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Abstract: There have been many formulations of “theories” of software systems with a variety of techniques, scopes 
and degrees of sophistication. But, one element is almost universally absent in all these theories: a clear 
delimitation of what is forbidden in terms of design. This absence is somewhat surprising, as in other 
engineering disciplines there are obvious forbidden domains. This paper proposes that in addition to common 
quality criteria for scientific theories – such as formality, universality and precision – an acceptable software 
theory should clearly demarcate the forbidden in contrast to the possible. This goal is attainable in small and 
discrete design space as it limits the amount of subspace search. Algebra is argued to be the mathematical 
field suitable to characterize forbidden domain boundaries, in particular using an eigenvectors approach. 
Boundaries are illustrated by a case study. 

1 INTRODUCTION 

Forbidden domains occur in every mature science and 
engineering discipline. A famous example in civil 
engineering is the Tower of Pisa. Without 
reinforcements in this inclined building, it would 
continue to increase its angle from its initially vertical 
axis until the building would fall and collapse. The 
theory of statics – a very old branch of mechanics – 
determines what is forbidden, say some distance of 
the projection of the center of mass from the building 
ground basis. 

Another example, from aeronautical engineering, 
is the real scenario of an airplane that was flying in a 
weather storm region, above the Atlantic Ocean. The 
inexperienced pilots, wishing to escape the storm, 
tried to climb above the storm causing an increasing 
loss of speed, finally resulting in the free fall of the 
airplane in the ocean waters. They should have 
instead tried to escape the storm from below, while 
gaining speed through the airplane descent. Again, 
there are clearly forbidden maneuvers for a given 
aircraft – dictated by the theory of aerodynamics – 
that result in total loss of control.  

Software theory also needs forbidden domains in 
particular for embedded software, which may cause 
critical failures and endanger human life. 

 
 

1.1 Models of the Possible Are Not a 
Theory 

UML (Unified Modeling Language) diagrams (UML, 
2016) are design models and not a theory. They can 
be indefinitely modified by software engineers 
developing any software system. They neither impose 
any restriction nor point out to any possible design 
problems, i.e. they do not have any design quality 
criteria associated with them.  

The same is even truer about a software system 
code in a programming language, say Java or C#. 
These languages are not enough abstract to represent 
design models with design criteria. Thus, compilers 
help in eliminating language syntax bugs, but 
otherwise allow indefinite program variations.  

1.2 Forbidden Domains Are Essential 
for a Software Theory 

The main thrust of this paper is the claim that 
forbidden domains are essential for a Software 
Theory. This is based on the following assumptions: 

• Software Composition Problem – a software 
theory solves the composition problem of a 
hierarchical software system, from subsystems, 
down to indivisible components; 

• Boundaries of Forbidden Domains – these 
boundaries restrict composition variability, 
limiting the search effort in design space; 

Exman, I.
Software Theory of the Forbidden in a Discrete Design Space.
DOI: 10.5220/0006004601310137
In Proceedings of the 11th International Joint Conference on Software Technologies (ICSOFT 2016) - Volume 2: ICSOFT-PT, pages 131-137
ISBN: 978-989-758-194-6
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

131



 

   
 

• Algebraic Criteria – boundaries are obtained by 
algebraic quality of design criteria. 

1.3 Organization of the Paper 

Section 2 deals with forbidden domains in physical 
systems. Section 3 describes the software theory and 
Section 4 a general design algorithm with forbidden 
domains. In section 5 a design pattern illustrates the 
theory. A discussion in section 6 ends the paper.  

2 SOURCES OF FORBIDDEN 
DOMAINS 

Here we deal with sources of forbidden domains for 
two physical realms as metaphors hinting to the 
software theory. 

2.1 Physical Metaphor 1: Slinky 

Slinky is a pre-compressed helical spring toy (Slinky, 
2016a, b), (see Fig. 1). It can be used for intuitive 
demonstrations of physical wave properties. 

