
New Co-design Methodology for Real-time Embedded Systems

Ines Ghribi1,2, Riadh Ben Abdallah1, Mohamed Khalgui1 and Marco Platzner3
1LISI Laboratory, INSAT, University of Carthage, Tunis, Tunisia

2Department of Computing science, University of Tunis el Manar, Tunis, Tunisia
3Department of Computing science, University of Paderborn, Paderborn, Germany

Keywords: Co-design Methodology, Real-time Embedded Systems, Partitioning, Probabilistic Software.

Abstract: Over the years we are witnessing and ever increasing demand for functionality enhancements in the embedded

real-time systems. Along with functionalities, the design itself grows more complex. Posed constraints as

time, space bounds and energy consumption also require proper handling. In order to enhance the behaviour

of such systems, we have developed the I-codesign, a methodology for modelling, partitioning and simulating

embedded real-time systems. The tasks in this methodology are described with a probabilistic manner and

characterized with real-time parameters. A new partitioning technique aims at each of its three phases to

respect firstly the inclusion/exclusion parameters, secondly energy and memory constraints and finally

verifies real-time constraints. The output of I-codesign is an embedded controller that supervises the behaviour

of the executing system and schedule the implementation /configurations of the software.

1 INTRODUCTION

The complexity of designing embedded systems is

constantly increasing which motivates the need for

using more efficient tools and design methodologies.

Designing at a higher level of abstraction reduces

the number of components with which the designer

has to deal, and thus increasing design productivity.

This paradigm shift in design requires methodologies

and automated tools to support design at higher levels

abstractions (Pillai and Shin, 2001).

Hardware/software co-design is the technique of

designing concurrent hardware and software

components of an embedded system (Teich, 2012;

Cheng et al., 2011). Generally, hardware/software co-

design starts with specification then modeling the

system behavior at the system level (Wainer, 2013).

The hardware/software partitioning step follows. This

step is a combinational optimization problem that

assigns the system functions to the target architecture

on the software and hardware domain under the

condition of meeting the design constraints (Tang et

al., 2015). This is a key task in the system level

design, because the decisions made during this step

directly impact the performance and cost of the final

implementation. One of the main performances issues

in embedded systems design is to guarantee the

results within a given time (Banerjee et al.,2015;

Joshi and Gurumurthy, 2014). Such systems, which

have to fulfill posed constraints, are called realtime

systems (Pillai and Kang, 2001; Nikolic et al., 2011).

In these systems, time at which results of a

computation are available is crucial. Another

challenge in designing embedded systems is dealing

with reconfigurablility, since they have the apability

to modify their functionalities, to add or to remove

components and to modify interconnections among

them. The basic idea behind these systems is to have

a system that autonomously modifies its

functionalities according to the changing application

inputs (Wang et al., 2009). In (Ghribi et al., 2015), we

present a new technique for modeling and partitioning

of reconfigurable embedded systems. The software

model is composed of probabilistic tasks where each

task executes a set of elementary functions. A

directed acyclic graph (DAG) models each task where

the vertices are functions connected with edges. The

edges are valued with both probability values and

communication costs. The probability on the edges

gives an estimation of the execution progress of the

tasks. Hence, the most probabilistic execution

scenarios are placed together on the same processing

unit (PE) during the partitioning. Hence, the traffic

circulation on the interconnection network is

minimized. The functions could be related with

inclusion/exclusion constraints. A three phases

Ghribi, I., Abdallah, R., Khalgui, M. and Platzner, M.
New Co-design Methodology for Real-time Embedded Systems.
DOI: 10.5220/0006010703530364
In Proceedings of the 11th International Joint Conference on Software Technologies (ICSOFT 2016) - Volume 1: ICSOFT-EA, pages 353-364
ISBN: 978-989-758-194-6
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

353

partitioning approach for the proposed probabilistic

software model is also proposed. A functional

partitioning step deals with hard constraints and aims

to optimize the number of processors by evaluating

inclusion/exclusion constraints. The second step

generates initial partitions or clusters by evaluating

the most probabilistic executions of the software

model. Finally, generated partitions are optimized

with iterative techniques by evaluating the

combination of their communication costs and their

probability values. A reduction of the communication

costs and the traffic circulation on the network was

proved. In the present work, we introduce a new co-

design methodology using the described modeling

and partitioning techniques called”I-Codesign”. It is

divided into four major tasks: 1) writing the system

specification according to the new probabilistic

specification model; 2) partitioning the task functions

into clusters under several execution constraints; 3)

