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Abstract: Efficiently detecting conversation threads from a pool of messages, such as social network chats, emails,
comments to posts, news etc., is relevant for various applications, including Web Marketing, Information
Retrieval and Digital Forensics. Existing approaches focus on text similarity using keywords as features that
are strongly dependent on the dataset. Therefore, dealing with new corpora requires further costly analyses
conducted by experts to find out new relevant features. This paper introduces a novel method to detect threads
from any type of conversational texts overcoming the issue of previously determining specific features for
each dataset. To automatically determine the relevant features of messages we map each message into a three
dimensional representation based on its semantic content, the social interactions in terms of sender/recipients
and its timestamp; then clustering is used to detect conversation threads. In addition, we propose a supervised
approach to detect conversation threads that builds a classification model which combines the above extracted
features for predicting whether a pair of messages belongs to the same thread or not. Our model harnesses the
distance measure of a message to a cluster representing a thread to capture the probability that a message is
part of that same thread. We present our experimental results on seven datasets, pertaining to different types
of messages, and demonstrate the effectiveness of our method in the detection of conversation threads, clearly

outperforming the state of the art and yielding an improvement of up to a 19%.

1 INTRODUCTION

In recent years, online texting has become a part of
most people’s everyday lives. The use of email, web
chats, online conversations and social groups has be-
come widespread. It is a fast, economical and effi-
cient way of sharing information and it also provides
users the ability to discuss different topics with dif-
ferent people. Understanding the context of digital
conversations supports a wide range of applications
such as marketing, social network extraction, expert
finding, the improvement of email management, rank-
ing content and others (Jurczyk and Agichtein, 2007;
Coussement and den Poel, 2008; Glass and Colbaugh,
2010; F. M. Khan and Pottenger, 2002).

The increased use of online fora leads to people
being overwhelmed by information. For example, this
can happen when a user has hundreds of new unread
messages in a chat or one needs to track and organise
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posts in forums or social groups. To instantly have
a clear view of different discussions, which requires
expensive and tedious efforts for a person, we need to
automatically organise this data stream into threads.

There has been considerable effort in extracting
topics from document sets, mainly through a variety
of techniques derived from Probabilistic Latent Se-
mantic Indexing (pLSI) (Hofmann, 1999) and Latent
Dirichlet Allocation (LDA) (Blei et al., 2003). How-
ever, the problem of detecting threads from conversa-
tional messages differs from document topic extrac-
tion for several aspects (Shen et al., 2006; Huang
et al., 2012; F. M. Khan and Pottenger, 2002; Adams
and Martell, 2008; Yeh, 2006): (i) conversational
messages are generally much shorter than usual doc-
uments making the task of topic detection much more
difficult (ii) thread detection strongly depends on so-
cial interactions between the users involved in a mes-
sage exchange, (iii) as well the time of the discussion.

43

In Proceedings of the 5th International Conference on Data Management Technologies and Applications (DATA 2016), pages 43-54

ISBN: 978-989-758-193-9

Copyright (© 2016 by SCITEPRESS — Science and Technology Publications, Lda. All rights reserved



DATA 2016 - 5th International Conference on Data Management Technologies and Applications

Other studies deal with thread tree reconstruction
where given a known thread they seek to construct
the conversation tree. In particular, in (X. Wang and
Chen, 2008) the authors use headers extracted from
emails to create the parent/child relationships of a
thread, and in (Aumayr et al., 2011) the authors pro-
pose an algorithm which uses reply behaviours in fo-
rum threads in order to output the threads’ structure.

This paper addresses the efficient detection of con-
versation threads from pools of online messages - for
example from social groups, pages chats, email mes-
sages etc. - namely the detection of sets of messages
related with respect to contents, time and involved
users. The thread detection problem is different from
thread tree reconstruction, since the latter requires
that the conversation threads are known. In contrast
the former, seeks to find the messages which form a
conversation thread. In other words, thread detection
is the essential initial step of thread tree reconstruc-
tion.

We consider a three dimensional representation
(Zhao and Mitra, 2007) which consists of text con-
tent, temporal information, and social relations. In
Figure 1, we depict the three dimensional representa-
tion which illustrates 3 threads with different colours
and shapes, that yields to total of 14 messages. The
green circles and red squares threads have the same
social and content dimensions but not time. While
the blue diamonds thread consists of different topics
and users, but it occurs in the same time frame of the
green circles one. The use of the three dimensional
representation leads to emphasis of thread separation.

We propose several measures to exploit the mes-
sages features, based on this three dimensional rep-
resentation. Then, the generated features are embed-
ded into a metric distance in density and hierarchi-
cal clustering algorithms (Ester et al., 1996; Bouguet-
taya et al., 2015) which cluster messages in threads.
In order to enhance our approach to efficiently detect
threads in any type of dataset, we build a classification
model from a set of messages previously organised in
threads. The classifier exploits the same features used
in the clustering phase and it returns the probability
that a pair of messages belong to the same thread. In
other words, a binary supervised model is trained with
instances, each referring to a pair of messages. Each
instance uses the same features described previously,
and a label describing whether the two messages be-
long to the same thread or not. This model provides
a probability of being in the same thread for a pair
of messages, we propose to use this probability as
a similarity distance in clustering methods to detect
the threads. We observe that the classifiers output can
help the clustering process to achieve higher accuracy
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Figure 1: Three dimensional representation of threads mes-
sages.

by identifying the threads correctly. We have exten-
sively evaluated our approach with real world datasets
including emails and social group chats. Our experi-
mental results show that our method can identify the
large majority of the threads in several type of dataset,
such as web conversation including emails, chats and
posts.

