
Practical Multi-pattern Matching Approach for Fast and Scalable Log
Abstraction

Daniel Tovarňák
Masaryk University, Faculty of Informatics, Botanická 68a, 602 00 Brno, Czech Republic

Keywords: Log Processing, Pattern Matching, Log Abstraction, Big Data.

Abstract: Log abstraction, i.e. the separation of static and dynamic part of log message, is becoming an indispensable
task when processing logs generated by large enterprise systems and networks. In practice, the log message
types are described via regex matching patterns that are in turn used to actually facilitate the abstraction process.
Although the area of multi-regex matching is well studied, there is a lack of suitable practical implementations
available for common programming languages. In this paper we present an alternative approach to multi-pattern
matching for the purposes of log abstraction that is based on a trie-like data structure we refer to as regex trie.
REtrie is easy to implement and the real world experiments show its scalability and good performance even for
thousands of matching patterns.

1 INTRODUCTION

Computer logs are typically generated in the form of
formatted strings with the most important information
represented as a free-form message in natural language.
Akin to many similar cases in the domain of string pro-
cessing, regular expressions (REs) are typically used
to extract useful information from log messages. Com-
mon methods used by log analysis practitioners range
from ad-hoc analysis using grep tool to writing com-
plex proprietary scripts, and more recently, standalone
applications, for example Logstash1. Formally speak-
ing, the transformation of log messages into structured
representation suitable for further analysis and pro-
cessing is referred to as log abstraction (Nagappan and
Vouk, 2010) or message type transformation (Makanju
et al., 2012). Simply put, the goal of log abstraction is
the separation of static and dynamic part of log mes-
sage. Static part is referred to as the message type,
whilst dynamic part is represented by a set of parame-
ters.

Listing 1 represents the approach we use in our
work to describe matching patterns (i.e. message
types) that are consequently used to transform log
messages into structured representation. Our goal was
to develop a simple syntax and data format (YAML-
based) that could be used to describe pattern sets with
large number of corresponding message types in a con-

1https://www.elastic.co/products/logstash

venient way. The regexes key contains a list of regular
expression shortcuts we refer to as tokens. The tokens
are essentially used as wildcards. Each token is defined
by its name, data type and the actual regular expression
it is supposed to match. The patterns key contains a
list of hierarchically grouped matching patterns that
correspond to the message types. The patterns cannot
contain any regular expressions, only uniquely named
references to tokens, e.g. %{IP:server_ip}, that rep-
resent variable parameters. Note, that no nesting of
either tokens or patterns is allowed.

regexes: # sometimes refered to as tokens
INT : [integer, ’[0-9]+’]
STR : [string, ’[!-~]+’]

patterns: # patterns describe the message types
user:
session : ’User %{STR:name} logged %{STR:dir}’
created : ’User id %{INT:id} created’

service:
crashed : ’Service %{STR:service} crashed’
started : ’%{STR:service} took %{INT:time}

milliseconds to start’

Listing 1: Matching patterns representing message types.

A common naïve approach to the actual pattern
matching is to iterate the pattern set until a match
is found. Considering, that our largest pattern set
for Apache Hadoop logs is currently composed of
more than 3500 matching patterns, this can quickly be-
come a serious bottleneck in the log processing chain.

Tovarňák, D.
Practical Multi-pattern Matching Approach for Fast and Scalable Log Abstraction.
DOI: 10.5220/0006006603190329
In Proceedings of the 11th International Joint Conference on Software Technologies (ICSOFT 2016) - Volume 1: ICSOFT-EA, pages 319-329
ISBN: 978-989-758-194-6
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

319

Note, that a large infrastructure is able generate up to
100,000 logs per second (Chuvakin et al., 2012).

Although multi-regex matching is an extensively
studied area, e.g. in networking domain, usable prac-
tical implementations and libraries for common pro-
gramming languages and general purpose processor ar-
chitectures are seriously lacking. In this paper we pro-
pose an alternative approach for multi-pattern match-
ing based on trie data structure that is very easy to im-
plement, scales well with respect to number of match-
ing patterns, and exhibits very respectable real-world
performance.

The rest of this paper is structured as follows. Sec-
tion 2 provides background for the problem at hand.
Section 3 presents our approach for practical multi-
pattern matching. Section 4 evaluates the proposed
approach. Section 5 discusses the results. Section 6
presents limited amount of related work, and Section 7
concludes the paper.

2 BACKGROUND

In computer science the term of multi-pattern match-
ing traditionally refers to the goal of finding all oc-
currences of the given set of keywords in the input
text, e.g. as addressed by Aho-Corasic algorithm (Aho
and Corasick, 1975). However, in the context of log
abstraction the goal is to exactly match a single pattern
from a set of patterns (message type) against the whole
input (log message) and return the captured matching
groups that correspond to the dynamic part of log mes-
sage. Naïve approach, still widely used in practice,
is to iterate the set of matching patterns until the first
match is found. Therefore, in the worst-case scenario
the whole set must be iterated in order to match the
last pattern. This also obviously applies to situation
when no matching patterns can be found. For hundreds
of matching patterns this quickly becomes a serious
limiting factor with respect to performance. With re-
gard to this fact it is important to note that our work
is focused on results applicable to general purpose
processor architectures based on (possibly distributed)
COTS multi-core CPUs, or virtualized hardware (i.e.
not massively parallel architectures).

