
Reducing Static Dependences Exploiting a Declarative Design Patterns
Framework

Mario Luca Bernardi1 and Marta Cimitile2

1Giustino Fortunato University, Benevento, Italy
2Unitelma Sapienza University, Rome, Italy

Keywords: Software Engineering, Design Patterns, Aspect Oriented Software Development, Software Metrics.

Abstract: Object Oriented Design Patterns (DPs) are recurring solutions to common problems in software design aiming
to improve code reusability, maintainability and comprehensibility. Despite such advantages, the adoption of
DPs causes the presence of crosscutting code increasing, significantly, the code duplication and the dependen-
cies between systems. The main idea of this research is that code crosscutting can be reduced by the integration
of Model Driven Development (MDD) techniques with Aspect Oriented Programming (AOP). According to
this, an approach based on a Domain Specification Language (DSL) to to define declaratively the structure of
DPs and their adoption on classes to declarative, is proposed. The approach aims to support aspects deriva-
tion to compose, at run time, AOP-based version of the specified DPs. The approach has been applied in
a case study where the developed supporting framework was used in a concrete refactoring scenario, and a
subsequent maintenance task. The results from the case study are presented and discussed.

1 INTRODUCTION

DPs are general repeatable solutions to recurring
problems of software implementation improving ef-
fectiveness and efficiency in software development.
Despite such advantages, the usage of DPs have
also some disadvantages like an increasing number
of static dependencies among components, an higher
code crosscutting (this should introduce some defects
in the system) and in some case greater code duplica-
tion (Hannemann and Kiczales, 2002). More in gen-
eral, the adoption of multiple DPs may have an im-
pact on the system modularity affecting its maintain-
ability, comprehensibility and testability (Hannemann
and Kiczales, 2002; Bernardi et al., 2016). Aspect-
Oriented Software Development (AOSD) is a soft-
ware development technology that achieves to im-
prove the modularity of the developed software (Han-
nemann, 2001) giving more emphasis to the separa-
tion of crosscutting concerns (CCs). Consequently,
AOSD represents a valid solution to reducing cross-
cutting resulting from DPs adoption. It performs
an advanced separation of concerns and encapsulates
CCs in separate modules, called aspects. Aspects are
composed with other software artifacts through pow-
erful weaving mechanisms enforcing transparency,
optionality, and unpluggability modularity (Hanne-

mann and Kiczales, 2002). Moreover, software de-
velopment can be also improved by the adoption of
Model Driven techniques achieving to increase the
overall system modularity of design models, source
code, structure and behaviour of run-time objects
(Bernardi et al., 2013a). Model Driven Software De-
velopment (MDSD) models all the relevant system
knowledge and the obtained models are used in for-
mal transformations to produce all needed artifacts
(i.e., source code and documentation). These mod-
els are also synchronized, combined, and transformed
across different levels of abstraction introducing some
meta models that characterize a set of models as their
instances and are instantiated using a DSL to de-
scribe their abstract syntax and to generate a model.
This paper proposes an approach based on a MDSD
techniques and an Aspect Oriented DSL-based frame-
work to define declaratively the structure of DPs im-
proving modularity, dynamic behaviour and oblivi-
ousness. Moreover, the proposed approach allows to
improve flexibility permitting to adopt different pat-
tern variants with limited impact on system source
code and achieves a greater internal cohesion leav-
ing concrete system classes as decoupled as possible
from the components of the DPs code. Another ad-
vantage of the proposed approach is that it is com-
pletely declarative. This permits to apply any change

