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Abstract: In today’s data-driven world, economy and research depend on the analysis of empirical datasets to guide de-
cision making. These applications often encompass a rich variety of data types and special purpose processing
models. We believe, the database system of the future will integrate flexible processing and storage of a vari-
ety of data types in a scalable and integrated end-to-end solution. In this paper, we propose a database system
architecture that is designed from the core to support these goals. In the discussion we will especially focus on
the multi-domain programming concept of the proposed architecture that exploits domain specific knowledge
to guide compiler based optimization.

1 INTRODUCTION

Recent developments in the available amounts of data
as well as the number and scope of typical use cases,
have created the need for scalable data management
systems with a focus on complex analytical process-
ing. In many cases, applications process multiple
types of data such as tables, matrices, graphs or un-
structured data (Abadi et al., 2014). In addition, a
greater variety of people is involved in the overall pro-
cess of generating, processing, and consuming data.
Therefore, usability becomes a major challenge for
data management.

In this article, we propose an architecture for a
data management system that combines scalable and
efficient processing of a variety of data types with an
easy to use but flexible programming model. To em-
phasize our architecture’s support for multiple data-
types and related programming models, we will call
it the multi-domain architecture throughout the arti-
cle.

The multi-domain architecture (figure 1) com-
prises three layers : the programming interface layer,
the translation and optimization layer, and the stor-
age and processing layer. The storage and process-
ing layer at the bottom of the architecture defines an
efficient and scaleable data management API that op-
erates on a group of physical data formats. The API
provides a set of operators for each physical format
and an operator orchestration language that is used to
compose larger workloads. Most of the operators ap-
ply a user defined function (UDF) to stored data ob-

jects according to a predefined scalable and efficient
data access pattern. Operators that process data using
a UDF are called processing operators.

In our approach, the key to efficient processing
is an extensible compiler framework for domain spe-
cific languages. This compiler framework forms the
translation and optimization layer at the middle of the
architecture. It accepts user defined data processing
programs as input and translates them into optimized
physical workloads, which can be executed by the
storage and processing layer eventually. Access to
statistics and meta data allows the compiler to apply
advanced optimizations similar to query optimization
in traditional DBMS.

At the top of the architecture, the programming in-
terface layer provides a multi-domain programming
language for user defined processing tasks. The lan-
guage consists of domain specific elements such as
SQL clauses1 or linear algebra statements, low-level
operators that are mirrored from the storage and pro-
cessing layer, and a slim procedural core language.
Additional syntactic elements can be added to the lan-
guage by extending the translation and optimization
layer with additional compiler components.

Our architecture allows users to write programs
that compose different data domains at the level of in-
dividual statements. The compilation framework uses
domain specific as well as general rules to optimize
these programs and translates them into executable
workloads. Finally, the storage and processing layer

1To fit with our model, SQL syntax has to be adapted
slightly.
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Figure 1: The three layers of the multi-domain architecture.

provides a set of optimized physical data formats and
processing operators that implement the concrete ex-
ecution environment of the architecture.

In the following sections we are going to discuss
the multi-domain architecture in detail. In section 2,
we will examine the individual layers and their inter-
faces. In section 3, we provide a brief review of re-
lated work and in the last section we will discuss and
summarize our approach and give an outlook on fu-
ture work.

2 THE MULTI-DOMAIN
ARCHITECTURE

The multi-domain architecture comprises three main
layers. The programming interface layer contains the
system’s multi-domain programming language, the
translation and optimization layer provides the com-
piler framework and extensions, and the storage and
processing layer consists of physical data formats,
low-level processing operators, and the operator or-
chestration language.

2.1 Programming Interface

Users define data processing workloads, using the
multi-domain programming language defined in the
programming interface layer. The language consists
of a slim procedural core and a set of domain and
format specific language extensions which add their
own operators and data types. The procedural core
defines primitive types and provides statement com-
position and scopes (blocks), variables, and a set of
standard control flow structures for conditional (if,

Listing 1: SQL language extension example.