A slightly modified generalization of the above-
mentioned problem is the problem of multi-regex
matching, i.e. finding all the patterns of the given
set of regexes that match the input text. Note, that find-
ing the exact boundaries of the matches, i.e. capturing
the matching groups, is an additional problem (Cox,
2010). Formally speaking, every regular expression
can be transformed into a corresponding finite automa-
ton that can be used to recognize the input. By using

Thompson’s algorithm an equivalent nondeterminis-
tic finite automaton (NFA) can be constructed which
can be in turn converted into a deterministic finite au-
tomaton (DFA) via power-set construction (Hopcroft
J.E. Motwani R.Ullman J.D., 2001). Similarly, given
a set of regular expressions an equivalent NFA, and
subsequently DFA, can be constructed using the same
method.

In general, NFAs are compact in the terms of stor-
age space and number of states, however, the pro-
cessing complexity is typically high since possibly
many concurrent active states must be considered for
each input character (all states in the worst-case). For
performance-critical applications NFAs are typically
transformed into DFAs since they exhibit constant pro-
cessing complexity for each input character. Yet, with
the growing set of regular expressions the space re-
quirements can grow exponentially – a problem known
as state explosion. Thus, for some large regex pattern
sets a practical implementation of DFA-matching can
be infeasible due to memory limits. This conundrum
still attracts a great deal of research in many domains,
e.g. genomics, biology, and network intrusion detec-
tion. For example, in the networking domain, two
large groups of approaches can be identified utilizing
either NFA parallelization (e.g. on FPGAs), or DFA
compression techniques (e.g. regex grouping, alterna-
tive representation, hybrid construction, and transition
compression) (Wang et al., 2014).

However, in the terms of practical multi-regex
matching implementations suitable for log abstraction
the situation is unsatisfactory to say the least. This can
be due to the fact that, apart from a relative complexity
and individual limitations of the optimization tech-
niques (NFA/DFA), with the combination of vague
implementation details provided by the researchers,
the amount of implementation work needed to build a
fast full-fledged matching library is likely to be great.
For example, pure DFA-based approaches are unable
to capture matching groups – additional NFA-based
matching is needed, increasing the complexity of the
matching engine (Cox, 2010).

To the best of our knowledge, Google’s RE2 (Cox,
2007), (Cox, 2010), is the only available matching
library (C++, Linux only) that supports multi-regex
matching. RE2 aims to eliminate a traditional back-
tracking algorithm and uses so-called lazy DFA in or-
der to limit the state explosion – the regex is simulated
via NFA, and DFA states are built only as needed,
caching them for later use. The implementation of
multi-regex matching returns a vector of matching pat-
tern ids, since it is possible that multiple regexes match
the input (a likely situation as we will discuss below).
Therefore, additional logic is needed to select the best

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

320

matching pattern. Subsequently, the selected pattern
must be executed once more over the input in order to
capture the matching groups.

3 REGEX TRIE

To address the above-mentioned facts, we have fo-
cused on addressing the problem from a different di-
rection – what if we wanted to avoid the complexity
of multi-regex matching altogether by leveraging the
specific goals of log abstraction and characteristics
of the matching patterns created for this purpose? In
the following paragraphs we will discuss an elegant
matching algorithm that is able to practically eliminate
the need for multi-regex matching, whilst imposing
only minimal limitations on the way the matching pat-
terns can be created. The basic idea of our approach is
based on three important observations.

1. Patterns can be viewed as keys in an abstract data
structure where the input is used to query the struc-
ture for key membership.

2. The number of tokens present in a pattern is rel-
atively limited when compared to the number of
static characters.

3. Set of patterns can be represented as a tree with
two types of nodes – characters and tokens.

c f

o

r o

a

r

Figure 1: Trie containing three strings – car, foo, and for.

Trie (prefix tree, radix tree) is a tree-like data struc-
ture used for storing strings. Alongside with hash
table, trie is one of the fastest data structures for string
retrieval when implemented properly. To paraphrase
Heinz et al. (Heinz et al., 2002) trie can be concisely
described as follows. A node in a standard trie is an
array of pointers, one for each letter in the alphabet,
with an additional pointer for the empty string. A leaf
is a record concerning a particular string. A string
is found in a trie by using the letters of the string to
determine which pointers to follow. For example, if the
alphabet is the letters from ’a’ to ’z’, the first pointer

in the root corresponds to the letter ’a’; the node N
indicated by this pointer is for all strings beginning
with an "a–". In node N, the pointer corresponding to
the letter ’c’ is followed for all strings beginning with
an "ac–" and so on; the pointer corresponding to the
empty string in node N is for the record concerning
the single-letter string "a". Search in a trie is fast,
requiring only a single pointer traversal for each letter
in the query string. That is, the search cost is bounded
by the length of the query string.

I

 ˽

dp

˽

u

r

t

e

Figure 2: Trie containing three abstract strings representing
matching patterns.

For illustration purposes, let • denote a special
character, which represents some regex token in a
pattern as seen in Listing 1, and also let denote
a non-printable space. Such patterns are clearly equiv-
alent to strings of characters and can be stored in a
standard trie. Figure 2 depicts a simple pattern set rep-
resented as a trie consisting of three short patterns Ip

%{STRING:ip}, Id %{INT:id}, and true. A basic version
of our algorithm that slightly modifies a standard trie
and imposes some limitations on the matching patterns
can be described as follows:

1. If R is a pattern suffix starting immediately after
some token T then token T is not allowed to match
any prefix of R (including other tokens). For ex-
ample, for defined token ANY : [string, ’.*’] the
pattern %{ANY:any} foo bar is not allowed since the
token would consume the rest of the pattern.