In summary, this paper presents the following con-
tributions:

e athree dimensional message representation based
on textual semantic content, social interactions
and time to generate features for each message;

o clustering algorithms to detect threads, on top of
the features generated from the three dimensional
representation;

e combination of the generated features to build a
classifier that identifies the membership probabil-
ity of pair of messages to the same thread and this
probability is used as a distance function for the
clustering methods to detect threads;

o the combined classification technique with clus-
tering algorithms provides a higher accuracy than
using clustering alone..

The rest of this paper is structured as follows. In
Section 2, we present related work, while in Section
3, we formally define the thread detection problem.
In Section 4, we introduce our model and our algo-
rithms for thread detection. Section 5 presents the ex-
perimental results on real datasets and Section 6 con-
cludes the paper.

2 RELATED WORK

As discussed in the previous section, thread detec-
tion has received a lot of attention, including content
and metadata based approaches. Metadata based ap-
proaches refers to header fields that are contained in
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emails or forum posts (e.g. send-to, reply-to). Con-
tent based approaches focus on text analysis on sub-
ject and content text. In this paper, we differentiate
from the existing works by generalizing the problem
of detecting threads in different types of datasets, not
only in email sets like the most of related work (Wu
and Oard, 2005; Yeh, 2006; X. Wang and Chen, 2008;
Erera and Carmel, 2008; Joshi et al., 2011). The au-
thors of (Wu and Oard, 2005) focus on detecting con-
versation threads from emails using only the subject.
They cluster all messages with the same subject and at
least one participant in common. Here, we also han-
dle cases where messages belong to the same thread
but have different subject. Similarly, in (X. Wang and
Chen, 2008) the authors detect threads in emails us-
ing the extracted header information. They first try to
detect the parent/child relationships using Zawinski
algorithm ! and then they use a topic-based heuris-
tic to merge or decompose threads to conversations.
Another approach for detecting threads in emails is
proposed in (Erera and Carmel, 2008), where clus-
tering into threads exploits a similarity function that
considers all relevant email attributes, such as sub-
ject, participants, text content and date of creation.
Quotations are taken into account in (Yeh, 2006)
where combined with several heuristics such as sub-
ject, sender/recipient relationships among email and
time, and as a result can construct email threads with
high precision. Emails relationships are also consid-
ered in (Joshi et al., 2011) where the authors use a
segmentation and detection of duplicate emails and
they group them together based on reply and forward-
ing relationships.

The work most closely related to ours is that of
(Dehghani et al., 2013), that studies the conversation
tree reconstruction, by first detecting the threads from
a set of emails. Specifically, they map the thread de-
tection problem to a graph clustering task. They cre-
ate a semantic network of a set of emails where the
nodes denote emails and the weighted edges repre-
sent co-thread relationships between emails. Then,
they use a clustering method to extract the conversa-
tion threads. However, their approach is focus only
on email datasets and their results are strongly bound
with the used features, since when they do not take
into account all features they have a high reduction
in their accuracy. In contrast here, we consider gen-
eral datasets and by using our classification model we
are able to detect threads even when there are missing
features. Although, it is not clear which graph clus-
tering algorithm is used and how it detects the clus-
ters. We conduct an extensive comparison between
our approach and the study of (Dehghani et al., 2013)

Uhttps://www.jwz.org/doc/threading html

in Section 5.

Another line of research addresses mining threads
from online chats (F. M. Khan and Pottenger, 2002;
Adams and Martell, 2008; Huang et al., 2012; Shen
et al., 2006). Specifically, the study of (F. M. Khan
and Pottenger, 2002) focuses on identifying threads
of conversation by using pattern recognition tech-
niques in multi-topic and multi-person chat-rooms. In
(Adams and Martell, 2008) they focus on conversa-
tion topic thread detection and extraction in a chat
session. They use an augmented ¢ f.id f to compute
weights between messages’ texts as a distance met-
ric exploiting the use of Princeton WordNet® ontol-
ogy, since related messages may not include iden-
tical terms, they may in fact include terms that are
in the same semantic category. In combination with
the computed distance between messages they use the
creation time in order to group messages with high
similarity in a short time interval. In (Shen et al.,
2006), they propose three variations of a single-pass
clustering algorithm for exploiting the temporal infor-
mation in the streams. They also use an algorithm
based on linguistic features in order to exploit the dis-
course structure information. A single-pass clustering
algorithm is also used in (Huang et al., 2012) which
employs the contextual correlation between short text
streams. Similar to (Adams and Martell, 2008), they
use the concept of correlative degree, which describes
the probability of the contextual correlation between
two messages, and the concept of neighboring co-
occurrence, which shows the number features co-
existing in both messages.

Finally, there also exists a line of research on re-
constructing the discussion tree structure of a thread
conversation. In (Wang et al., 2011), a probabilis-
tic model in conditional random fields framework is
used to predict the replying structure for online forum
discussions. The study in (Aumayr et al., 2011) em-
ploys conversation threads to improve forum retrieval.
Specifically, they use a classification model based on
decision trees and given a variety of features, includ-
ing creation time, name of authors, quoted text con-
tent and thread length, which allows them to recover
the reply structures in forum threads in an accurate
and efficient way. The aforementioned works achieve
really high performance (more than 90% of accuracy)
in the conversation tree reconstruction, while the state
of the art in threads detection obtains lower perfor-
mance, about 80% for emails data and 60% for chats
and short messages data. To this end, in this study we
focus on improving thread detection performance.

Zhttp://wordnet.princeton.edu/
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3 METHOD DESCRIPTION

In this section, we outline a generic algorithm for de-
tecting messages which belong to the same thread
from a set of messages M, such as emails, social
group posts and chats. As an intermediate step, the al-
gorithm addresses the problem of computing the sim-
ilarity measure between pairs of messages. We pro-
pose a suite of features and two methods to combine
them (one unsupervised and one supervised) to com-
pute the similarity measure between two messages.
We also present clustering algorithms which detect
threads based on this similarity measure in Section
3.3.