1 def que ry ( ) {
v a l c u s t o m e r s =

3 SELECT( ” c name ” , ” c ke y ” )
.FROM( ” c u s t o m e r ” )

5 .WHERE( ” c a c c t b a l ” < 0 . 0 )

7 v a l n a t i o n s =
SELECT( ” n name ” , ” n key ” )

9 .FROM( ” n a t i o n ” )

11 l o g (
SELECT( ” c name ” , ” n name ” )

13 .FROM( cus tomers , n a t i o n s )
.WHERE( ” c ke y ” == ” n key ” ) )

15 }

else) and repeated (while, for-each) execution.
The core language is used as a general means for op-
erator orchestration and for the definition of user de-
fined functions (UDF).

Language extensions add new operators and types
to the core language. Listing 1 defines a program that
uses elements of the relational language extension to
define and compose simple SQL-like queries. The
extension provides statements such as SELECT, FROM,
and WHERE and adds additional definitions for stan-
dard operators as < and == that are used when needed.

Listing 2 demonstrates the composition of state-
ments from multiple language extensions. The first
six lines use the relational extension to select three
columns of the relation objects and store them in C.
Lines 7-14 use operators and types of the linear alge-
bra extension (*, sum, Mat etc.) to create a rotation
matrix R and to multiply R with a transposed copy of
C. Lines 16-24 use the ColMap operator of the matrix
format extension to apply a UDF to each column vec-
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Listing 2: Multi-domain program.

1 v a l C =
SELECT( ” x ” , ” y ” , ” z ” )

3 .FROM( ” o b j e c t s ” )
. ORDER BY( ” i d ” )

5

v a l a = 0 . 8
7 v a l R = Mat ( 3 , 3 ) (

cos ( a ) , 0 , s i n ( a ) ,
9 0 , 1 , 0 ,

− s i n ( a ) , 0 , cos ( a )
11 )

13 v a l Cr = R ∗ t r a n s p o s e (C)

15 v a l Crn = ColMap ( Cr ) {
( c o l ) =>

17 v a l l e n g t h =
s q r t ( c o l ( 0 )∗ c o l ( 0 )

19 + c o l ( 1 )∗ c o l ( 1 )
+ c o l ( 2 )∗ c o l ( 2 ) )

21

re turn Mat ( 3 , 1 ) (
23 c o l ( 0 ) / l e n g t h ,

c o l ( 1 ) / l e n g t h ,
25 c o l ( 2 ) / l e n g t h

)
27 }

tor of Cr.
The transpose operation in line 12 is defined on

matrices and therefore implies a format transforma-
tion of C which is initially stored in a table format. Al-
though ColMap on line 16 is not defined in the linear
algebra extension, but instead in the matrix format ex-
tension, it does not require a transformation because
both extensions operate on the same physical format.
In our current model, format transformations are in-
serted implicitly by the compilation framework and
do not require user intervention.

2.2 Translation and Optimization

The efficiency and performance of the multi-domain
architecture is predicated on the ability of the transla-
tion and optimization layer to compile multi-domain
programs into efficient operator workloads. Domain
specific optimizations, efficient use of format trans-
formations, and the generation of code that limits run-
time dynamism, are the compiler’s main techniques to
achieve this goal.

The general compilation process consists of three
steps: i) derive an abstract, tree-shaped intermediate
representation (IR) from the input program, ii) apply
optimization rules to the IR, iii) traverse the IR tree
and invoke code generation rules that match the en-
countered node types.

Mul

Mul

M1 M2

v

(a) (M1 * M2) * v

Mul

M1 Mul

M2 v

(b) M1 * (M2 * v)

Figure 2: Simple Tree IR optimization.