2. In addition to the alphabet pointers and an empty
string pointer in a trie node, let us introduce a
special token pointer • which can be followed
only if the corresponding token matches some
prefix of the input. However, an important con-
dition must be met – the alphabet pointers and
the special pointer • are not allowed to coexist
in a single node. This means that either alpha-
bet pointers must be empty, or the special pointer
must be empty. For example, if patterns Service

crond crashed and Service %{STRING:svc} started

Practical Multi-pattern Matching Approach for Fast and Scalable Log Abstraction

321

were to be inserted into the modified trie it would
result into a conflict in a node that represents the
prefix "Service –".

3. When searching, the character-by-character traver-
sal of input is identical to the standard trie search
algorithm using an alphabet array of pointers and
empty string pointer. However, when a token
pointer is encountered it is followed only after
the token is successfully matched against the un-
traversed input (provided there is any input left).
The matched portion of the input is saved and the
algorithm continues normally with the unmatched
portion of the input.

4. When the algorithm cannot follow any pointer
from the current node it reports a non-match for
the given input. In the opposite case, the key was
found and the associated record is retrieved. The
associated record can, for example, hold the name
of the pattern, and the types and names of the to-
kens which can be then combined with the matched
portions of the input – thus, capturing the matching
groups.

The basic algorithm on the modified trie works thanks
to the first two limitations on matching patterns. The
first rule assures that even after the token pointer con-
sumes a portion of the input, the algorithm can con-
tinue its traversal on a path corresponding to suffix R.
The second rule assures that there is no ambiguity as to
what pointer should be followed next by the algorithm
in the search process.

The first rule is of key importance to our trie-based
approach, and it somewhat limits the way the match-
ing patterns can be created. However, we argue that
due to the nature of patterns used for log abstraction
this limitation can be viewed as marginal. The second
rule, on the other hand, can be seen as much more pro-
hibitive. Consider a pattern set in Listing 1. It is appar-
ent that the first two matching patterns user.session

and user.created clearly represent distinct message
types, yet their insertion into the modified trie would
result into a conflict in a node corresponding to prefix
"User –". In addition, the service.start pattern essen-
tially prohibits insertion of any other pattern starting
with a character.

In an extended version of the algorithm the second
rule can be eliminated by defining priorities among
alphabet and token pointers and the use of backtrack-
ing. Such an extended version not only allows for a
given trie node to contain both alphabet pointers and a
single special token pointer, but multiple token point-
ers as well. The principle for achieving this is simple
– the alphabet pointers have the highest priority and
they are always traversed first. If there are no pointers
available for the input character, special token pointers

are iterated in the order of their priority until a match
is found. This is done for each node in a recursive
and backtracking manner. In general, the priorities of
tokens can be determined by different ways, e.g. by
explicit definition, by their lexicographical order, or
by the order in which they are defined in the pattern
set description file.

Provided the tokens are represented by regular ex-
pressions that can be matched in linear time, and there
are no nodes containing both alpha and token point-
ers, the search over the regex trie can be performed
in linear time with respect to input length, irrespec-
tive of the number of patterns – an equivalent of a
standard trie and also a processing complexity DFAs
are known for. This is somewhat natural, since trie
can be viewed as a special case of DFA (Lucchesi and
Kowaltowski, 1993). However, similarly to majority
of standard regex libraries, the use of backtracking can
theoretically lead to exponential worst-case time com-
plexity if a "malicious" pattern set is carefully crafted.
Yet, as we will demonstrate later via experimental eval-
uation, typical pattern sets used for log abstraction do
not exhibit this behavior.

From the point of view of practical implementa-
tion there is, however, a more pressing issue – tries
are fast, but if implemented naïvely, they are space
inefficient. The size of a standard trie is determined
by the size of its nodes multiplied by their number.
In practice, the alphabet pointers are implemented as
arrays of size r = 2H where H is the number of bits
used to traverse the trie in each step – r is sometimes
also referred to as radix. For H = 1 the trie can be
viewed as a binary tree and the number of bit compar-
isons grow accordingly, therefore H = 8 is commonly
used, traversing the trie byte-by-byte, or character-
by-character for ASCII strings. Note, that randomly
distributed strings represented as a trie tend to form
long node chains, i.e. each node in the path has only
single child, which is rather wasteful for an array of
size 28 = 256. In addition, the pointer arrays quickly
grow very sparse with the increasing distance from the
trie root.

Fortunately, there are well-known techniques that
are able to significantly reduce the amount of trie nodes
and also fairly reduce the size of array pointers. First
commonly used technique is generally known as trie
compression and it is used to limit the number of trie
nodes. First proposed by (Morrison, 1968) for bi-
nary tries (H = 1) the optimization eliminates chains
of nodes by omitting trie nodes that has only a sin-
gle child. The resulting trie includes only nodes that
branch on some significant bit. Whilst slightly in-
creasing the implementation complexity of the trie, it
considerably reduces the number of its nodes and from

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

322

a certain perspective also the number of bit compar-
isons. Morrison referred to the resulting compressed
trie as to PATRICIA tree. Further compression can
be achieved by using H > 1, preferably H = 8, which
inherently reduces the height of the trie.