Assume a slinky is stretched horizontally on a 
table by two persons, grasping its end-points. Then 
both persons move their hands laterally (in parallel to 
the table, perpendicularly to the slinky axis), 
generating transverse waves in opposite directions 
(each towards the other person). Synchronized 
motions obtain standing waves dividing the slinky in 
an integer number of equal parts (cf. Fig. 2). Our 
conclusions are: 

• Boundaries on the slinky behavior – besides the 
slinky itself (material and geometry) the 
boundaries’ nature (fixed wall or hand motion) 
is the most important behavior limitation; 

• Forbidden slinky modes – Standing waves are 
only obtained for integer number of modes; 
fractional modes are forbidden by the mutually 
destructive interference of travelling waves. 
 

 

Figure 1: Slinky – A helical spring, useful to demonstrate 
wave properties. This one is made of metal. 

 
Figure 2: Transverse standing waves in a bounded slinky –
The dashed lines show the wave oscillation amplitude in 
each slinky point. Three mode kinds are shown. In the 
lowest (fundamental) the mode size is the whole slinky 
length. The 2nd mode is divided into two equal halves. The 
next 3rd mode is divided into three thirds by two nodes.  

2.2 Physical Metaphor 2: Particle in a 
Box 

The slinky is quite intuitive and its demonstration is 
easily reproduced – e.g. dynamic views of standing 
waves in (Standing wave 2016a, b). In contrast, our 
2nd metaphor, demands more specialized physics 
knowledge. This should not discourage the reader 
who may skip the details that are not essential to grasp 
the conclusions of this example.  

A particle inside a one-dimensional box is a 
simple quantum mechanics’ problem (Messiah, 
1961). The particle has mass m. The box has finite 
length  , and zero potential. The particle is confined 
and cannot escape the two walls with infinite 
potential. 

This problem is solved by the Schrödinger 
equation, an eigenvalue problem of the form: 

 k k kH v vλ ⋅⋅ =   (1) 
 

where H  is the Hamiltonian operator, and the kth 
eigenvector kv fits the eigenvalue kλ , standing for an 
energy value. As the potential is zero in the box, the 
particle Hamiltonian is just a Laplacian. Although the 
meaning is different, the solutions’ form, the wave 
functions, of this problem (in Fig. 3) is identical to the 
slinky modes (in Fig. 2). The wave functions vanish 
in the confining walls.  

The conclusions are analogous to the slinky ones: 
• Boundaries of Particle Behavior – besides the 

particle itself (its mass) the boundaries’ nature 
(infinite potential in the fixed walls and the box 
length  ) is the important behavior limitation; 

• Forbidden Energy Values – Eigenvectors (wave 
functions) have discrete energy values, indexed 
by integers; other energy values are forbidden. 
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Figure 3: Wave functions of the particle in a one-
dimensional box – Their form is identical to the slinky 
modes of Fig. 2. 

3 A GENERAL SOFTWARE 
THEORY OF THE FORBIDDEN 

The basis of our software theory is the general axiom 
formulated as follows: 
 
 
 
 
 
 
We use here the concept of components in the generic 
sense of section 1.2, i.e. as either subsystems or the 
smallest indivisible parts of the system.  

The Design Space of a software system is larger 
than the final design of the software system as the 
former contains all the potential components for that 
system. The final design of a particular software 
system is obtained by searching the Design Space 
while limiting the search results by the boundaries of 
the forbidden domains.  

The Design Space and the final design are both 
represented by an algebraic structure such as a matrix 
– e.g. the Modularity Matrix (Exman, 2014) or a 
Laplacian Matrix (Exman and Sakhnini, 2016) – or a 
graph obtained from a matrix – e.g. the Modularity 
Lattice (Exman and Speicher, 2015) or a bipartite 
graph linked to a Laplacian Matrix.  

Our software theory of the forbidden is clearly 
hinted by the physical metaphors of section 2. These 
are its main characteristics: 

a. Boundaries around the software system and its 
modules – the boundaries idea is basic to 
software, where it is known as encapsulation; 
the outer boundary around the software system 
separates it from the environment; the inner 
boundaries define and separate the system 
modules; 

b. Forbidden compositions are delimited by 
Eigenvectors and module cohesion – 

boundaries imply forbidden composition; we 
use an eigenvector approach of the chosen 
matrices to delimit the forbidden together with a 
formal definition of cohesion – see e.g. (Exman, 
2015) and (Exman and Sakhnini, 2016); the 
final design discrete components are determined 
by suitable eigenvector elements; 

c. Outliers, in the forbidden areas, are eliminated 
by redesign – delimited outliers outside the 
module boundaries point out to undesirable 
couplings, which should be eliminated by 
redesign of the software system. 