When a program is transformed into the tree IR,
all operator and function calls, as well as their argu-
ments, are turned into IR nodes. Each IR node has
a type that identifies the kind of operator, function
or object that the node represents. Figure 2 shows
two simplified tree IR representations of the linear
algebra expression M1 ∗M2 ∗ v. Tree 2(a) is the re-
sult of the default left to right evaluation order of the
matrix multiplication operator. Code generation for
that version would perform the matrix-matrix mul-
tiplication first (res0 ← M1 ∗M2) and the matrix-
vector multiplication second (res1 ← res0 ∗ v). On
the other hand, linear-algebra domain knowledge tells
us i) that vector-matrix multiplications are in general
much cheaper than matrix-matrix multiplications, ii)
that the result of a matrix-vector multiplication is an-
other vector, and iii) that matrix multiplications are
associative. In summary, domain knowledge tells us
to perform the matrix-vector multiplication first (tree
2(b)), in order to replace the expensive matrix-matrix
multiplication with a cheaper matrix-vector multipli-
cation.

Compilers of general purpose languages do not in-
corporate domain knowledge for special purpose data
structures such as matrices, relations, or graphs. They
are therefore unable to perform domain specific op-
timizations as the one we just described. The com-
piler framework of the multi-domain architecture on
the other hand, is explicitly designed to support a spe-
cific set of data processing domains and therefore in-
cludes the types and operations of these domains as
IR nodes. Once these IR nodes are available, pattern
matching can be used to define the matrix multiplica-
tion optimization and similar rules.

Transformations that require larger parts of the
tree as context can be implemented using dedicated
IR tree traversals. This technique is especially impor-
tant during the translation of abstract domain specific
operations such as SELECT, FROM, WHERE into con-
crete operations of the storage and processing layer.
The transition from abstract domain specific to con-
crete physical operations is carried out, once all do-
main specific optimizations have been applied.

At that point, a lowering traversal replaces do-
main nodes with operator nodes, in a process that of-

Architecture of a Multi-domain Processing and Storage Engine

191



ten involves the merging of multiple domain nodes
into a single operator node or vice versa the splitting
of one domain node into several operator nodes. For
example, relational selection and projection nodes can
often be merged into a single table scan node, but a
single join node requires multiple scan nodes. When
all domain specific IR nodes have been translated into
physical operator nodes, additional physical transfor-
mations can be carried out. Eventually, the IR tree
reaches its final form and a last traversal invokes code
generation rules for each node to generate the exe-
cutable storage and processing layer workload.

2.2.1 Physical Format Transformations

One aspect that has been left open so far, is physi-
cal format transformation. In listing 2 of section 2.1,
the linear algebra operation transpose is applied to
a relation C. The relation consists of three numeri-
cal columns X, Y, Z. Therefore there is a semantically
sound transformation of the relation into a 1x3 ma-
trix representation. On a technical level, there are two
ways to make this call legal in the statically typed
multi-domain language: i) there is an implicit type
conversion from relations to matrices and ii) there are
multiple overloaded versions of transpose, one of
which accepts a relation as its input type and possibly
also returns a relation as its output.

Option i) implies the existence of dedicated trans-
formation operations that can be represented explic-
itly in the IR tree. This approach has the advantage
that a single set of transformation operations can be
reused wherever a type mismatch occurs. The trans-
formation operations can even be targeted in opti-
mization rules and, depending on the implementa-
tion, can be potentially merged with other operators.
One disadvantage of this approach is that possibly ex-
pensive format transformations are carried out inde-
pendent of the cost of subsequent operations. Some-
times, the performance penalty of an operation that is
overloaded for a sub-optimal physical representation
might be much smaller than the added transformation
overhead.

Option ii) is to overload domain specific opera-
tions for multiple physical formats, accepting the de-
graded performance of some of these implementa-
tions. This approach is beneficial in cases where the
cost of a format transformation outweighs its benefit.
The largest disadvantage of this approach is the neces-
sity to provide multiple implementations for domain
operations.

The ideal solution will probably combine both ap-
proaches into a single solution. For example, the com-
piler could use a cost model to decide whether to use
a format transformation or an overloaded version of

an operator. In general, the topic of format transfor-
mations is still an open research question of the archi-
tecture and we count on future work to find the best
and most practical approach.