154
Bernardi, M. and Cimitile, M.
Reducing Static Dependences Exploiting a Declarative Design Patterns Framework.
DOI: 10.5220/0006009401540160
In Proceedings of the 11th International Joint Conference on Software Technologies (ICSOFT 2016) - Volume 2: ICSOFT-PT, pages 154-160
ISBN: 978-989-758-194-6
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

to the DP implementations and their corresponding
concrete classes changing only the DSL specifica-
tions without any direct impact on the system source
code. The approach was implemented using a frame-
work, called Declarative Design Pattern Framework
(DDPF), built on the Eclipse Modeling tools using
Xpand as Model to Text (M2T) transformation en-
gine and AspectJ as AOP language. The generation
step is performed starting from a model written by
the DSL and dynamically generates aspects applying
idioms and DPs on system classes with null (or very
reduced) impact on them. A template-language en-
gine is used to parse the DSL DSL code generating
some Java and AspectJ resources to implement flexi-
ble and modular DPs using the concrete classes of the
system. To validate the effectiveness of the proposed
approach a real world system, the Korsakow editor
system, is refactored using DDPF and both DDPF and
OOP versions are analyzed using modualrity metrics
(DOS and DOF defined in (Eaddy et al., 2007)). The
comparison was performed evaluating the quality of
modularization and the impact of required changes on
system classes involving DPs. This in order to as-
sess the the framework adoption in terms of: (i) DSL
effectiveness to express (and change at run-time) de-
sign choices, and (ii) internal structure quality of the
resulting system source code.

The remaining of the paper is structured as fol-
lows. Section 2 reports some related work. Section 3
presents and discusses the proposed approach and the
architecture of the AspectJ-based framework adopt-
ing it. The section 4 reports a description of the the
case study and discusses the quantitative evaluation
of the proposed framework using an adequate set of
AOP-aware source code metrics. Conclusive remarks
and future works are finally presented in section 5.

2 RELATED WORK

Several DPs description languages and DPs imple-
mentation approaches are proposed. In (Eden, 2001),
a formal language for DPs representation is reported.
It allows the designer to refine and customize the
descriptions of canonical DPs or to define new DPs
from scratch. Another pattern language is also pro-
posed in (Zdun, 2004). It allows to trace and manipu-
late software components and their dependencies. In
(Elaasar et al., 2006), the DPs are applied to concrete
classes using pattern languages or models. Moreover,
in (Boussaidi and Mili, 2007) authors propose an ex-
plicit DPs representation as well as the transformation
embodied in their application.

Several studies are also focused on the adoption

of aspect oriented techniques to implement object-
oriented DPs: in (Baca and Vranic, 2011) intrin-
sic aspect-oriented DPs are used to improve com-
posability with respect to the original implementa-
tions of object-oriented DPs and their aspect-oriented
re-implementations. In (Soundarajan and Hallstrom,
2004), aspect oriented design language is used to sup-
port software reuse deriving the specific requirements
for the Aspect Oriented Software Development De-
sign Language architecture by examining the AspectJ
extensions for a distributed computing environment.

Respect to the above discussed approaches (that
apply DPs to the existing design or code), in this
paper we propose a DSL approach aiming to re-
duce crosscutting introduced by DPs in Object Ori-
ented code (Bernardi et al., 2013c; Bernardi et al.,
2013b; Bernardi et al., 2014). Moreover, an approach
for support application that uses DPs into an aspect-
based version refactoring is proposed in (Giunta et al.,
2012). Here, with respect to our declarative approach,
a lower flexibility in modifying patterns application
is obtained thought an explicit refactoring of exist-
ing source code. Differently from this, in the pro-
posed approach the system is developed from scratch
using a declarative language that is more suitable in
a forward engineering context. Finally, the proposed
approach differs from the other ones for the defini-
tion of a dynamic DSL that involves, in a completely
dynamic manner, the existing source code in a pat-
tern logic. According to this, the proposed engine in
the place to modify or generate code, generates as-
pects that inject pattern logic at run-time while sys-
tem classes are oblivious. Since only aspects perform
interception and a run-time bytecode manipulation is
performed to apply pattern logic, an higher flexibility,
a lower invasivity and a reduction of the maintenance
effort is obtained.