4   DESIGN ALGORITHM WITH 
FORBIDDEN DOMAINS 

Here we present in pseudo-code our general 
algorithm with boundaries excluding forbidden 
domains. It is seen in the next text-box. 
 

 
 

This is a general algorithm. In order to actually 
apply it to design of a software system, one must 
choose a specific matrix type and work with the 
suitable specific procedures to select eigenvalues and 
to get modules from the eigenvectors.  

An example of cohesion calculation is the inverse 
of the sparsity of a module (say a sub-matrix). A 
typical lower cohesion threshold is 50%. The idea is 
that modules should have high-cohesion (low 

General Design Algorithm – with Forbidden 
Domains 
 
Design Space = obtain suitable matrix; 
Set lower cohesion threshold; 
 
Search Loop: 
    While (there are low cohesion modules) 
       Do { 
       Obtain matrix eigenvalues/eigenvectors; 
       Select suitable eigenvalues; 
 Pick corresponding eigenvectors; 
 Get modules from eigenvector elements; 
 Calculate modules’ cohesion; 
 Forbidden boundary: 

If (module cohesion < threshold) 
  {split module; 
    Repeat while loop} 
 Else  

End While} 
Forbidden domain: 
If (outlier left) 
 {Redesign matrix as needed;} 

Axiom – Software System Design Space
The design space of any particular software 
system is composed of a finite and discrete 
number of components.
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sparsity), while the environment – the matrix 
elements outside the modules should have low 
cohesion (high sparsity). 

5   CASE STUDY:  BOUNDARIES 
OF THE FORBIDDEN 

As a case study we describe here a well-known 
software design pattern – the Command pattern – in 
terms of UML class diagram, as given in the GoF 
(Gang of Four) book (Gamma et al., 1995). 

Then, to illustrate the application of the General 
Design Algorithm of section 4, we make the following 
steps: 

a. Obtain a matrix – we choose it to be a 
Modularity Matrix to represent the pattern case 
study; 

b. Get eigenvalues/eigenvectors – using the 
suitable approach for the obtained matrix; 

c. Obtain the module sizes – from the eigenvector 
elements; 

d. Illustrate the case of an outlier – by intentional 
addition of a matrix element coupling two 
modules. 
 

5.1 The Command Design Pattern and 
its Class Diagram 

The purpose of the Command design pattern is to 
decouple an object that invokes an action, say by 
clicking a Save, Paste or Print menu-item, from 
another object that actually performs the respective 
action, viz. to Save, Paste or Print a file. The 
Command pattern enables generic command features 
such as Undo and Redo independently of the nature 
of the specific actions. 

A particular UML class diagram of the Command 
design pattern is seen in Fig. 4. It is fashioned after 
the class diagram of the Command pattern appearing 
in the Motivation section of this pattern in the GoF 
book – page 233 in (Gamma et al., 1995). 

The Command pattern has an invoker – typically 
a menu-item or button – which can be clicked to 
activate execution of a command. A Concrete 
Command class inherits the abstract Command and 
actually executes a specific command, say Paste, on 
the Receiver, say a document file. 

As already stated in section 1.1, UML is a flexible 
design model, allowing indefinite variability for a 
specific software system.  

Indeed in the Command section of the GoF book 
(Gamma et al., 1995) there are four different class 
diagrams of the same pattern, besides the fifth generic  

 

Figure 4: A UML Class Diagram of the Command Design 
pattern – The invoker is a menu-item, which once clicked 
triggers execution of commands. The Concrete-Command 
inherits the abstract Command class and actually executes 
an action on the Receiver (a document). 

diagram of the pattern. One could expect that design 
patterns, being offered as reusable software 
architectural units, would have some well-defined 
standard forms. But there is no notion of a standard 
whatsoever. The situation is worsened when one 
considers the wider literature on design patterns and 
the diverse implementations, in different 
programming languages. 