3.1 Data Model

We consider a set of messages M = {mj,my, ...} that
refers to online texts such as emails, social group
chats or forums. Each message is characterized by
the following properties: (1) textual data (content
and subject in case of emails), (2) creation time, and
(3) the users involved (authors or sender/recipients
in case of emails). We represent each message as
a three-dimensional model (Zhao and Mitra, 2007,
Zhao et al., 2007) to capture all these components.
Thus, a message m € M can be denoted as a triplet
m = <cm, Uy, t,,>, wWhere ¢, refers to text content,
Uy = {uy,u, ...} refers to the set of users that are in-
volved in m, and t,, refers to the creation time. Some
dimensions can be missing, for instance chat, groups
and forum messages provide only the author informa-
tion, without any recipients.

A conversation thread is defined as a set of mes-
sages exchanged on the same topic among the same
group of users during a time interval, more formally,
the set of messages M is partitioned in a set of conver-
sations C. Each message m € M belongs to one and
only one conversation ¢ € C. The goal of the thread
reconstruction task is to automatically detect the con-
versations within a pool of messages. To this aim,
we propose a clustering-based method that relies on a
similarity measure between a pair of messages, called
SIM (mj,m;). In the following sections, we define dif-
ferent proposed approaches to calculate the similarity
measure. In the rest of the paper, we will use the nota-
tion Q = {®;,y, ...} to refer the predicted extracted
conversations.

3.2 Messages Features

Social text messages, like emails or posts, can be sum-
marized by three main components: text content, tem-
poral information, and social relations (Zhao and Mi-
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tra, 2007). Each of the three main components can
be analyzed under different points of view to com-
pute the distance between a pair of messages, which
involves the creation of several features. The func-
tion SIM(m;,m;) relies on these features and returns
a similarity value for each pair of messages (m;, m;),
which is used by the clustering algorithm that returns
the finding threads. We now present the extracted fea-
tures used to measure the similarity between two mes-
sages.

The content component relies on the semantics
of the messages. There are two main sources: the
messages text and the subject, if present (e.g., so-
cial network posts do not have this information). The
first considered feature is the similarity of the mes-
sages text content. We make use of the common
Bag of Words (BoW) representation, that describes
a textual message m by means of a vector W(m) =
{wi,wn,...}, where each entry indicates the presence
or absence of a word w;. Single words occurring in
the message text are extracted, discarding punctua-
tion. A stopwords list is used to filter-out all the words
that are not informative enough. The standard Porter
stemming algorithm (Porter, 1980) is used to group
words with a common stems. To estimate the im-
portance to each word, there exist several different
weighting schemes (Domeniconi et al., 2016), here
we make use of the commonly used #f.idf scheme
(Salton and Buckley, 1988).

Using BoW representation, the similarity between
two vectors m;,m; can be measured by means of the
commonly used cosine similarity (Singhal, 2001):

fer (miym;j) | W (i) ||| W () |

Since by definition the BoW vectors have only posi-
tive values, the fc, (m;,m;) takes values between zero
and one, being zero if the two vectors do not share
any word, and one if the two vectors are identical.
In scenarios where the subject is available, the same
process is carried out, computing the similarity cosine
feg(mi,m;) of words contained in the messages sub-
ject.

The cosine similarity allows a lexical comparison
between two messages but does not consider the se-
mantic similarity between two messages. There are
two main shortcomings of this measure: the lack of
focus on keywords, or semantic concepts expressed
by messages, and the lack of recognition of lexico-
graphically different words but with similar meaning
(i.e. synonyms), although this is partially computed
through the stemming. In order to also handle this
aspect, we extend the text similarity by measuring
the correlation between entities, keywords and con-
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cepts extracted using AlchemyAPI 3. AlchemyAPI is
a web service that analyzes the unstructured content,
exposing the semantic richness in the data. Among
the various information retrieved by AlchemyAPI, we
take into consideration the extracted topic keywords,
involved entities (e.g. people, companies, organiza-
tions, cities and other types of entities) and concepts
which are the abstractions of the text (for example,
”My favorite brands are BMW and Porsche = ”Au-
tomotive industry””). These three information are ex-
tracted by Alchemy API with a confidence value rang-
ing from O to 1. We create three vectors, one for
each component of the Alchemy API results for key-
words, entities and concepts for each message and us-
ing the related confidence extracted by AlchemyAPI
as weight. Again we compute the cosine similarity of

Time Component

Subiject: request for
Mz |presentation
Content: Hi all, | want to

remember you to change the
presentation of Friday including
some slides on data related to
the contract with Acme.

Users: u; — [up, ug]

Date: September 15, 2015
W, : {want rememb chang
present Fridai includ slide data
relat contract Acme}

Kp,: {Hi, Acme, slides, Friday,
presentation, data, contract}
Cm,:

Ep,: {Acme}
Content component  fc,=0.492
Social component  f5,=0.667

£1=0.585

fe=05
f5,=0.667

Subject: presentation changes
m2 [Content: Yes sir, | added a
slide on the Acme contract at

the end of the presentation.
Users: up - [uq]

Date: September 16, 2015
Wy,,: {sir ad slide Acme contract
present}

Kp,: {Acme, contract, sir, slide,
end, presentation}

Cm,

Ep,: {Acme}

fc,=0.463 fe=0 feF1

Figure 2: Example of features calculation for a pair of
messages. Message components: Subject, Content, Users
(sender — recipients) and creation date. W(m;) refers to

these vectors, creating three novel features:

o fci(mj,mj): computes the cosine similarity of the
keywords of m; and m;. This enables us to quan-
tify the similarity of the message content based
purely on keywords rather than the message as a
whole.

o fcp(mi,mj): computes the cosine similarity of the
entities that appear in m; and m; focusing on the
entities shared by the two messages.

o fc.(m;,m;): computes the cosine similarity of the
concepts in m; and m, allowing the comparison of
the two messages on a higher level of abstraction:
from words to the expressed concepts.