Checking real-time, memory and energy constraints

at each partitioning phase; 4) Generation of a

controller matrix that supervises, synchronizes and

handles the reconfiguration of the software and

hardware components at run-time. A reconfiguration

is assumed to be any addition/removal of a task set,

or the modification of the execution path at the task

level. We developed a framework tool to walk

through our methodology steps. The input of the tool

is a software specification according to I-codesign

plus a hardware description of a set of processors

equipped with a quantified amount of memory and

battery energy. While applying the partitioning

approach, the memory and energy constraints are

verified firstly at each iteration followed by the real-

time constraints according to the earliest deadline first

algorithm. The output of this tool is a generated

matrix used by the controller in order to associate

each task to a PE according to I-codesign for each

implementation. A new design strategy is defined

where each implementation scenario is treated

separately and placed into the controller matrix.

The current paper is organized as follows: the next

Section describes useful background. Section 3

presents the system model and the used notations in

this paper. In Section 4 a new co-design methodology

is introduced. Section 5 exposes a case study to

evaluate our methodology. Simulations and results

are given in Section 6 and finally we conclude in

section 7.

2 STATE OF THE ART

Software design and hardware design are required to

be integrated closely and coordinated with each other.

This leads to the development of a new design theory:

hardware and software co-design. The studies on

hardware/software co-design began in the early

1990s, the idea is formally proposed in the first

International Workshop on Hardware/Software

Codesign (CODES) held in 1992. SOS system

(Synthesis of Systems), developed by Prakash and

Parker from the University of Southern California, is

the first hardware and software co-design system.

The system can schedule tasks on multiple

processors, but it was slow and not suitable for large-

scale systems. The COSYMA (Co-synthesis for

Embedded Architecture) system (Ernst et al., 1996),

developed by the German Technical university of

Branunshweig, is mainly restricted to a single

processor and a single ASIC system. Its partition

method is mainly for software to optimize the

calculation through co-processors. In 1997, Eles

proposed to partition the hardware and software parts

by using simulated annealing and tabu search

algorithm. He wrote a model called condition task

graph using list scheduling algorithm to achieve the

structure for each processing unit to form the

scheduling table and as a basis for selection of

software and hardware. Camposano and Brayton have

been the first to introduce a new methodology for

defining Hardware (HW) and Software (SW) side of

a system jointly (Camposano and Wilberg, 1996).

They developed a partitioner driven by the closeness

metrics, to provide the designer with a measure on

how efficient a solution could be. This technique was

further improved with a procedural partitioning

(Vahid and Gajski, 1995). Earlier work in hardware-

software co-design mainly focused on hardware-

software partitioning. Based on the partitioning

algorithm, exact and heuristic solutions can be

differentiated (Shi et al., 2012). In the literature, the

majority of partitioning algorithms are heuristics.

This is due to the fact that partitioning is a hard

problem and therefore, exact algorithms tend to be

quite slow for bigger inputs. More specifically, most

formulations of the partitioning problem are NP hard,

and the exact algorithms for them have exponential

run-time. Many researchers have applied general-

purpose heuristics to hardware/ software partitioning.