When inserting into a compressed trie, new node
is created only if it needs to distinguish between two
(H = 1) or more (H > 1) children (we consider the
stored value to be a child). Inner trie nodes essentially
represent common prefixes of their children. When
searching, the number of comparisons is reduced, since
only branching positions are compared. However, it
must be ensured, that the comparisons are not out of
bounds, i.e. the prefix the node represents cannot be
longer than the rest of the searched input. Addition-
ally, since only significant (branching) positions are
compared a final comparison is needed in order to
assure the stored key/string is indeed equal to the in-
put. Alternatively, this verification can be performed
on-the-fly with each node traversal, i.e. the pointer is
still determined only by the significant position, yet
it is followed only if the corresponding node prefix is
also a prefix of the input. This option is preferable in
the case of our approach since the reconstruction of
the found key from the regex-matched portions of the
input would be too cumbersome.

car fo

r o

Figure 3: Compressed trie containing three strings – car, foo,
and for.

Second group of optimizations aims to reduce the
size of the nodes themselves, especially the structures
that represent the child pointers. The general goal is
to avoid sparse data structures by adaptively changing
the size and representation of the nodes with respect to
the number of children. For example, in (Heinz et al.,
2002) the authors describe burst tries that limit the
number of sparse nodes by grouping suitable sub-tries
into binary search trees. But since in our approach
we mix alphabet pointers with token pointers in nodes
this optimization is not very suitable. In (Leis et al.,
2013) an Adaptive Radix Tree is presented that uses
path compression described above with the addition
of adaptive nodes. ART uses four different types of
pointer structures, based on the number of stored chil-
dren. The nodes use different levels of indirection in
order to reduce their size. Note, that generally speak-
ing, similar approaches are most efficient when imple-

mented in languages supporting pointers and pointer
arithmetic. On the other hand, this optimization is
very suitable in the context of our approach, therefore,
depending on the used implementation language, any
technique based on indirection that will reduce sparse
pointer structures will do.

Service˽ User˽id:˽

%{INT}

˽logged˽

%{STRING}

˽started

in out

Figure 4: Regex trie example.

Up to now we have presented only a sketch of
our approach based on a modified trie with alphabet
and token pointers priorities for backtracking search.
After the addition of path compression and node size
reduction we can finally present an exact description
of our approach/data structure we refer to as regex trie.

The pseudo-codes of the corresponding algorithms
can be found in the appendix of this paper. Algorithm 1
describes the abstract data types used in Algorithm 2
and Algorithm 3 for regex trie insertion. Algorithm 4
is used for search over this data structure. Similarly to
many others, the deletion algorithm is not considered
here since for our purposes, rebuilding the updated
trie from scratch is sufficient. However, for pattern
sets that are changing very frequently this may not
be the case and the deletion should be implemented
– it closely follows the recursive deletion procedure
for standard trie. Finally, Algorithm 5 shows the way
regex trie can be utilized for abstraction of logs into a
structured representation. For each pattern in a pattern
set, its name and name of its tokens is stored as value
in the regex trie. In the case of a match, the returned
value is combined with the matched portions of the
input log message and a map representing its structured
representation is returned.

4 EVALUATION

We have performed a series of experiments based on
two real-world pattern sets and partially generated data
sets in order to evaluate practical implementation of the
presented data structure and the related multi-pattern

Practical Multi-pattern Matching Approach for Fast and Scalable Log Abstraction

323

matching approach. First, we have aimed to evaluate
scalability of the regex trie and naïve approach with re-
spect to the number of patterns. We have also included
multi-regex matching to serve as a control. Second im-
portant goal was to determine processing throughput
with the growing number of CPU cores since our main
aim is parallel processing.

The base data set D0 used in our experiments con-
sists of 100 million lines of syslog’s auth/authpriv facil-
ity (i.e. auth.log) generated by a multi-purpose cluster
over the period of one month. The average velocity this
data set was generated with can be therefore estimated
to a surprisingly low number of 39 logs/second.

The base pattern set P22 consists of 22 reasonably
complicated matching patterns fully covering the data
set D0. Listing 2 shows the pattern set P22 includ-
ing the exact number of messages for each message
type (message type cardinality) present in D0 in order
to assure reasonable repeatability of the experiments
without disclosing the whole, rather sensitive, data set.

PX corresponds to a pattern set consisting of first
X existing message types. To assure equal selectivity
of each corresponding message pattern we have gen-
erated data sets D1, D3, D7, D15 and D22 consisting
of 1.1 million messages each. DX corresponds to a
data set where X is the number of present message
types with cardinality 1100000

X with the messages shuf-
fled randomly several times. Data sets DX are directly
based on D0 — only the messages with message type
cardinality lower than 1100000

X were duplicated in order
to reach the desired cardinality.

Second pattern set RX is based on Apache Hadoop
pattern set consisting of more than 3500 patterns we
have discovered using source code analysis. In the
original pattern set the patterns are divided into 8 in-
dividual groups for maintainability purposes. For ex-
ample the HDFS group alone consists of more than
1700 patterns. However, for experimental purposes
the pattern set RX always consists of all the patterns
merged into a single group up to the size of 3500. Sim-
ilarly to the previous case, data set HX corresponds
to a data set of size 1.1 million with X message types
each having cardinality 1100000

X . The data sets were
generated randomly from the corresponding message
types.

We have implemented both the naïve and the regex
trie approach in Erlang language in order to be directly
comparable. We use Erlang OTP platform extensively
in our work since we focus on parallel and distributed
processing on many-core CPUs thus rendering Erlang
a very reasonable choice in our eyes. Additionally,
when using HiPE (high-performance) compiler, suit-
able portions of the Erlang code are translated into
native code potentially resulting in better performance.