The second component is related to the social sim-
ilarity. For each message m, we create a vector of in-
volved users U(m) = {u;,uy, ...} defined as the union
of the sender and the recipients of m (note that the re-
cipients information is generally not provided in so-
cial network posts). We exploit the social relatedness
of two messages through two different features:

e The similarity of the users involved in the two
messages fs,, (m;,m;), defined as the Jaccard sim-
ilarity between U(m;) and U(m;):

| U(mi) O U(m,)|

S, (miym;) = I

o U 3) = [ty 0 2o, )

e The neighborhood Jaccard similarity fs, (m;,m;)
of the involved users. The neighborhood set A (u)
of an user u is defined as the set of users that have
received at least one message from u. We also
include each user u in its neighborhood A (u) set.
The neighborhood similarity of two messages m;
and m; is defined as follows:

1 | A(ui) O A (u)|

Tou 000 0) = T )], 7 Uy

uy€U(m;)

3http://www.alchemyapi.com/

the bag of words of a message obtained after the tokeniza-
tion, stopwords removal and stemming. The vectors of key-
words (X (m;)), concepts (C(m;)) and entities (E(m;)) ex-
tracted from AlchemyAPI are shown. In the bottom the val-
ues for each proposed feature are also shown. For simplic-
ity, we assume binary weight for components.

Finally, the last component relies on the time of
two messages. We define the time similarity as the
logarithm of the inverse of the distance between the
two messages, expressed in days, as follows:

1
1+ |t —tmj|

Jr(miymj) =logy(1+ )

We use the inverse normalization of the distance in
order to give a value between zero and one, where
zero correspond to a high temporal distance and one
refers to messages with low distance.

As a practical example, Figure 2 shows two mes-
sages, with the related properties, and the values of
the features generated from them.

3.3 Clustering

In this section, we present the clustering
methods used to detect the threads. Based
on the set of aforementioned features F =
{fCvacsfovaCEachafSU7fSN7fT}, we define
a distance measure that quantifies the similarity
between two messages:

SIM (m;i,m;) = scq (1+ f(mi,m;)) ey

We compute a N x N matrix with the similari-
ties between each pair of messages (m;,m;) and we
use density based and hierarchical clustering algo-
rithms, being the two most common distance-based
approaches.
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3.3.1 Density-based Clustering

We use the DBSCAN (Ester et al., 1996) density-
based clustering algorithm in order to cluster mes-
sages to threads because given a set of points in
some space, DBSCAN groups points that are closely
packed together (with many nearby neighbors). DB-
SCAN requires two run time parameters, the mini-
mum number min of points per cluster, and a thresh-
old 6 that defines the neighborhood distance between
points in a cluster. The algorithm starts by selecting
an arbitrary point, which has not been visited, and by
retrieving its ©-neighborhood it creates a cluster if the
number of points in that neighborhood is equals to or
greater than min. In situations where the point resides
in a dense part of an existing cluster, its 8-neighbor
points are retrieved and are added to the cluster. This
process stops when the densely-connected cluster is
completely found. Then, the algorithm processes new
unvisited points in order to discover any further clus-
ters.

In our study, we use messages as points and we
use weighted edges that connect each message to the
other messages. An edge (m;,m;) between two mes-
sages m; and m; is weighted with the similarity mea-
sure SIM(m;,m;). When DBSCAN tries to retrieve
the O-neighborhood of a message m, it gets all mes-
sages that are adjacent to m with a weight in their edge
greater or equal to 6. Greater weight on an edge in-
dicates that the connected messages are more similar,
and thus they are closer to each other.

3.3.2 Hierarchical Clustering

This approach uses the Agglomerative hierarchical
clustering method (Bouguettaya et al., 2015) where
each observation starts in its own cluster, and pairs
of clusters are merged as one moves up the hierar-
chy. Running the agglomerative method requires the
choice of an appropriate linkage criteria, which is
used to determine the distance between sets of obser-
vations as a function of pairwise distances between
clusters that should be merged or not. In our study
we examined, in preliminary experiments, three of the
most commonly used linkage criteria, namely the sin-
gle, complete and average linkage (Manning et al.,
2008). We observed that average linkage clustering
leads to the best results. The average linkage cluster-
ing of two clusters of messages Q, and Q. is defined
as follows:

1

LinkCl(Q,.Q,) = ———
avgLinkCl(Qy, Q) =15 1o ]

Z S]M((D,’, (,l)j)
W;E€Qy
Q)jEQZ

The agglomerative clustering method is an itera-
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tive process that merges the two clusters with high-
est average linkage score. After each merge of the
clusters, the algorithm starts by recomputing the new
average linkage scores between all clusters. This pro-
cess runs until a cluster pair exists with a similarity
greater than a given threshold.

3.4 Classification

The clustering algorithms described above rely on the
similarity measure SIM, that combines with a sim-
ple multiplication several features, to obtain a single
final score. This similarity measure in eq. 1 gives
the same weight, namely importance, to each feature.
This avoids the requirement to tune the parameters re-
lated to each feature, but could provide an excessively
rough evaluation and thus bad performance. A differ-
ent possible approach, is to combine the sub compo-
nents of similarity measure SIM as features into a bi-
nary supervised model, in which each instance refers
to a pair of messages, the features are the same de-
scribed in the Section 3.2 and the label is one if the
messages belonging to the same thread and zero oth-
erwise. At runtime, this classifier is used to predict
the probability that two messages belong to the same
thread, using this probability as the distance between
the pairs of messages into the same clustering algo-
rithms. The benefit of such approach is that it au-
tomatically finds the appropriate features to use for
each dataset and it leads to a more complete view of
the importance of each feature. Although it is shown
in (Aumayr et al., 2011) that decision trees are faster
and more accurate in classifying text data, we experi-
mented with a variety of classifiers.