3 PROPOSED APPROACH

The proposed approach is focused on the definition of
a DSL based on an OO system meta-model and al-
lowing to map DPs (along with their variants, roles
and default implementations) on the system classes.
The DSL is composed by two main parts: i) the rep-
resentation of the source code elements and ii) the
representation of all the elements (pattern, role defini-
tion and implementation) aiming to perform dynamic
interception of a wide set of events that are used to
involve, at run-time, the concrete classes in pattern
collaboration. The source code elements are modeled
using the programming language syntax of the imple-
mented system. In particular, the proposed DSL is

Reducing Static Dependences Exploiting a Declarative Design Patterns Framework

155

implemented considering Java as the target program-
ming language and it is defined according to the ab-
stract syntax of the Java language specification. The
system elements are represented by 113 meta-classes
and the relationships among them. The system el-
ement meta model also include generic types, state-
ments, blocks, exceptions and expressions.

In (Bernardi et al., 2014) the core excerpt of the
second part of the DSL meta-model is shown. It de-
scribes the overall structure of the DSL and focuses
on the main concepts used to implement idioms and
DPs (leaving base system classes oblivious and de-
coupled from pattern logic). For each idiom, or DP,
the framework performs a mix of crosscutting in-
jection, alterations and introductions on the system
classes. In the following, there are some simple code
examples describing the most important elements in
the meta-model using the proposed DSL.

The Pattern Declaration Element. Each pattern
declaration can be seen as a layer containing only the
logic related to its goals and responsibilities. Patterns
are merged with the base system (and to other layers)
using AOP injection and interception features. The
ModelRoot (that is the root element of any DSL in-
stance) contains an ordered list of patterns. In the
following example two patterns (a Decorator and an
Observer) are defined:

1 o r d e r S impleObse rve r , ∗
2 p a t t e r n D r a w a b l e s D e c o r a t o r { . . .
3 p a t t e r n D e f a u l t S u b j e c t { . . .
4 p a t t e r n S i m p l e O b s e r v e r { . . .

The ordering is fixed (using the composition order
statement) so that Identification is always merged
before any other pattern. This is important when
some alterations to the base system are not optional
(i.e., the case of dependencies that require a role to
be granted in order to apply a pattern definition).

Define, Implement Pattern and Role(s) Elements.
The DSL statement define role allows a developer to
introduce a role in the system, while the statement im-
plement pattern is used to assign a pattern to a set
of concrete classes. The block implement role as
allows to define a named implementation of a role
that can be used for subsequent registration using the
framework static entry point. In the following exam-
ple, a CacheStrategy pattern, made of two roles (i.e.
CacheKeyStrategy and CachingContext), is declared:

1 p a t t e r n C a c h e S t r a t e g y<T> {
2 d e f i n e r o l e CacheKeyS t r a t egy {
3 p u b l i c S t r i n g getCacheKey (
4 ResourceURI u r i ,
5 Map<S t r i n g , Objec t> params) ;
6 }
7 d e f i n e r o l e Cach ingContex t<T> {
8 C a c h e S t r a t e g y<T> c a c h e K e y S t r a t e g y

;
9 <T> r e q u e s t (ResourceURI u r i) ;

10 }
11 implement r o l e CacheKeySt ra tegy<

Figu re>
12 As F i g u r e C a c h e S t r a t e g y { . . . }
13 implement r o l e Cach ingContex t<

Figu re>
14 As F i g u r e C a c h i n g C o n t e x t { . . . }
15 . . .
16 }
17 FigureManager fm = new

FigureManger () ;
18 DDPF . grant (F i g u r e C a c h e S t r a t e g y .

c l a s s , fm , F i g u r e . c l a s s) ;
19 DDPF . revoke (F i g u r e C a c h e S t r a t e g y .

c l a s s , fm) ;

