though the averages are lower: 8.5 requests for mal-
ware, against 4.1 queries for legitimate apps.

However, a closer look at averages by dataset
shows an average of 31.1 requests for the MalGenome
dataset, while averages for GooglePlay, AppsAPK
and DroidAnalytics datasets are respectively 12.0, 6.8
and 7.3 requests. Therefore, the high average of the
MalGenome applications are pulling up the average
for the combined malware dataset. Thus, we can con-
clude that a high number of HTTP requests may des-
ignate a malware, while a lower number may not nec-
essarily indicate a good application.

Figure 5: Average number of HTTP requests sent, by ex-
periment and dataset.

5.4.3 Related Network Information

As for SMS, other information related to DNS and
HTTP requests was considered: the domain name

and URLs enclosed in the request. As some mal-
ware showed averages of both DNS and HTTP re-
quests similar to good applications, domain names
and URLs could be gathered and compared to known
malware domains and URLs in order to further sort
malware from good applications.

6 FUTURE WORK

To obtain a clearer understanding of the malware be-
havior, lots of work remains to be done. As a starting
point, we would run the same scenarios against new
network configurations and observe the behavior of
an application when DNS responses are provided and
when they are not, when HTTP traffic is proxied ver-
sus when it is not, and so on. That would allow us
to study fallback plans when network resources are
missing versus when they available. Also, in order to
lower variability even further, we are looking at the
possibility of using network traffic replay.

The same can be said about other parameters in
our experiments. In this paper, the same emulator
and Android OS version were used to process appli-
cations. We plan on replaying these experiments on
multiple versions of Android, in order to compare be-
haviors of applications in early versions versus newer
ones.

We would also modulate the simulation of user
actions, by using short sequences versus longer se-
quences of simulation or random simulation against
component-driven simulation. Equally, we would
measure our code coverage when using simulation, to
quantify what features our experiments are reaching
when analyzed.

Finally, we would like to increase our malware
dataset with more samples, as it would give credence
to preliminary observations. We would equally like to
classify those samples using different metrics (classi-
fied by date, by family of malwares, by country of

DCNET 2016 - International Conference on Data Communication Networking

52



origin or market of origin, etc.) in order to gain in-
sight about the evolution of applications according to
the aforementioned metrics.

7 CONCLUSION

In this paper, we presented a fuzzy-like approach to
dynamic malware analysis on Android, where a given
parameter is modified in each new experiment to com-
pare variation in the application behavior. As ex-
pected, malware behavior varied with different con-
texts of user simulation. Thus, we were able to deter-
mine that only installing an application does not yield
interesting results in any case. Also, we have found
that basic user simulation generally triggers malware
behavior better than no simulation, the exception be-
ing leaks of sensitive data. Finally, malware tended
to have higher results for monitored metrics, even if
a divergence between malware dataset was recorded
for DNS and HTTP requests.

Building on these results, we plan to extend our
list of parameters to vary, such as the version of the
Android SDK for the emulator or the network con-
figuration of the sandbox, to further the comparison
of malware behavior. We also wish to increase the
number of malware samples in our dataset, in order to
cover a broader period of time, and classify those mal-
ware into families in order to trace parallels between
different applications of the same family, all in hope
of better understanding the global picture of malware
behavior.
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