The classification requires a labeled dataset to
train a supervised model. The proposed classifier re-
lies on data in which each instance represents a pair of
messages. Given a set of training messages My, with
known conversation subdivision, we create the train-
ing set coupling each training message m € Mr, with
ng messages of My, that belong to the same thread
of m and n; messages belonging to different threads.
We label each training instance with one if the cor-
responding pair of messages belong to same thread
and zero otherwise. Each of these coupled messages
are picked randomly. Theoretically we could create
(|Mrr| - | Mz, — 1])/2 instances, coupling each mes-
sage with the whole training set. In preliminary tests
using Random Forest as the classification model, we
notice that coupling each training message with a few
dozen same and different messages can attain higher
performances. All the experiments are conducted us-
ing ny = ng = 20, i.e. each message is coupled with
at maximum 20 messages of the same conversation
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Table 1: Characteristics of datasets.

Dataset Messages type #messages  #threads #users Peculiarities
BC3 Emails 261 40 159 Threads contain emails with different subject
Apache Emails from mailing list 2945 334 113 Threads always contain emails with same subject
Redhat Emails from mailing list 12981 802 931  Threads always contain emails with same subject
WhoWorld Posts from Facebook page 2464 132 1853 Subject and recipients not available
HealthyChoice Posts from Facebook page 1115 132 601 Subject and recipients not available
Healthcare Advice Posts from Facebook group 3436 468 801 Subject and recipients not available
Ireland S. Android  Posts from Facebook group 4831 408 354 Subject and recipients not available

and 20 of different ones. In the rest of the paper we
refer to the proposed clustering algorithm based on a
supervised model, as SVC.

As it will be shown in the Section 4.3, the Ag-
glomerative hierarchical clustering achieves better re-
sults with respect to the DBSCAN, thus, we use this
clustering algorithm in the SVC approach.

4 EVALUATION

In this section, we compare the accuracy of the clus-
tering methods described in Section 3 in terms of de-
tecting the actual threads.

4.1 Datasets

For evaluating our approach we consider the follow-
ing seven real datasets:

e The BC3 dataset (Ulrich et al., 2008), which is
a special preparation of a portion W3C corpus
(Soboroff et al., 2006) that consists of 40 conver-
sation threads. Each thread has been annotated by
three different annotators, such as extractive sum-
maries, abstractive summaries with linked sen-
tences, and sentences labeled with speech acts,
meta sentences and subjectivity.

e The Apache dataset which is a subset of Apache
Tomcat public mailing list* and it contains the dis-
cussions from August 2011 to March 2012.

e The Redhat dataset which is a subset of Fedora
Redhat Project public mailing list’> and it con-
tains the discussions that took place in the first six
months of 2009.

e Two Facebook pages datasets, namely Healthy
Choice® and World Health 0rganizati0ns7,
crawled using the Facebook API®. They consist

of real posts and relative replies between June

“http://tomcat.apache.org/mail/dev
Shttp://www.redhat.com/archives/fedora-devel-list
Ohttps://www.facebook.com/healthychoice
Thttps://www.facebook.com/WHO
8https://developers.facebook.com/docs/graph-api

and August 2015. We considered only the text
content of the posts (discarding links, pictures,
videos, etc.) and only those written in English
(AlchemyAPI is used to detect the language).

e Two Facebook public groups datasets, namely
Healthcare Advice® and Ireland Support An-
droid", also crawled using the Facebook API.
They consist of conversations between June and
August 2015. Also for this dataset we considered
only the text content of the posts written in en-
glish.

We use the first three datasets that consist of
emails in order to compare our approach with exist-
ing related work (Dehghani et al., 2013; Erera and
Carmel, 2008; Wu and Oard, 2005) on conversa-
tion thread reconstruction in email messages. To our
knowledge, there are no publicly available datasets of
social network posts with a gold standard of conversa-
tion subdivision. We use the four Facebook datasets
to evaluate our method in a real social network do-
main.

The considered datasets have different peculiar-
ities, in order to evaluate our proposed method un-
der several perspectives. BC3 is a quite small dataset
(only 40 threads) of emails, but with the peculiarity of
being manually curated. In this dataset is possible to
have emails with different subjects in the same con-
versation. However, in Apache and Redhat the mes-
sages in the same thread, have also the same subject.

With regards to Facebook datasets, we decided
to use both pages and groups. Facebook pages are
completely open for all users to read and comment in
a conversation. In contrast, only the members of a
group are able to view and comment a group post and
this leads to a peculiarity of different social interac-
tion nets. Furthermore, each message - post - in these
datasets has available only the text content, the sender
and the time, without information related to subject
and recipients. Thus, we do not take into account the
similarities that use the recipients or subject. Table
1 provides a summary of the characteristics of each
dataset.

https://www.facebook.com/groups/533592236741787
1Ohttps://www.facebook.com/groups/848992498510493
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In the experiments requiring a labeled set to train
a supervised model, the datasets are evaluated with 5-
fold cross-validation, subdividing each of those in 5
thread folds.

4.2 Evaluation Metrics

The precision, recall and F1-measure (Manning et al.,
2008) are used to evaluate the effectiveness of the
conversation threads detection. Here, we explain
these metrics in the context of the conversation detec-
tion problem. We evaluate each pair of messages in
the test set. A true positive (TP) decision correctly as-
signs two similar messages to the same conversation.
Similarly, a true negative (TN) assigns two dissimilar
messages to different threads. A false positive (FP)
case would be when the two messages do not belong
to the same thread but are labelled as co-threads in the
extracted conversations. Finally, false negative (FN)
case is when the two messages belong to the same
thread but are not co-threads in the extracted conver-
sations. Precision (p) and recall (r) are defined as fol-
lows:
TP TP

The F-measure is defined by combining the pre-
cision and recall together, as follows:

p

_2-p-r

3}
p+r

We also use the purity metric to evaluate the clus-
tering. The dominant conversation, i.e. the conver-
sation with the highest number of messages inside a
cluster, is selected from each extracted thread clus-
ter. Then, purity is measured by counting the number
of correctly assigned messages considering the domi-
nant conversation as cluster label and finally dividing
by the number of total messages. We formally define
purity as

1
purity(Q,C) = WZm}ax o € ¢l
k

where Q = {®;, 0, ..., 0} is the set of extracted con-
versations and C = {c1,¢2,...,c;} is the set of real
conversations.