In particular, genetic algorithms have been

extensively used as well as simulated annealing

(Janakiraman and Kumar. 2014; Poornima and

Kumar, 2008). Other less popular heuristics in this

group are tabu search and greedy algorithms (Liu et

al., 2012). These methods tend to be used with data

oriented applications. In more recent work, Banerjee

and Bozorgzadeh et al. in (Banerjee et al., 2005) have

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

354

presented a placement-aware method for

simultaneous partitioning and scheduling of task

graph. They also have considered some

characteristics such as configuration prefetching and

placement constraints. In the current paper, we used a

combination of well-known heuristics that are usually

applied to partitioning problems. First, the

hierarchical clustering, a constructive heuristic that

builds a partitioning in bottom-up fashion by

grouping nodes using closeness-functions to estimate

the costs, is used. Also, Kernighan-lin heuristic, an

iterative heuristic that was substantially improved by

Fiduccia and Mattheyses and later by many others, is

applied (Fiduccia and Mattheyes, 1982). It starts from

an arbitrary partition and swaps pairs of nodes in

order to improve the cost of the partition. Gain

calculation of moving a node x from a cluster to

another using a metric is calculated according to the

following formula: Gx = Ex - Ix where: Ex is the cost

of edges connecting a node x with other clusters and

Ix is the cost of edges connecting a node x within its

own cluster. In the current work the cost of the edges

is Probability × communication cost. The advantage

of this heuristics is the rapidity and the capability of

processing large amount of data.

2.1 Contribution

In the present work, we introduce a new co-design

approach based on constructive and iterative

partitioning phases. Our design flow considers

multiple constraints such as inclusion/exclusion,

spatial and temporal, real time and energy. Using

probabilistic specification to describe tasks firing

with the inclusion/exclusion, these constraints help

realize an effective partitioning in term of traffic

circulation and communication costs. Energy and

memory constraints are evaluated also before

verifying the real-time constraints by feasibility

analysis according to a specific scheduling algorithm.

The reconfigurable aspect is treated by generating a

controller matrix which is responsible of

adding/removing software task sets or modifying

their execution paths on the task’s DAG. We also

developed a software tool implementing the proposed

methodology in order to test its effectiveness.

3 FORMALIZATION

We present in this section the formal definitions and

notations of the system.

3.1 System Model

The system model is based on processing units PEs

linked by interconnects. We assume that all the

processors are identical in term of processing power,

memory size and energy consumption relationship

aspects. Each processor PEi is characterized by its

operating voltage /frequency ranges, its battery load

and its internal memory.

Definition 1 (processing unit PE).

A processing unit PE is formalized by quintuplet

(PID, f, V, Weightmax, BL) where: (i) PID: processor

identifier (ii) f: The range of frequency points, (iii) V:

The range of voltage points, (iv) Weightmax: The

maximum load in term of memory space that P could

support, (v) BL: The available battery charge.

The energy consumption of the PE if executed at

frequency f is calculated as: EPE = Pf . PEtime where:

 Pf : is the power consumption at frequency f.

Definition 2 (interconnect).

An interconnect L is a communication link between

two PEs. It is characterized with the pair (LID, Th)

where: (i) LID: The link identifier, (ii) Th: The

bandwidth of L.

In (I.Ghribi et al., 2015), we define a function F as

the basic entity in the software model to execute

elementary operations.

Definition 3 (Function).

A function F is a quadruplet (ci, pi, di, Si) where: (i)

ci: The worst case execution time of F, (ii) pi: The

period of F, (iii) di: The relative deadline of F, (iv)

Si: Describes the memory size occupied by F.

Each function F in the specification can be related

to its predecessor Fp with an inclusion or exclusion

constraint. The exclusion means that F has not to be

executed on the same processor with Fp while the

inclusion means that F and Fp have to be placed on

the same PE. This constraint is modeled in the task

representation by marking the mathematical symbol

 on F in case of inclusion and in case of

exclusion. We formalize the exclusion/inclusion

constraints as follows:

 Exclu(F) groups the set of functions that have not

to be executed on the same processor and at the

same time with the function F. This constraint is

modeled in the task representation by marking the

mathematical symbol on the function F,

 Inclu(F) groups the set of functions that have to be

executed on the same processor and at the same

New Co-design Methodology for Real-time Embedded Systems

355

time with F. This constraint is modeled by

marking the mathematical symbol on F.

The processor and links affectation with functions are

expressed as follows.

 Assign-P(Pi) groups the set of functions affected

to the processor Pi,

 Assign-L(L) groups the set of communications

affected to the link L.

A configuration is a path of k function that

executes successively. These functions are related

with precedence constraints. The configuration is

defined as follows.

Definition 4 (Configuration).

A Configuration Conf is a set of functions. It is

formalized by the triplet (CID, Cci, Dci) where: (i)

CID: The configuration identifier, (ii) Cci: The worst

case execution time of Conf, Cci =
k

ci
1

 ci where k

is the number of functions on the path, (iii) Dci: The

relative deadline of Conf, which is the deadline of the

leaf node function.