5.2 Boundaries: The Modularity 
Matrix 

We choose the type of matrix to represent our case 
study to be a Modularity Matrix (Exman, 2014 and 
2012) linking structors (say classes) to provided 
functionals (say methods). We could as well choose a 
Laplacian Matrix (Exman and Sakhnini, 2016). 

 
 

Figure 5: Modularity Matrix of the Command Design 
pattern – Structors are columns and functionals are rows. 
The matrix is square and block diagonal. Diagonal blocks 
(blue background) are modules: top-left the essential 
Command pattern roles; middle the generic classes; 
bottom-right the Receiver of the action, say a document. 
Zero matrix elements are omitted for clarity. 
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The standard form of the Modularity Matrix, by 
the linear algebraic theory is a square and block-
diagonal matrix. The Modularity Matrix, containing 
only the system structors and functionals, sets a 
boundary between the software system and its 
environment. There are also well-defined boundaries 
among modules, the diagonal blocks. The block-
diagonal Command pattern Modularity Matrix is seen 
in Fig. 5. 

5.3 Eigenvectors Delimit the Forbidden 

A spectral approach has been described to find the 
module sizes and eventual outliers in the Modularity 
Matrix. The approach is based upon an eigenvector 
equation, completely analogous to equation (1) in 
section 2.2: 
 

k k kM v vλ ⋅⋅ =    (2)
 
M is a symmetrized and weighted Modularity 
Matrix, and the kth eigenvector kv of M corresponds 

to its eigenvalue kλ . Details of the symmetrization 
and weighting by an affinity expression are not 
essential for the understanding of the arguments and 
conclusions of this paper.  The interested reader may 
found more details in (Exman, 2015). 

The respective eigenvectors/eigenvalues of the 
Command pattern are in Fig. 6. The eigenvalues are 
sorted in decreasing order. One clearly perceives that 
eigenvector elements in the first three eigenvectors 
correspond to the module sizes shown in Fig. 5. The 
matrix modules and their eigenvectors can be 
reordered as wished. 

 

 
 

Figure 6: Command pattern Eigenvectors/eigenvalues –The 
3 eigenvectors fitting the first 3 eigenvalues span the 
Modularity matrix modules. Positive eigenvector elements 
(blue background) tell the module sizes of the matrix in Fig. 
5. Here the module sizes fit the eigenvalues’ order.  

 

In case we had chosen a Laplacian Matrix (Exman 
and Sakhnini, 2016) to represent our case study, the 
specific eigenvalues and eigenvectors would be 
different, as well as their particular meaning and the 
approach to obtain the module sizes. Again the 
specifics of the approach are not essential for the 
understanding of the results of this paper. The 
important point is that the generic eigenvector 
equation (2) would still be valid and relevant. 

5.4 Redesign to Eliminate Forbidden 
Outliers 

In order to illustrate the treatment of existing outliers, 
we intentionally add a 1-valued matrix element to Fig. 
5, resulting in the matrix in Fig. 7. This added element 
– in column S3 and row F2 – is an outlier, as it couples 
the upper-left with the middle module, being outside 
the borders of both these modules. 

The outlier in Fig. 7 is revealed by two means: 
1. The eigenvector module size – it fits a large 

module of size 5*5 which is the result of 
coupling of two modules of sizes 2*2 and 3*3; 

2. The cohesion of the large module – is too low, 
with many zero-valued elements, and thus must 
be split. 

 
 

Figure 7: Command pattern Class diagram with outlier – 
This is the diagram in Fig. 5, with an outlier element added 
in in column S3 and row F2 (dark background). 

 
So, the outliers, in forbidden matrix regions, i.e. 

outside the diagonal modules, should be eliminated 
and the matrix redesigned, according to the General 
Design Algorithm in section 4. 

6 DISCUSSION 

We have shown that, in complete analogy to problem 
solution in physical realms, generic formal criteria for 
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design quality of software systems are provided by 
Linear Algebra, embodied in the theory of Linear 
Software Systems. Specifically they are given by 
eigenvectors that support system modularity. 