To better understand the purity metric, we refer to
the example of thread detection depicted in Figure 3.
For each cluster, the dominant conversation and the
number of related messages are: ©; : c1,4, 0 : 2,4,
®; : ¢3,3. The total number of messages is |M| = 17.

Thus, the purity value is calculated as purity = (4 +
4+3)/17=0.647.
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Figure 3: Conversation extraction example. Each oy refers
to an extracted thread and each c¢; corresponds to the real
conversation of the message.

A final measure of the effectiveness of the cluster-
ing method, is the simple comparison between the the
number of detected threads (]Q|) against the number
of real conversations (|C)).

4.3 Results

In Table 2 and 3, we report the results obtained in the
seven datasets. All the results in these tables are ob-
tained using the Weka (Hall et al., 2009) implemen-
tation of Random Forest algorithm, using a 2 X 2 cost
matrix with a weight of 100 for the instances labeled
with one. The reported results are related to the best
tuning of the threshold parameter of the clustering
approaches, both for DBSCAN and Agglomerative.
Further analysis on the parameters of our method will
be discussed in the next section.

Table 2 shows the results on the email datasets, on
which we can compare our results (SVC) with other
existing approaches, such as the studies of Wu and
Oard (Wu and Oard, 2005), Erera and Carmel (Erera
and Carmel, 2008) and the lastest one of Dehghani et
al (Dehghani et al., 2013). The first two approaches
(Wu and Oard, 2005; Erera and Carmel, 2008) are
unsupervised, as the two clustering baselines, while
the approach in (Dehghani et al., 2013) is supervised,
like our proposed SVC; both this supervised methods
are evaluated with the same 5-fold cross-validation,
described above. All of the existing approaches use
the information related to the subject of the emails,
we show in the top part of the table a comparison
using also the subject as feature in our proposed ap-
proach. We want point out that in Apache and Redhat
dataset, the use of the subject could make the clus-
terization effortless, since all messages of a thread
have same subject. It is notable how our supervised
approach obtains really high results, reaching almost
perfect predictions and always outperforming the ex-
isting approaches, particularly in Redhat and Apache
dataset. In our view, the middle of Table 2 is of partic-
ular interest, where we do not considered the subject
information. The results, especially in Redhat and
Apache, have a little drop, remaining anyhow at high
levels, higher than all existing approaches that take
into consideration the subject. Including the subject
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Table 2: Conversation detection results on email datasets. (Wu and Oard, 2005; Erera and Carmel, 2008), DBSCAN and
Agglom. are unsupervised methods, while (Dehghani et al., 2013) and SVC are supervised. The top part of the table shows
the results obtained by methods using subject information, the middle part shows those achieved without such feature, finally
the bottom part shows the results obtained with SVC method considering only a single dimension. With + and — we indicate
respectively the use or not of the specified feature (s: subject feature, a: the three Alchemy features). For clustering and SVC

approach we report results with best threshold tuning.

BC3 Apache Redhat

Methods Precision  Recall F Precision  Recall F Precision  Recall F

‘Wu and Oard (Wu and Oard, 2005) 0.601 0.625 0.613 0.406 0.459 0430 0.498 0.526 0512
Erera and Carmel (Erera and Carmel, 2008) 0.891 0.903 0.897 0.771 0.705 0.736 0.808 0.832 0.82
Dehghani et al. (Dehghani et al., 2013) 0.992 0972 0.982 0.854 0.824  0.839 0.880 0.890 0.885
DBSCAN (+s) 0.871 0.737  0.798 0.359 0.555 0436 0.666 0.302 0416
Agglom. (+s) 1.000 0954 0.976 0.358 0918 0.515 0.792 0.873  0.83
SVC (+s) 1.000 0.986 0.993 0.998 1.000  0.999 0.995 0.984 0.989
DBSCAN (-s) 0.696 0.615  0.653 0.569 0.312  0.403 0.072 0.098  0.083
Agglom. (-s) 1.000 0954 0976 0.548 0.355 0431 0.374 0.427  0.399
SVC (-s) 1.000 0952 0975 0.916 0.972  0.943 0.966 0914  0.939
SVC (-s —-a) 0.967 0979 0973 0.892 0.994 0.940 0.815 0.699 0.753
SVC (content) 1.000 0919 0.958 0.954 0.974  0.964 0.988 0.984 0.986
SVC (content —s) 0.964 0.902 0.932 0.604 0.706  0.651 0.899 0.872  0.885
SVC (content —s —a) 1.000 0.828  0.905 0.539 0.565 0.552 0.68 0.558 0.613
SVC (social) 0.939 0.717 0.813 0.345 0.361  0.353 0.360 0.045 0.08
SVC (time) 0.971 0.897 0.933 0.656 0.938 0.772 0.376 0.795 0.511

Table 3: Conversation detection results on Facebook post datasets (subject and recipient information are not available). The
top part of the table shows the results obtained considering all the dimensions, the bottom part shows the results obtained
with SVC method considering only a single dimension. For clustering and our approach we report results with best threshold

tuning.
Healty Choice World Health Org. Healthcare Advice Ireland S. Android

Methods Precision  Recall F Precision  Recall F Precision  Recall F Precision  Recall F