As already pointed out, in naïve approach the pat-
tern set is iterated until a match is found or an empty
match is returned. The patterns have the form of valid
regular expressions with named matching groups. The
implementation was rather straightforward since Er-
lang includes traditional regex matching functionality
with group matching.

Similarly, we have developed a prototypical imple-
mentation of regex trie matching described above in
detail. The patterns are defined in the format shown
in Listing 1 and Listing 2. The implementation tra-
verses the input byte-by-byte (H = 8) resulting in radix
r = 256. In order to reduce the size of the trie nodes
we use pointer structure with one level of indirection,
i.e. two nested arrays of size 16.

To serve as a control, a simple multi-regex match-
ing prototype based on already discussed Google’s
RE2 library was developed in C++ language. The
patterns have the form of valid regular expressions
with named matching groups. As already revealed,
the multi-regex functionality of RE2 returns vector
of pattern ids that match the given input, thus, addi-
tional matching step to extract the matching groups
is needed. In our implementation the first matching
pattern is always picked for the extraction, therefore,
proper ordering of the patterns is critical. Note, that
this implementation serves as a control, it is not meant
to be directly compared. With C++ being generally
faster than garbage collected Erlang, we have expected
the multi-regex matching to be faster as well, yet ex-
hibiting very similar behavior in the terms of scalabil-
ity. Remember that in best case, the theoretical time
complexity of regex trie corresponds to the one of
DFA.

Given a particular pattern set, the task of each im-
plementation was to abstract each matching log line in
the corresponding data set, i.e. to convert it to struc-
tured representation. The tests were performed on a
server machine with Intel® Xeon® CPU E5-2650 v2
@ 2.60GHz with 64GB RAM. When not stated other-
wise, the tests were performed on a single core. The
single measured value was the duration in seconds
(with milliseconds precision) needed to process the
whole data set whilst not including the output phase
and normalizing the input phase. Each individual com-
bination of data set, pattern set and implementation
was executed 10 times with best and worst results dis-
carded. The first series of experiments were executed
over the data set/pattern set pairs (DX ,PX) in order
to evaluate the scalability of the implementations for
small pattern sets. We have also aimed to validate the
hypothesis that for a certain number of patterns the
naïve approach would begin to perform worse than
the regex trie since the cost of iteration would be too

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

324

regexes:
INT : [integer, ’[0-9]+’]
S1 : [string, ’[!-~]+’]
S2 : [string, ’[-./_a-zA-Z0-9]+’]
ANY : [string, ’[^\n\r]+’]

patterns:
auth:

p01 : ’Failed %{S1:method} for invalid user %{S1:user} from %{S1:ip} port %{INT:port} ssh2’ # 3468121
p02 : ’Failed %{S1:method} for %{S1:user} from %{S1:ip} port %{INT:port} ssh2’ # 6832536
p03 : ’Accepted %{S1:method} for %{S1:user} from %{S1:ip} port %{INT:port} ssh2’ # 4536585
p04 : ’Did not receive identification string from %{S1:host}’ # 15398
p05 : ’last message repeated %{INT:count} times’ # 29221
p06 : ’Invalid user %{S1:user} from %{S1:ip}’ # 3465382
p07 : ’Received disconnect from %{S2:ip}: 11: %{ANY:reason}’ # 1751038
p08 : ’reverse mapping checking getaddrinfo for %{S1:host} [%{S2:ip}] failed - POSSIBLE BREAK-IN

ATTEMPT!’ # 872869
p09 : ’Address %{S2:ip} maps to %{S2:host}, but this does not map back to the address - POSSIBLE BREAK-

IN ATTEMPT!’ # 68139
p10 : ’pam_unix(%{S2:p1}:%{S2:p2}): check pass; user unknown’ # 3465791
p11 : ’pam_unix(%{S2:p1}:%{S2:p2}): authentication %{S2:variable2}; logname= uid=0 euid=0 tty=ssh ruser

= rhost=%{S1:rhost} ’ # 3463858
p12 : ’pam_unix(%{S2:p1}:%{S2:p2}): authentication %{S2:variable2}; logname= uid=0 euid=0 tty=ssh ruser

= rhost=%{S1:rhost} user=%{S1:user}’ # 6785737
p13 : ’pam_unix(%{S2:p1}:%{S2:p2}): session %{S1:operation} for user %{S1:user}’ # 30870038
p14 : ’pam_unix(%{S2:p1}:%{S2:p2}): session %{S1:operation} for user %{S1:user} by (uid=%{INT:uid})’ #

30871428
p15 : ’pam_unix(%{S2:p1}:%{S2:p2}): account %{S1:account} has expired (account expired)’ # 646
p16 : ’PAM service(sshd) ignoring max retries; %{INT:variable1} > %{INT:variable2}’ # 13833
p17 : ’PAM %{INT:more} more authentication %{S2:failure}; logname= uid=0 euid=0 tty=ssh ruser= rhost=%{

S1:rhost} ’ # 1420
p18 : ’PAM %{INT:more} more authentication %{S2:failure}; logname= uid=0 euid=0 tty=ssh ruser= rhost=%{