2.3 Storage and Processing

The storage and processing layer at the bottom of the
multi-domain architecture defines the physical data
management API. All higher-level domain specific
constructs have to be mapped onto this API eventu-
ally. The data management API consists of a set of
operators that take a number of arguments and an op-
erator orchestration language that is used to compose
individual operators into larger workloads.

The first argument of an operator always identi-
fies the data container on which the operator is to be
applied. A data container stores the physical data of
a single logical data object in a specific data format.
For example, a RowContainer stores a relation in row
format and a SparseMatrixContainer stores a ma-
trix in a sparse format.

Some operators, such as InsertColumnRecord,
perform a simple predefined function on their data
container. However, the largest class of operators
does not implement a fixed functionality, but instead
applies a user defined function (UDF) to a data con-
tainer. We call these operators processing operators.
Each processing operator implements a well-known,
reusable, and efficient data access pattern on its un-
derlying physical format. This is the most important
property of processing operators and their main ben-
efit compared to classical data retrieval operators that
do not combine data access and processing.

The UnorderedScan(Container,UDF(Record))
operator, that is defined for both relational formats,
is a typical example of a processing operator. The
operator applies its UDF to batches of records of the
target container in arbitrary order. The UDF can not
make assumptions regarding which specific records or
what number of records will be included in a batch.
Typical use cases of the UnorderedScan operator are
therefore limited to the context of a single record, as
the relational projection and selection operations.

The data access pattern of the UnorderedScan op-
erator can be summarized as: unordered access to in-
dividual records. Knowledge of this access pattern
enables a scaleable data-parallel operator implemen-
tation where UDFs are applied concurrently to mul-
tiple batches of records. Other operators provide dif-
ferent guarantees to their UDFs, but the guiding prin-
ciple is always to enable some form of scaleable data
parallel processing.

The ability to achieve implicit data parallelism
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is the main benefit of known data access patterns,
but not the only one. Another benefit is the possi-
bility to fuse multiple equivalent operator calls into
a single one. Two UnorderedScan operations on
the same input container can be fused into a sin-
gle UnorderedScan by simply concatenating the two
UDFs.

The remaining component of the storage and pro-
cessing layer is the operator composition language
which is used to combine operators into larger pro-
grams. In our current model we use a procedural lan-
guage for this task. This is a straightforward choice as
it enables trivial compilation of the multi-domain core
language of the programming interface layer. If this
choice should turn out to be problematic, we might
switch to a more restricted model in the future.

3 RELATED WORK

In the following, we provide a brief discussion of re-
lated work on multi-domain processing and genera-
tive programming.

3.1 Multi-domain Processing

The need for multi-domain data management systems
has been widely recognized. In this article, we pro-
pose to tightly integrate multiple storage formats and
programing models into a single system. An alter-
native approach that has been discussed lately is the
integration of several DBMS behind a data manage-
ment middleware layer.

The BigDAWG polystore system (Duggan et al.,
2015) provides an example for this approach. The
authors hide multiple ”of the shelf” DBMS behind
a central management layer, which defines a unified
querying interface for all attached systems. The man-
agement layer accepts multi domain queries, splits
these queries into parts that can be processed by one
of the attached DBMS and sends the partial queries
to the respective engines. The management layer also
handles cases, where one DBMS depends on data that
is currently stored in another DBMS and initiates the
necessary data transfers.

In contrast to the multi-domain architecture, Big-
DAWG does not need to reimplement data manage-
ment functionality and can instead reuse proven so-
lutions. What is more, BigDAWG can incorporate
DBMS that vary widely in important systems char-
acteristics. BigDAWG could for example attach a re-
lational in-memory DBMS and a classical file based
DBMS at the same time and trade off processing

speed versus durability guarantees on a per table ba-
sis.