DBSCAN 0.027 0.058  0.037 0.159 0.043  0.067 0.206 0.051  0.082 0.201 0.002  0.004
Agglom. 0.228 0.351  0.276 0.154 0.399 0.223 0.429 0.498 0.461 0.143 0.141 0.142
SvcC 0.670 0.712  0.690 0.552 0.714  0.623 0.809 0.721 0.763 0.685 0.655  0.67
SVC (-a) 0.656 0.713  0.683 0.543 0.742  0.627 0.802 0.733  0.766 0.708 0.714 0.711
SVC (content) 0.308 0.032  0.058 0.406 0.120  0.185 0.443 0.148  0.222 0.127 0.042  0.063
SVC (content —a) 0.286 0.025 0.046 0.376 0.11  0.171 0.414 0.127  0.195 0.105 0.033  0.050
SVC (social) 0 0 0 0 0 0 0.548 0.188  0.280 0.155 0.234  0.186
SVC (time) 0.689 0.670  0.679 0.531 0.750  0.622 0.638 0.769  0.697 0.667 0.703  0.685

or not, the use of a supervised model to evaluate the
similarity between two messages, brings a great im-
provement to the clustering performances, compared
to the use of a simple combination of each feature as
described in Section 3.3. In the middle part of Table
2 is also shown the effectiveness of our SVC predic-
tor without the three features related to AlchemyAPI
information; these features lead to an improvement of
results especially in Redhat, which is the largest and
more challenging dataset.

The aforementioned considerations, are valid also
for the experiments on social network posts. To the
best of our knowledge, there is not any related work
on such type of datasets. In Table 3, we report the re-
sults of our approach on the four Facebook datasets.
These data do not provide the subject and recipients
information of messages, thus the reported results are
obtained without the features related to the subject
and neighborhood similarities, namely fcg(m;,m;)
and fs,, (m;,m ). We notice that the pure unsupervised
clustering methods, particularly DBSCAN, achieve

Figure 4: Decision trees created for BC3 dataset.

low precision and recall. This is due to the real dif-
ficulties of these post’s data: single posts are gener-
ally short with little semantic information. For ex-
ample suppose we have two simultaneous conversa-
tions t1: "How is the battery of your new phone?”
- "good!” and t2: "how was the movie yesterday?”
- "awesome!”. By using only the semantic informa-
tion of the content, it is not possible to associate the
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replies to the right question, thus the time and the so-
cial components become crucial. Although there is a
large amount of literature to handle grammatical er-
rors or misspelling, in our study we have not taken
into account these issues. Despite these difficulties,
our method guided by a supervised model achieves
quite good results in such data, with an improve-
ment almost always greater than 100% with respect
the pure unsupervised clustering. Results in Table 3
show the difficulties also for AlchemyAPI to extract
valuable information from short text posts. In fact, re-
sults using the AlchemyAPI related features does not
lead to better results.

The results achieved by the SVC method for each
dimension are reported at the bottom of the Tables 2
and 3, in particular those regarding the content dimen-
sion have been produced with all features, excepts the
subject and the Alchemy related features. In Table 2
is notable that considering the content dimension to-
gether with the subject feature leads, as expected, to
the highest accuracy. By excluding the subject fea-
ture, SVC produces quite good results with each di-
mension, however they are lower than those obtained
by the complete method; this shows that the three
dimensional representation leads to better clusterisa-
tion.

Table 3 shows the differentiation in the results re-
lated to the Facebook datasets. In particular, the so-
cial dimension performs poorly if used alone, in fact
the author of a message is known, whereas not the re-
ceiver user; also the text content dimension behaves
badly if considered alone. In these datasets, the time
appears to be the most important feature to discrim-
inate the conversations, however the results achieved
only with this dimension are worse than those of the
SVC complete method.

From these results, achieved using each dimension
separately from the others, we deduce that SVC is ro-
bust to different types of data. Moreover the use of a
supervised algorithm allows both to detect the impor-
tance of the three dimensions and to achieve a method
that can deal with different datasets without requiring
ad-hoc tuning or interventions.

The learning algorithm we used, Random Forest,
builds models in form of sets of decision trees, which
predicts the relationship between an input features
vector by walking across branches to a leaf node. An
example of such a decision tree is reported in Figure
4: to predict the relation between a pair of messages,
the classifier start from the root and follow branches
of the tree according to the computed features. The
numbers in the edges are the threshold of feature val-
ues which classifier checks in order to choose which
branch of the tree should pick. We shown that the time
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similarity is the most significant feature. In particular,
when we include the subject as a feature, we notice
that the second significant features are the text cosine
similarity and the Jaccard neighborhood. However,
when we exclude the subject, involved users Jaccard
similarity takes the place of text cosine similarity.

Table 4: Results varying the supervised model used to com-
pute the distance between two email.