We assume a given set of m tasks {T1 ... Tm}.

Each task is represented with a DAG G= {V,E} built

from the system specifications, where the nodes are

functions and the vertices are connections

characterized with both the communication cost and

the probability of execution of the function connected

to the vertices. Each path in the DAG represents a

configuration that starts from the root node function

and ending in one leaf node function. At each

iteration, a configuration path is specified and

executed. A task is defined as follows.

Definition 5 (Task).

A task T is a set of configurations. It is a doublet (TID,

DAG) where: (i) TID: the task identifier, (ii) DAG: is

the Directed Acyclic Graph that models the task. All

tasks are assumed to be independent.

Fig.1 shows an example of a task T with

inclusion/exclusion, probability and communication

costs parameters. It represents an example of a

configuration and its path in the DAG of T.

Figure 1: Software task with a specified configuration path.

The software specification describes different

implementation scenarios. At each iteration an

implementation is designed to run on PEs. Each

implementation includes a certain number of software

tasks and it is defined as follows.

Definition 6 (Implementation).

An Implementation I is a set of tasks. It is formalized

by the simplet IID where: (i) IID: is the identifier of

the implementation.

Hence, we can define the system to be a set of

implementations, PEs and interconnects as follows.

Definition 7 (System).

A System Sys= {Implementation, PE, Interconnect}

A reconfiguration scenario can be related to the

current implementation of the system or to a

configuration path in one of the implementation tasks.

Hence, during execution another implementation

could be loaded or another configuration path could

be initiated. We define a reconfiguration scenario R

as follows.

Definition 8 (reconfiguration R).

A reconfiguration R is a triplet (RID, event, target)

where: (i) RID: The identifier of the reconfiguration

R, (ii) event: The event that induces R, (iii) target:

Specifies which implementation/configuration is

concerned with the reconfiguration.

3.2 Problem Statement

We consider the partitioning of a task set composed

of n tasks {T1,...,Tn} on a set of m PEs {PE1,...,PEm}.

The aim of our methodology is the following:

(1) Respect the inclusion/exclusion constraints

 Fk, Fh Assign-P(Pi) , Fk Exclu (Fh).

 Fk, Fh / Fk Inclu(Fh) then Fk and Fh
Assign-P(Pi).

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

356

(2) Respect the energy and the memory constraints

 FiAssign-P(PEi),Fi
Si Weightmax.

 Fi Assign-P(PEi), EPEi BL.

(3) Respect real-time constraints:

 The utilization of a function Fi is ui = ci/pi. Ui
tot

is the total utilization of the k function on a

processor PEi , that is, Ui
tot=

k

1

ci/pi 1.

 The communication delays resulting of a

function Fk on PEi communicating with a

function Fh placed on PEj must not result in

functions missing their deadlines.

(4) Evaluate the impact of the design constraints on

the communication costs, the energy consumption

and the number of pre-emption.

4 I-CODESIGN METHODOLOGY

The goal of the I-codesign methodology is to achieve

a concurrent design between the probabilistic

software model and the hardware architecture in a

manner that fulfils all the system requirements and

respect the design constraints. I-codesign is a set of

models and transformations between models. All the

models are written in a system-level design language.

The transformations are a series of well-defined steps

through which the initial specification is gradually

mapped into a detailed implementation description.

After each design step, resulting models are analysed

to evaluate design metrics such as energy inclusion/

exclusion and communication costs. The main aim of

our co-design methodology is to map software

functions while respecting spatial and temporal

constraints for each implementation/configuration of

the system. Fig.2 shows the flow diagram of I-

Codesign methodology.

4.1 Hw/Sw Partitioning

We define the partitioning problem in a manner that

satisfies software constraints (spatial and temporal

constraints). At each phase of the partitioning, we

apply the appropriate rules first. Second, we verify

the memory and energy constraints jointly. When

validated, the feasibility analysis is applied.

Figure 2: I-Codesign state diagram.