S1:rhost} user=%{S1:user}’ # 45204
p19 : ’Authorized to %{S2:user}, krb5 principal %{S1:principal} (krb5_kuserok)’ # 376475
p20 : ’pam_krb5(%{S2:p1}:%{S2:p2}): user %{S1:user} authenticated as %{S1:principal}’ # 937
p21 : ’pam_krb5(%{S2:p1}:%{S2:p2}): authentication failure; logname=%{S1:logname} uid=0 euid=0 tty=ssh

ruser= rhost=%{S1:rhost}’ # 1782027
p22 : ’Authentication tried for %{S1:user} with correct key but not from a permitted host (host=%{S2:

host}, ip=%{S2:ip}).’ # 1283317

Listing 2: Pattern set P22.

high. The use of (DX , PX) pairs is important since
the selectivity of 100% needed to be maintained for
each pattern set PX (i.e. 100% messages in the data set
had to be matched by the given pattern set). Figure 5
depicts the running times for X = {1,7,15,22}. Both
REtrie and RE2-based implementations scale well for
small pattern sets exhibiting only a marginal growth
with RE2 performing better overall as expected. Yet,
since RE2 exhibits somewhat steeper growth, the dif-
ference stops at 13.28% for P22. The slight jitter is
a result of a fact that not every pattern has the same
length and also the number of regex tokens varies. The
results also show that even for a single pattern the
regex trie implementation exhibits better performance
than naïve iteration-based approach. The real problem,
however, relates to the scalability (or its lack) of the
naïve approach – the running time grows rapidly with
the number of patterns. This growth would be even

more profound for pattern sets with lower selectivity,
since in the case of absence of matching pattern (no-
match) the whole pattern set must be always iterated.
This behavior is strongly in contrast with the one of
REtrie and RE2, which fail fast. When no matching
pattern can be found, both implementations possibly
fail fast and return nomatch. In the best case scenario
this fail can occur already at the first input character.

In the second series of experiments we have fo-
cused on data set D22 in order to evaluate the behavior
of the REtrie with different pattern sets selectivity.
When the number of needed patterns exceeded the size
of the base auth pattern set P22, we have appended pat-
terns from the base Apache Hadoop pattern set R300 in
order to achieve the desired size. This way, we were
able to create artificial pattern sets up to P300. Results
in Figure 6 shows that as the number of matching pat-
terns grows from 1 to 22, increasingly larger portion

Practical Multi-pattern Matching Approach for Fast and Scalable Log Abstraction

325

1 7 15 22
1
2
3
4
5
6
7
8
9

10
11
12

Number of patterns in pattern set Px [x]

R
un

ni
ng

tim
e

fo
rd

at
a

se
tD

x
[s

ec
on

ds
]

Naïve
REtrie
RE2

Figure 5: Performance of multi-pattern matching implemen-
tations for (Dx,Px) pairs.

0 50 100 150 200 250 300

1

1.5

2

2.5

3

Number of patterns in pattern set Px [x]

R
un

ni
ng

tim
e

fo
rd

at
a

se
tD

22
[s

ec
on

ds
]

REtrie
RE2

Figure 6: Performance of multi-pattern matching implemen-
tations for (D22,Px) pairs.

of the data set D22 must be fully matched (i.e. the pat-
tern set selectivity increases). Therefore, the overall
time needed to match the data set increases accord-
ingly. However, for larger pattern sets P50 – P300 the
selectivity remains the same (100%) therefore the run-
ning times remain essentially constant. Very similar
behavior of RE2-based implementation is apparent.

Third series of experiments was designed to eval-
uate the scalability of the regex trie implementation
with respect to multiple processor cores and to deter-
mine the theoretical throughput for real-world data
set and pattern set. In this case the experiments were
performed on a base data set D0 with pattern set P22
in order to achieve real-world distribution of the mes-
sage types. The parallel processes shared single (im-
mutable) regex trie structure and the input was par-
allelized as much as possible. Figure 7 shows that
the processing performance indeed grows with the
number of used CPU cores. It can be seen that for 2

1 2 3 4 5 6 7 8

50

100

150

200

1

2

3

4

Number of CPU cores

R
un

ni
ng

tim
e

fo
rd

at
a

se
tD

0
[s

ec
on

ds
]

R
el

at
iv

e
sp

ee
d-

up

Running time

Speed-up

Figure 7: Multi-core performance of REtrie for real-world
data set D0 and pattern set P22.

500 1,000 1,500 2,000 2,500 3,000 3,500
2.5

3

3.5

4

Number of patterns in pattern set Rx [x]

R
un

ni
ng

tim
e

fo
rd

at
a

se
tH

x
[s

ec
on

ds
]

REtrie
RE2

Figure 8: Multi-pattern matching performance for large pat-
tern sets on (Hx,Rx) pairs.

cores almost ideal 2-fold speedup is achieved. With
the increasing number of cores the speed-up slowly
decreases. At 8 cores the data set with 100 million
lines was processed in 52.543 seconds thus yielding
theoretical throughput of 1,903,203 lines per second.

In the last series of experiments we have aimed to
determine the effects of large pattern sets on REtrie
performance. We have measured the running times
for Apache Hadoop data set-pattern set pairs (HX ,RX)
with X = {500,1000,2000,3000,3500}. For pattern
sets larger than 400, RE2 reached its default memory
limit for DFAs and needed to be increased accord-
ingly. The memory cap can be declared at run-time for
each set of regexes and controls how much memory
can be used to hold the compiled form of the regexes
and the corresponding cached DFA graphs. Figure 8
shows that whilst REtrie implementation scales very
well even for large pattern sets RE2-based implementa-
tion starts to slow down. For more than 2000 patterns
REtrie implementation even starts to outperform the

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

326

multi-regex implementation. Even after careful pro-
filing we did not find any malicious/wrongly-formed
pattern(s) that would seem to cause this slowdown.
A possible explanation for this slowdown can be the
large size of the resulting state machine combined with
the combination of lazy DFA approach. However, we
are not RE2 engineers and we were not able to further
analyze this behavior.