Model Purity Precision Recall F |Q]
BC3 (|C] = 40)
LibSVM  0.980 0.962 0.984 0.973 40
Logistic ~ 1.000 1.000 0.965  0.982 45
J48 0.961 0.915 0.993 0.952 39
RF 1.000 1.000 0.961  0.980 45
RF:100 1.000 1.000 0.952  0.975 46
Apache (|C| = 334)
LibSVM  0.785 0.584 0.583 0.584 500
Logistic  0.883 0.904 0.883 0.893 275
J48 0.851 0.865 0931 0.897 281
RF 0.862 0.885 0979 0930 255
RF:100 0.920 0.916 0972 0943 286
Redhat (|C] = 802)
LibSVM  0.575 0.473 0.674 0.556 450
Logistic ~ 0.709 0.619 0.697 0.656 572
J48 0.672 0.614 0.516  0.561 1330
RF 0.89 0.888 0.900 0.894 762
RF:100 0.954 0.966 0914 0939 818
Facebook page: Healty Choice |C| = 132)
LibSVM  0.766 0.657 0.694  0.675 187
Logistic ~ 0.788 0.676 0.724  0.699 211
J48 0.777 0.621 0.710 0.662 219
RF 0.771 0.682 0.656 0.668 218
RF:100 0.787 0.670 0.712 0.690 214
Facebook page: World Health Organization (n, = 132)
LibSVM  0.628 0.444 0.805 0.573 118
Logistic ~ 0.755 0.566 0.702  0.627 198
J48 0.774 0.603 0.615 0.609 260
RF 0.731 0.536 0.718 0.614 186
RF:100 0.747 0.552 0.714 0.623 222
Facebook group: Healthcare Advice (|C| = 468)
LibSVM  0.692 0.502 0.768 0.607 383
Logistic ~ 0.840 0.699 0.761 0.729 548
J48 0.775 0.610 0.671 0.639 573
RF 0.766 0.596 0.773 0.673 467
RF:100 0.909 0.809 0.721 0.763 714
Facebook page: Ireland Support Android (|C| = 408)
LibSVM  0.655 0.460 0.744 0.568 356
Logistic  0.814 0.654 0.723 0.687 573
J48 0.758 0.590 0.636  0.612 658
RF 0.786 0.646 0.641 0.644 627
RF:100 0.821 0.685 0.655 0.670 663

4.3.1 Parameter Tuning

Parameter tuning in machine learning techniques is
often a bottleneck and a crucial task in order to obtain
good results. In addition, for practical applications,
it is essential that methods are not overly sensitive to
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Figure 5: F] measure for varying number of threshold.

parameter values. Our proposed method requires the
setting of few parameters. In this section, we show
the effect of changing different parameter settings. A
first investigation of our SVC regards the supervised
algorithm used to define the similarity score between
a pair of messages. We conducted a series of experi-
ments on the benchmark datasets varying the model.
Namely, we used decision trees (Random Forest and
J48), SVM (LibSVM) and Logistic Regression. For
all the algorithms we used the Weka implementation
using the default parameter values. Considering the
intrinsic lack of balance of the problem (i.e. each
message has a plenty of pairs with messages that be-
long to different threads and just few in the same one)
we also experimented with a cost-sensitive version of
Random Forest, setting a ratio of 100 for instances
with messages belonging to the same thread. Table
4 shows the results, it is notable that the cost sensi-
tive Random Forest always outperforms the standard
Random Forest. Logistic regression and cost sensi-
tive Random Forest achieve better results, with a little
predominance of the latter.

The main parameter of our proposed method re-
gards the threshold value used in the clustering algo-
rithms. We experimented with the use of a supervised
model in the DBSCAN clustering algorithm, but we
noticed the results were not good. This is not surpris-
ing if we consider how DBSCAN works: it groups
messages in a cluster iteratively adding the neighbors
of the messages belonging to the cluster itself. This
leads to the erroneous merge of two different conver-
sations, if just one pair of messages is misclassified
as similar, bringing a sharp decline to the clustering
precision. The previous issue, however, does not af-
fect the agglomerative clustering, because of the use
of average link of two messages inside two clusters,
to decide whether to merge them or not. In this ap-
proach the choice of the threshold parameter is cru-

cial, namely the stop merge criterion. Figure 5 shows
the F| trend varying the agglomerative threshold, us-
ing the weighted Random Forest as the supervised
model. Is notable that all the trends have only one
peak that corresponds to a global maximum, thus with
a simple gradient descent is possible to find the best
threshold value. Furthermore, our method is generally
highly effective for threshold values ranging from 0.1
to 0.3, as shown in Figure 5. This is also confirmed
by the average trend, that has a peak with a threshold
equal to 0.1.

4.4 Towards Subject-based Supervised
Models

In this section, we discuss the possibility of creating
an - incomplete - training set from which to create the
supervised model of SVC, with the peculiarity that
is not a labeled set known a priori. This proposed
method is particularly suitable for email datasets. The
main assumption is that a conversation of emails can
be formed by emails with the same subject and also
by emails with different ones. It is quite common, but
not always true, that emails with the same subject re-
fer to the same conversation (Wu and Oard, 2005).
This intuition can provide preliminary conversation
detection of a message pool in an unsupervised way.
Our proposal is to create the training set using this
simple clusterization as labels for distinguishing mes-
sages belonging to the same or different threads (i.e.
if the two messages have same subject). We can train
the classifier with this labeled set using this model
inside the clustering method as described in section
3.4. Since the subject is a known feature of an email
dataset, this approach guarantees the use of a super-
vised classifier even if no labeled dataset is given.

From the benchmark datasets we considered, only
BC3 provides emails with different subject in the
same threads. To test this approach, there is no need
of a crossfold validation: the whole dataset is initially
labeled based only on the subject of emails, a classi-
fier is trained with this data and then used to clusterize
the starting dataset. The results are extremely promis-
ing: we obtain a purity and a precision equal to 1, a
recall equal to 0.986 and the resulting F; measure is
equal to 0.993, higher than the state of art.

S CONCLUSIONS

In this paper, we focus on the problem of detecting
threads from a pool of messages that correspond to
social network chats, mailing list, email boxes, chats,
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forums etc. We address the problem by using a three-
dimensional representation for each message, which
involves textual semantic content, social interactions
and creation time. Then, we propose a suite of fea-
tures based on the three dimensional representation
to compute the similarity measure between messages,
which is used in a clustering algorithms to detect the
threads. We also propose the use of a supervised
model which combines these features using the prob-
ability to be in the same thread estimated by the model
as a distance measure between two messages. We
show that the use of a classifier leads to higher ac-
curacy in thread detection, outperforming all earlier
approaches.

For future work, an interesting variation of the
problem to consider is the conversation tree recon-
struction, where we have to detect the reply structure
of the conversations inside a thread.
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