There are two ways to apply a pattern. The first one
exploits a static entry point of DDPF framework. It is
shown in line 18 of the above DSL excerpt: in this
case the DDPF framework is requested to bind the
pattern to a single instance. This approach allows to
apply the pattern directly to a set of objects in order
to involve them, dynamically, in a patterns collabora-
tion. When such collaboration is completed and the
instances do not need anymore to be linked together,
it can be destroyed by revoking pattern adoption as
shown in line 19. The other way requires the usage
of dynamic inheritance by implementing, behind the
scenes, the ExtensionObjectsPattern (Gamma et al.,
1995) at class load time. As a consequence, all
the classes inheriting or implementing them will be
forced to provide this additional behavior (the strat-
egy context and the actual caching key strategy). The
DSL language construct allowing to do this is the im-
plement role on statement. It allows to specify the im-
plementation of a role that must be supplied to a set
of existing classes (the role implementation is hence
anonymous). The syntax is based upon the Injec-
tionRule nested element that must be followed by the
source code of the role implementation. This can be
an existing concrete type (in this case partial override
of the concrete type is allowed) or a definition from
scratch. In both cases, the provided members should
create no conflict with the target types members (in-
cluding the ones that are weaved from other pattern
elements). In the next example, the inject statement
is used to provide an implementation (defined from

ICSOFT-PT 2016 - 11th International Conference on Software Paradigm Trends

156

scratch) of the CachingContext role introduced in the
previous example and to apply it to the a FigureMan-
ager (existing) system class:

1 implement p a t t e r n C a c h e S t r a t e g y<
Figu re> On FigureManager {

2 i n j e c t r o l e C a c h i n g C o n t e x t {
3 F i g u r e r e q u e s t (ResourceURI

u r i) { . . . }
4 }
5 }

These classes have no references to the pattern
CachingContext implementation and have no imper-
ative dependencies on Identifiable interface (since in
this example the Identification pattern is completely
orthogonal). However, studies that try to quantify the
crosscutting present in real systems, show that most of
the patterns are crosscutting and hence they depend on
each other. The implement role statement just allows
the definition of shared fields and methods to express
such an interleaving.

Shared Field and Shared Method Elements.
When a role is implemented for a set of concrete
classes, one or more methods/fields can be provided
to link the logic of concrete classes to the new be-
haviour. In the following DSL example, the UUID
can be used to build the name of AbstractFigure,
as shown in the following example, where a shared
method is nested in the role implementation statement
(a similar way can be used for a shared field):

1 i n j e c t r o l e I d e n t i f i a b l e
2 on A b s t r a c t F i g u r e + {
3 UUID u u i d ;
4 p u b l i c UUID getUUID () { . . . }
5 p u b l i c vo id setUUID (UUID u) { . . .

}
6 @Override
7 p u b l i c S t r i n g getName () {
8 r e t u r n s u p e r . getName () + ” wi th

UUID: ” + u u i d . t o S t r i n g () ;
9 }

10 }

This DSL excerpt allows to inject the getName(void)
method in the complete hierarchy rooted in the class
AbstractFigure as a part of an Identifiable role, mak-
ing it dependent on a Named role providing the get-
Name() behavior. They could be both provided by
a single pattern definition, but this is not required.
Moreover, different methods can be specified for dif-
ferent sub-classes of AbstractFigure, thus reusing the
common behaviors as much as possible without loos-
ing flexibility.

3.1 Specifying DPs by the DSL

DPs can be defined by using the DSL elements shown
in the previous examples. The following example
shows an excerpt of the defined DSL to implement
a modular Observer over Figure and View classes:

1 p a t t e r n O b s e r v e r {
2 d e f i n e r o l e S u b j e c t {
3 void a d d S u b j e c t (L i s t e n e r l) ;
4 void r e m o v e S u b j e c t (L i s t e n e r l) ;
5 void n o t i f y () ;
6 }
7 d e f i n e r o l e L i s t e n e r {
8 void u p d a t e (S u b j e c t s) ;
9 }

10

11 implement r o l e S u b j e c t On F i g u r e +
{

12 L i s t<L i s t e n e r > l i s t = new
A r r a y L i s t () ;

13 void a d d S u b j e c t (L i s t e n e r l) {
14 l i s t . add (l) ;
15 }
16 void r e m o v e S u b j e c t (L i s t e n e r l) {
17 l i s t . remove (l) ;
18 }
19 void n o t i f y () {
20 f o r (L i s t e n e r l : l i s t) l .