5 DISCUSSION

The results showed that the performance of regex trie
scaled well with respect to the number of patterns as
well as number of CPU cores. The overall single-core
performance for small pattern sets was relatively close
to the multi-regex matching implemented in C++ on
top of RE2 library.

Surprisingly enough, for very large pattern sets
the Erlang regex trie implementation outperformed the
implementation of multi-regex matching based on RE2.
It must be noted that RE2 served only as a control for
our experiments and any definitive conclusions would
be premature. On the other hand the tested pattern set
was fairly standard not containing any patterns that
would seem to cause this slowdown. This must be
revisited in the future. For multiple cores the Erlang
implementation exhibited decent speed-up stopping
at overall throughput of more than 1.9 million log
lines per second on 8 cores, which we deem to be an
outstanding result, considering the task.

Note, that by using cloc tool we have determined
that the RE2 library is based on approximately 30000
lines of code whilst the Erlang implementation of regex
trie has 300 lines of code following the algorithms at
the end of this paper very closely. Nevertheless, the
algorithms can be easily implemented in any modern
programming language with traditional regular expres-
sion matching support, and this is one of the goals we
have aimed for.

6 RELATED WORK

The authors of (Azodi et al., 2013b) use regular expres-
sions with named capturing groups (matching rules) to
be able to read logs from different sources and convert
them into normalized format. In order to speed up
the process of finding the correct regex for a given
log, the authors utilise a priority queue with frequently
matched regexes at the top of the queue. In their later
works the authors use knowledge base approach in
order to improve the matching performance by limit-
ing the number of possible matching rules. In (Azodi

et al., 2013a), similarity search is used to find the ap-
propriate matching rule, and in (Jaeger et al., 2015)
the rules are organized in a hierarchical manner based
on static indicators (e.g. the name of the application
that generated the logs).

To the best of our knowledge, syslog-ng2 is in the
terms of available open-source log processing software
the only one to support multi-pattern matching. The
matching is, similarly to our case, based on radix tree,
yet we were unable to determine the exact approach/al-
gorithm used. For example, when trying to test it, we
were unable to describe some of our pattern sets, and
in addition, the matching seems to be greedy, not exact,
i.e. the used algorithm matched also longer inputs that
it was supposed to. This, in some cases, resulted in
false-negative (non-)matches. Additionally, the order-
ing of patterns seems to influence the output, which
is quite undesirable considering the pattern sets can
consist of thousands of patterns.

7 CONCLUSION

In this paper we have presented a multi-pattern match-
ing approach for log abstraction based on a trie-like
data structure we refer to as regex trie. We have pre-
sented related algorithms that are very easy to imple-
ment, scale well with respect to number of match-
ing patterns, and exhibit respectable real-world per-
formance for our Erlang implementation. The results
have shown that on a fairly standard commodity hard-
ware it is possible to abstract hundreds of thousands
of logs per second.

In our future work we would like to focus on utiliz-
ing REtrie for general log processing and normaliza-
tion. In particular we would like to focus on many-core
distributed deployments in order to push the log ab-
straction performance even further. Our second goal is
related to the discovery and definition of pattern sets
and normalization logic for a base set of logs generated
by general-purpose servers, e.g. standard Linux-based
machines.

REFERENCES

Aho, A. V. and Corasick, M. J. (1975). Efficient string match-
ing: an aid to bibliographic search. Communications
of the ACM, 18(6):333–340.

Azodi, A., Jaeger, D., Cheng, F., and Meinel, C. (2013a).
A new approach to building a multi-tier direct access
knowledgebase for IDS/SIEM systems. Proceedings -

2https://syslog-ng.org

Practical Multi-pattern Matching Approach for Fast and Scalable Log Abstraction

327

2013 IEEE 11th International Conference on Depend-
able, Autonomic and Secure Computing, DASC 2013.

Azodi, A., Jaeger, D., Cheng, F., and Meinel, C. (2013b).
Pushing the limits in event normalisation to improve
attack detection in IDS/SIEM systems. Proceedings
- 2013 International Conference on Advanced Cloud
and Big Data, CBD 2013, pages 69–76.

Chuvakin, A., Schmidt, K., and Phillips, C. (2012). Log-
ging and log management: the authoritative guide to
understanding the concepts surrounding logging and
log management. Newnes.

Cox, R. (2007). Regular expression matching can be simple
and fast (but is slow in java, perl, php, python, ruby).
URL: http://swtch.com/˜rsc/regexp/regexp1.

Cox, R. (2010). Regular expression matching in the wild.
URL: http://swtch.com/˜ rsc/regexp/regexp3.html.

Heinz, S., Zobel, J., and Williams, H. E. (2002). Burst tries:
a fast, efficient data structure for string keys. ACM
Transactions on Information Systems, 20(2):192–223.

Hopcroft J.E. Motwani R.Ullman J.D. (2001). Introduction
to automata theory, languages, and computation-.

Jaeger, D., Azodi, A., Cheng, F., and Meinel, C. (2015). Nor-
malizing Security Events with a Hierarchical Knowl-
edge Base, volume 9311 of Lecture Notes in Computer
Science. Springer International Publishing, Cham.