Designed artificial systems, be it an airplane or 
the software embedded in its computers, behave to a 
large extent like natural systems. Citing the words (in 
page 7) of Herbert Simon from his book The Sciences 
of the Artificial (Simon, 1996): “Given an airplane, or 
given a bird, we can analyze them by the methods of 
natural science without any particular attention to 
purpose or adaptation...”. This is further discussed at 
length by Simon in chapter 8 “The Architecture of 
Complexity: Hierarchic Systems” of the same book. 

 
6.1 Why Eigenvectors? 
 
Modules reduce a large, possibly complicated, 
software system to a small set of sub-systems that are 
easier to understand. Thus, blurring modules by 
outliers are “forbidden regions” for the software 
design goal. 

Likewise, eigenvectors reduce and simplify the 
vectors needed to describe the whole software 
system. 

Software system modularity formally means lack 
of dependence among different modules. In terms of 
matrices – e.g. the Modularity Matrix in Fig. 5 – 
modules are mutually independent since each module 
is composed by a set of structors (classes) and their 
respective functionals (methods) which is disjoint to 
the sets of classes of all other modules. 

Eigenvectors exactly reflect the modules’ mutual 
independence. Eigenvectors – e.g. the first three in 
Fig. 6 – are mutually orthogonal, i.e. their pairwise 
scalar products are zero, which is a clear-cut 
expression of linear independence. 

The generality of this approach follows from the 
fact that whenever system modularity is a goal, and 
the system is represented by a well-defined and 
precise matrix, its eigenvectors will reflect the 
modules’ mutual independence. 
 
6.2 Search Efficiency Issues 
 
The axiom on the Software System Design Space in 
section 3 only tells that the Design Space is finite and 
discrete. It does not tell that the Design Space is small, 
thus search could take a long time. 

Here we provide an intuitive argument for the 
claim that, while the overall Design Space for the 
whole system may not be small, the Design Space for 
each subsystem in any level in the software system 
hierarchy is of bounded size. 

Let us look again at the Modularity Matrix in Fig. 
5. We may collapse each of its three modules into the 
higher level of the hierarchy for this system, to obtain 
the Modularity Matrix in Fig. 8. This is a 3*3 matrix. 
Expanding back this higher level matrix into the next 
level, one obtains the matrix in Fig. 5. Looking at 
each module in this level one sees that the maximal 
size is also a 3*3 matrix.  

 

Figure 8: Collapsed high-level Modularity Matrix of the 
Command Design pattern – Modules of Fig. 5 were 
collapsed to single matrix elements: top-left the essential 
Command pattern roles; middle the generic classes; 
bottom-right the Receiver of the action. Zero matrix 
elements are omitted for clarity. 

Thus, the expectation for a multi-level hierarchy 
of a larger system is that in each level the matrix size 
of each subsystem (module) is bounded by a small 
integer, i.e. design space search is efficient for each 
module in all hierarchy levels of the system. 

6.3 Related Work 

Matrices of several types have been used to analyze 
software design, including spectral approaches 
applying eigenvectors. These matrices include the 
Laplacian matrix (Weisstein, 2016) design structure 
matrix (DSM) (e.g. Sullivan et al., 2001) and the 
affinity matrix (e.g. a work by Li and Guo, 2012). Due 
to space limitations we do not make comparisons 
among these matrices and with those in this paper. 

The notions of forbidden regions or forbidden 
domains have appeared in several contexts in the 
literature. We provide here just a limited sample of 
papers specifically referring to embedded and pure 
software systems. Wu et al. (Wu, 2002) estimate 
answer sizes for XML queries by excluding forbidden 
regions and assuming some distribution over the 
remainder of a two-dimensional diagram. Abbot et al. 
(Abbot, 2007) discuss ways of preventing robot 
manipulators to enter forbidden regions of a 
workspace. Devadas and Aydin (Devadas, 2008) 
discuss real-time dynamic power management in 
which they explicitly enforce device sleep intervals, 
the so-called forbidden regions. 
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6.4 Main Contribution 

This position paper claims that real theories of 
software systems to be useful for software design – 
i.e. to support system modularity – should have clear-
cut criteria of forbidden system compositions. The 
forbidden areas if populated would break modularity 
by undesired coupling between modules. 
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