u p d a t e (t h i s) ;
21 }
22 }
23 implement r o l e L i s t e n e r On View+

{
24 void u p d a t e (S u b j e c t s) {
25 t a r g e t . r e f r e s h () ;
26 }
27 }
28 @Override
29 void F i g u r e . setName (S t r i n g name) {
30 t a r g e t . setName (name) ;
31 n o t i f y () ;
32 }
33 }

In this example the two observer roles (Subject and
Listener) are defined and injected respectively in all
Figure and View hierarchies using the implement role
on statement. The methods defined within role imple-
mentation can exploits the target reference in order
to access the public and protected interface of the type
the role is bound to (Figure and View in the example).
To support and evaluate the approach, the DDPF was
developed. In the prototype, aspects are generated
in order to inject members implementing the pattern
logic into marker interfaces nested in the aspect it-
self. The pattern roles are often associated to concrete
classes by means of the declare parent construct us-
ing such marker interfaces. Each pattern element can

Reducing Static Dependences Exploiting a Declarative Design Patterns Framework

157

be seen as the intermediate mapping layer of a three
layers structure in which concrete system classes are
involved in pattern relationships by an aspect that acts
as “pattern mapper”. This layer is responsible of im-
plementing a dynamic mapping of DPs and idioms to
concrete classes intercepting object creation and en-
forcing the pattern protocol for instances that need
it. Concrete classes, belonging to the ”base system”
layer, are oblivious of being involved in a pattern and
the pattern relationships can be removed simply act-
ing on the mapping layer. Commonalities among dif-
ferent pattern instances can be factorized in the pat-
tern logic pattern, while multiple relationships can be
easily resolved in the pattern mapping layer by asso-
ciating two aspects to the same concrete class.

4 CASE STUDY

To assess the effectiveness and the validity of the ap-
proach, a real world Java system, the Korsakow editor
1, was redesigned by adopting the proposed frame-
work. The assessment of the DDPF approach takes
into account the quality of the modularization in terms
of pattern logic decoupling from concrete classes.
To evaluate the improvement in the quality of the
modularization, a crosscutting comparison between
two versions of the system (original and refactored
with ddpf), has been performed. In order to quan-
tify scattering and tangling of DPs code within system
classes, DOF and DOS metrics (Eaddy et al., 2007)
are used; this allowed to compare crosscutting across
two different systems. Moreover, in order to evalu-
ate the impact of a requirement change, a composite
Macro Command was introduced mixing Command
pattern hierarchy implementation with a Composite
pattern. Several metrics are evaluated (the number
of #changed LOC and modules and DOS/DOF varia-
tion).

4.1 Command Pattern Analysis

The analyzed system is editor to build layout support-
ing several languages. It has a big command hierarchy
interleaved with several other concerns (persistence,
parsing, text manipulation just to name few).

The Korsakow command hierarchy is rooted in a
ICommand interface. This interface can be refactored
easily as the DDPF role and this allow to remove sev-
eral LOC from the entire hierarchy as shown in the
quantitative analyses. Each editor instance is asso-
ciated to a set of Commands interleaved by a Fac-
tory and exposed to the IDE by means of an action
1https://github.com/korsakow/korsakow-editor

framework. As shown in the figure, the command
processors are created by the main instance and fol-
lows the request/response model. Each factory is also
responsible to inject its context object to the set of
its commands. Most commands work on document
model (not shown in the figure). Document model is
centered on composites, as can be simple items (of
several kind of items, e.g. Keyword, Media, Pattern,
Predicate, Resource, Text, Sound) associated to a sin-
gle file. The OOP version of the Command pattern is
heavily interleaved with several secondary concerns
as stated by requirements. In each Command there are
explicit fragments linking it to security, logging and
tracing concerns (increasing scattering and tangling).
In the DDPF version the entire command hierarchy
has been implemented using role assignment and role
implementation constructs. This implements the Ex-
tensionObjectsPattern inside an abstract aspect and
adds the ”Command” role extension to all the class
hierarchy. Analyzing the system code, we found that,
with respect to the plain OOP version, DDPF with the
adoption of ExtensionObjectsPattern allowed to mod-
ularize several concerns (making system classes not
aware of being linked to the pattern) with comparable
level to the marker interface implementation having
the additional advantage of being totally dynamic. In
the refactored system every command class can be-
come a command associating it a specific logic that
exploits its internal state.