Leis, V., Kemper, A., and Neumann, T. (2013). The adap-
tive radix tree: ARTful indexing for main-memory
databases. In 2013 IEEE 29th International Confer-
ence on Data Engineering (ICDE), pages 38–49. IEEE.

Lucchesi, C. L. and Kowaltowski, T. (1993). Applications of
finite automata representing large vocabularies. Softw.
Pract. Exper., 23(1):15–30.

Makanju, A., Zincir-Heywood, A. N., and Milios, E. E.
(2012). A lightweight algorithm for message type ex-
traction in system application logs. IEEE Transactions
on Knowledge and Data Engineering, 24(11).

Morrison, D. R. (1968). PATRICIA—Practical Algorithm To
Retrieve Information Coded in Alphanumeric. Journal
of the ACM, 15(4):514–534.

Nagappan, M. and Vouk, M. a. (2010). Abstracting log
lines to log event types for mining software system
logs. 2010 7th IEEE Working Conference on Mining
Software Repositories (MSR 2010), pages 114–117.

Wang, K., Fu, Z., Hu, X., and Li, J. (2014). Practical regu-
lar expression matching free of scalability and perfor-
mance barriers. Computer Communications, 54.

APPENDIX

Algorithm 1: Regex Trie Types.

1: def TRIENODE(label)
2: label String← label
3: al phas AdaptiveArray← []
4: tokens PrioritySet←{}
5: terminator Value←∅

6: def TOKENPOINTER(priority,regex)
7: priority Integer← priority
8: regex Regex← regex
9: child TRIENODE←∅

Algorithm 2: Regex Trie Insert – PART 1/2.

Input: single matching pattern, associated value to be
stored, TRIENODE root or an empty node

Require: pattern must be a list of chunks; chunk is either
string chain or token

Output: TRIENODE root node representing recursively
built trie

1: function INSERT(pattern,value,node)
2: if node =∅ then
3: node← new TRIENODE(M) . root node
4: chunk,rest← pattern . get next pattern chunk
5: if chunk =∅ then
6: node.terminator← value
7: else if isToken?(chunk) then
8: if node.tokens{chunk.priority}=∅ then
9: n← new TRIENODE(chunk.regex)

10: t p ← new TOKEN-
POINTER(chunk.priority,chunk.regex)

11: t p.child← INSERT(rest,value,n)
12: else
13: t p← node.tokens{chunk.priority}
14: t p.child← INSERT(rest,value, t p.child)
15: node.tokens� t p
16: else
17: c← chunk[0]
18: if node.al phas[c] =∅ then
19: n← new TRIENODE(chunk)
20: node.al phas[c]← INSERT(rest,value,n)
21: else
22: n← node.al phas[c]
23: node.al phas[c] ← IN-

SERTCHAIN(chunk,rest,value,n)
24: return node

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

328

Algorithm 3: Regex Trie Insert – PART 2/2.

1: function INSERTCHAIN(chain, pattern,value,node)
2: lcp← longestCommonPrefix(node.label,chain)
3: if lcp = node.label then . the label is prefix of the

chain
4: n← node
5: else
6: n← new TRIENODE(lcp)
7: c1← stripPrefix(lcp,node.label)
8: node.label← c1
9: n.al phas[c1[0]]← node

10: if lcp = chain then. the chain is prefix of the label
11: return INSERT(pattern,value,n)
12: else
13: rest← [stripPrefix(lcp,chain) | pattern] .

append to start
14: return INSERT(rest,value,n)

Algorithm 4: Regex Trie Search.

Input: inputstring, TRIENODE root node, empty array []
for token captures

Output: associated value and token captures, or nonmatch
∅

1: function SEARCH(inputstr,node,captures)
2: if inputstr =∅ then
3: value← node.terminator
4: if value =∅ then
5: return ∅
6: else
7: return (value,captures)
8: x← SEARCHPREFIX(inputstr,node,captures)
9: if x =∅ then

10: for t p in node.tokens do
11: x← SEARCHREGEX(inputstr, t p,captures)
12: if x 6=∅ then
13: break
14: return x

15: function SEARCHPREFIX(inputstr,node,captures)
16: c← inputstr[0]
17: if node.al phas[c] =∅ then
18: return ∅
19: else
20: child← node.al phas[c]
21: label← child.label
22: if not isPrefix?(label, inputstr) then
23: return ∅
24: else
25: tail← stripN(len(label), inputstr)
26: return SEARCH(tail,child,captures)

27: function SEARCHREGEX(inputstr, t p,captures)
28: match← matchRegex(t p.regex, inputstr)
29: if match =∅ then
30: return ∅
31: else
32: captures← [captures + match.matched]
33: tail← stripN(match.length, inputstr)
34: return SEARCH(tail, t p.child,captures)

Algorithm 5: Log Abstraction Using Regex Trie.

Input: message to be matched, trie containing all patterns
from a given pattern set

Require: the value associated with each pattern must be a
tuple (pat_name, tok_names)

Output: pat_name and captured tokens map
<tok_names→ capures>, or nonmatch ∅

1: function ABSTRACTMESSAGE(message, trie)
2: result← SEARCH(message, trie, [])
3: if result 6=∅ then
4: ((pat_name, tok_names),captures)← result
5: return (pat_name,

mapFromList(zip(tok_names,captures))
6: else
7: return ∅

Practical Multi-pattern Matching Approach for Fast and Scalable Log Abstraction

329