On the other hand, data exchange between DBMS
is a rather expensive operation as it depends on net-
work communication. Frequent format changes are
therefore much more feasible in the integrated single
system approach, proposed by the multi-domain ar-
chitecture. Furthermore, BigDAWG implies the ad-
ministration of multiple separate DBMS, which in-
creases the management cost compared to our inte-
grated approach.

To summarize, the middleware approach provides
greater flexibility with regard to non-functional prop-
erties but incurs a higher price for format transfor-
mations. In addition, administration of the system is
more complex.

3.2 Generative Programming

Many big data applications repeatedly execute the
same lines of code for millions or billions of data el-
ements. Even expensive optimization becomes viable
in that environment as their cost is amortized over
time. This realization has sparked interest in runtime
code compilation and compiler based optimizations.
These two techniques trade additional one time com-
pilation overhead for very efficient code that saves a
couple of instructions for every data element.

Beckmann et al. introduce an embedded DSL
for C++ that can be compiled, optimized, and exe-
cuted at runtime of a host program (Beckmann et al.,
2004). They use the DSL to write image manipula-
tion kernels that get optimized for specific transfor-
mation matrices and generate code that significantly
outperforms standard solutions, given large enough
image sizes. The primary efficiency gains of the gen-
erated code are based on removed indirections and
runtime checks that are unavoidable in more general
solutions. Newburn et al. follow a very similar ap-
proach and provide an embedded C++ DSL that is
specifically targetted at data parallelism in multi-core
systems (Newburn et al., 2011). They use code gener-
ation to specialize performance critical code passages
to the specific runtime environment of their programs.

Another group (Alexandrov et al., 2015) uses code
generation, domain specific languages, and specific
data access patterns to derive implicit parallelism in
an approach that is very similar to the one described in
this article. On the other hand they are not concerned
with multi-domain integration and do not optimize for
specialized data formats.
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4 SUMMARY AND FUTURE
WORK

In this article we have proposed a programming
model and system architecture for a data management
system that integrates multiple specialized data do-
mains and programming models into an efficient and
flexible end to end solution.

In the language layer, at the top of our architec-
ture, we extend a flexible host language with a set of
embedded domain specific languages that cover dif-
ferent use cases.

Underneath the language layer, we use a compiler
framework to translate abstract multi-domain pro-
grams into efficient physical workloads. The frame-
work incorporates domain knowledge which makes it
possible to apply powerful domain specific optimiza-
tion rules. In addition, the compiler generates format
transformation code to enable the composition of op-
erations that are defined on different physical repre-
sentations.

At the bottom of the architecture, we propose to
use a storage and processing engine that supports
multiple optimized physical data formats. Actual data
access is implemented by a set of processing opera-
tors that apply user defined functions to data objects
according to predefined data access patterns. These
patterns enable data parallel operator implementa-
tions and advanced optimizations such as operator fu-
sion.

We are currently in the process of developing a
prototypical implementation of the proposed architec-
ture. In order to fully focus on the multi domain as-
pects of our approach, we reuse previous work as ex-
tensively as possible possible. Most importantly, we
use the in-memory data store ERIS (Kissinger et al.,
2014) as the starting point for our multi format data
management engine. ERIS uses data parallel process-
ing operators to achieve vertical scaleability on large
shared memory multi-processor machines. In addi-
tion, ERIS already provides column and row formats
for the storage of relations and is therefore designed
to support multiple physical storage formats. We plan
to extend ERIS and add an additional matrix format to
support the important use case of relational and linear
algebra integration.

The compilation layer uses the DSL compilation
framework LMS (Rompf and Odersky, 2010). LMS
uses Scala as host language for embedded DSLs and
provides the generation of a tree IR with custom node
types. Further, LMS defines a flexible component
based extension mechanism, which allows the inte-
gration of new DSL elements, IR nodes, optimization
rules, and code generation.

We propose the multi-domain architecture as our
vision for a data management system that provides
tight and efficient integration of multiple processing
domains. In future work, we want to evaluate the im-
pact of frequent format transformations on the perfor-
mance of the system and expect to find specific multi-
domain optimizations to mitigate these effects.
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