4.2 Discussion

The modulariry assessment for DDPF and OOP ver-
sions has been perfomed by calculating: (i) the ra-
tio of lines of source code related to DP code in each
class or module with respect to the total LOC of the
same class or module, and (ii) the Degree of Scat-
tering (DOS) and Degree of Focus (DOF) metrics
(Eaddy et al., 2007), for each module and pattern.The
section also provides quantitative information about:
(i) size and dimension ; (ii) code clones and (iii) pat-
tern code presence and distribution.

Results are reported in figure 1. In particular, in
Figure 1 the LOC ratio (%LOC) of each design pat-
tern concern over the cloned LOC ratio are compared
for each module in both DDPF (AOP) and OOP ver-
sions for the command hierarchy. The results show
that the ratio of the average cloned LOCs in the OOP
implementation is significantly greater than the DDPF
system. In this case the DDPF usage improved the
maintainability decreasing the probability of intro-
ducing bugs during maintenance. This is confirmed
by looking at the Degree of Focus (DOF) of the mod-
ules reported (only for Items implementing Compos-

ICSOFT-PT 2016 - 11th International Conference on Software Paradigm Trends

158

Figure 1: LOC/cloned-LOC ratio by module for OOP and DDPF (left) - Affected LOC/modules for Commands Hierarchy
and Macro Command (on the right).

ite and Command hierarchy) in Figure 1. Modules of
the OOP version have a worse DOF since they explic-
itly implement design patterns protocols in addition to
other secondary concerns while in DPMF system the
DP logic is better modularized in the aspects that are
derived by the framework from the DSL statements.

4.3 Macro Commands

This section studies how changes to a pattern prop-
agates to base system classes and requires a source
code modification. Such requirement change impacts
very differently on OOP and DDPF versions. In the
OOP version, the needed changes is much higher than
the DDPF version. In the DDPF system concrete
commands were not impacted by the command aggre-
gation. The only required changes are related to the
DSL statements and to the addition of new modules
for additional commands. DOS and DOF were evalu-
ated after the maintenance task and provide evidence
that the resulting modularity for the DDPF system in-
creases over the OOP version.

4.4 Performance Evaluation

The case study also verified that the AOP-based archi-
tecture does not have a negative run-time performance
impact (due to aspect runtime interception overhead).
With this aim, the AOP system was instrumented in
order to gather execution times of the aspect over-
heads. The worst average times in several different
categories of pointcut expressions, as automatically
generated by DSL statements (i.e. object creation/de-
struction, interception of pattern operations), were se-
lected and the time spent in the aspect runtime to jump
to pattern logic was collected. We found that time
needed to handle creation/destruction of object is usu-
ally greater than the time required to intercept opera-
tions. In pointcut expressions related to the design
patterns operations the worst overheads due to aspect
interception mechanism are resulted always less than

5% of the pattern collaboration times.This shows the
suitability of performance overhead introduced by the
aspect declarations generated from DSL statements.

5 CONCLUSIONS AND FUTURE
WORKS

AOSD and MDSD features have been used to develop
a design pattern adoption approach and a supporting
framework allowing:
• the declarative specification of DPs by a DSL;

• an AOP based implementation of the specified
DPs.

The goal is to improve the modularity, the internal
code quality, and the flexibility of DPs. DPs are spec-
ified by a DSL based on a meta-model where a DP
is seen and structured as an (ordered) sequence of
named design pattern elements. An improved proto-
type of the framework, adopting an AOP version of
the ExtensionObjectsPattern, was used in a case study
to assess its effectiveness and efficiency. The results
from the case study showed that the AOP implemen-
tation of DPs significantly improved the modularity
of the system with respect to traditional OO version.
Future work will consider improvements of both the
prototype framework and DSL.

REFERENCES

Baca, P. and Vranic, V. (2011). Replacing object-oriented
design patterns with intrinsic aspect-oriented design
patterns. In Eastern European Regional Confer-
ence on the Engineering of Computer Based Sys-
tems, ECBS-EERC ’11, pages 19–26, Washington,
DC, USA. IEEE Computer Society.

Bernardi, M. L., Cimitile, M., and Distante, D. (2013a).
Web applications design recovery and evolution with
RE-UWA. Journal of Software: Evolution and Pro-
cess, 25(8):789–814.

Reducing Static Dependences Exploiting a Declarative Design Patterns Framework

159

Bernardi, M. L., Cimitile, M., and Lucca, G. A. D. (2013b).
An aspect oriented framework for flexible design
pattern-based development. In ICSOFT 2013 - Inter-
national Joint Conference on Software Technologies,
Reykjavı́k, Iceland, 29-31 July, 2013, pages 528–535.

Bernardi, M. L., Cimitile, M., and Lucca, G. A. D. (2013c).
A model-driven graph-matching approach for design
pattern detection. In 20th Working Conference on Re-
verse Engineering, WCRE 2013, Koblenz, Germany,
October 14-17, 2013, pages 172–181.

Bernardi, M. L., Cimitile, M., and Lucca, G. A. D. (2014).
Declarative design pattern-based development using
aspect oriented programming. In Symposium on Ap-
plied Computing, SAC 2014, Gyeongju, Republic of
Korea - March 24 - 28, 2014, pages 1625–1630.

Bernardi, M. L., Cimitile, M., and Lucca, G. A. D. (2016).
Mining static and dynamic crosscutting concerns: a
role-based approach. Journal of Software: Evolution
and Process, 28(5):306–339.

Boussaidi, G. E. and Mili, H. (2007). A model-driven
framework for representing and applying design pat-
terns. In Computer Software and Applications Con-
ference, 2007., volume 1, pages 97–100.

Eaddy, M., Aho, A., and Murphy, G. C. (2007). Identify-
ing, assigning, and quantifying crosscutting concerns.
In International Workshop on Assessment of Contem-
porary Modularization Techniques, ACoM ’07, pages
2–, Washington, DC, USA. IEEE Computer Society.

Eden, A. H. (2001). Formal specification of object-oriented
design. In International Conference on Multidis-
ciplinary Design in Engineering CSME-MDE 2001,
pages 21–22.

Elaasar, M., Briand, L. C., and Labiche, Y. (2006). A
metamodeling approach to pattern specification. In
International Conference on Model Driven Engineer-
ing Languages and Systems, MoDELS’06, pages 484–
498, Berlin, Heidelberg. Springer-Verlag.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1995). Design Patterns: Elements of Reusable
Object-oriented Software. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA.

Giunta, R., Pappalardo, G., and Tramontana, E. (2012).
Aodp: Refactoring code to provide advanced aspect-
oriented modularization of design patterns. In ACM
Symposium on Applied Computing, SAC ’12, pages
1243–1250, New York, NY, USA. ACM.

Hannemann, J. and Kiczales, G. (2002). Design pattern
implementation in java and aspectj. In ACM SIG-
PLAN Conference on Object-oriented Programming,
Systems, Languages, and Applications, OOPSLA ’02,
pages 161–173, New York, NY, USA. ACM.

Hannemann, J., K. G. (2001). Overcoming the prevalent
decomposition of legacy code. In Workshop on Ad-
vanced Separation of Concerns at the International
Conference on Software Engineering, ICSE.

Soundarajan, N. and Hallstrom, J. O. (2004). Responsibili-
ties and rewards: specifying design patterns. In Inter-
national Conference on Software Engineering, 2004.,
pages 666–675.

Zdun, U. (2004). Pattern language for the design of aspect
languages and aspect composition frameworks. IEE
Proceedings - Software, 151(2):67–83.

ICSOFT-PT 2016 - 11th International Conference on Software Paradigm Trends

160