4.1.1 Real-time Functional Partitioning

Evaluates the inclusion/exclusion constraints

between task functions and creates clusters depending

on this constraint. Couples that are concerned with

inclusion or exclusion constraints are placed in either

the same or different clusters. Once all the inclusions

and exclusions are evaluated, a feasibility analysis is

performed. If all clustered functions sets on the

created clusters are schedulable on one of the

available processors then the schedulability test is

validated. Otherwise, the functional partitioning is

applied again to create new clusters with schedulable

function sets. Since any inclusion/exclusion

New Co-design Methodology for Real-time Embedded Systems

357

constraint is hard, the clustered tasks are locked and

cannot be moved any more. The pseudo-code below

describes this partitioning phase.

Procedure Functional Partitioning {}

For each Function F of T

ExtractInclusion/Exclusion (F)

if (inclusion detected)

Cluster F with its predecessor

Else if (exclusion detected)

do not cluster F with its predecessor

End If

Lock (F)

lock (F’s predecessor)

End For

Generate Functional Graph

End Procedure

4.1.2 Real-time Hierarchical Partitioning

Clusters the remaining functions that have no

inclusion/exclusion constraints. The functions are

evaluated by their connecting edge’s probabilities and

high probability values are treated first. The available

memory space is evaluated at each iteration. Once all

the remaining functions are placed into clusters a

feasibility analysis is performed. If all the functions

sets on the created clusters are schedulable on one of

the available processors then the schedulability test is

validated. Otherwise, the hierarchical clustering is

applied again to generate clusters with schedulable

function sets. The pseudo-code below describes this

partitioning phase.

Procedure Hierarchical-partition{}

For each Function F non clustered

ExtractHighestEdgeProbability(F)

Choose the Edge with the Highest

Probability

Cluster (F, Function Connected To

Chosen Edge)

End For

Generate Initial Clusters

End Procedure

4.1.3 Real-time Kernighan-Lin

Optimizes the generated clusters. This phase

evaluates both probability and communication cost

on the edges connecting functions by gain

calculation. If the gain is positive, then the function is

moved to another cluster if its energy consumption on

the other cluster is less or equal to its energy

consumption on the original cluster. Otherwise it is

left on the original cluster. The pseudo code of the

kernighan-lin optimization is described below.

Procedure Kernighan-Lin{}

Choose an Unlocked Function F In

Partition1

calculate The Gain G(Partition1,

Partition2)

\If {$G \geq 0 $}

Move F to Partition2

End if

Generate Optimized Clusters

End Procedure

4.1.4 Feasibility Analysis

The feasibility test at each partitioning phase verifies

feasibility on the processors and on communication

links: (i) it verifies first whether the created clusters

are schedulable. Since we are using EDF algorithm

the feasibility test verifies on each PE

{PE1,...,PEm} the following inequation: U = ∑ci/pi

 1 where ci is the execution time, pi is the period and

N is the number of functions placed on PEi. (ii) The

second test on the communication links verifies

whether or not the communications delays between

related functions affected to different PEs results in

functions missing their deadlines.

4.2 Multiprocessor Scheduling with
Precedence Constraint

The software specification is a set of independent

tasks modeled with a directed acyclic graph where

edges are functions and vertices are data

dependencies. Hence, a function is ready to execute

when all its predecessors are complete. We consider

the scheduling of a set of functions with simultaneous

release times, constrained deadlines and simple

precedence. The policy proposed below is derived

from (Forget et al., 2010). A set of simple precedence

is formalized by a relation →. Fi → Fj states that Fi

must execute before Fj. For a precise explanation of

the precedence problem the following assumptions

are considered:

 Pred(Fi)= { Fj | (Fj → Fi) }

 succ(Fi)= { Fj | (Fi,Fj) → g

The precedence constraint of the set of functions can

be encoded as follows where d*
i is the adjusted

deadline of a function Fi:

d*
i = min(di; minFj succ(Fi)(d*

i-cj)) (1)

Theorem 1. Let ₰= {Fi} a set of independent

functions and → ₰× ₰. Let ₰*= { F*
i} be a set of

independent functions such that d*
i is given by the

formula (1). We have₰ feasible if only ₰* is feasible.

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

358

The scheduling algorithm uses the adjusted

parameters to perform the assignment of system

applications to the software or hardware domain.

Hence, the scheduling policy resides in adjusting the

function deadlines according to the equation (1).

4.3 Controller Generation

A reconfiguration can be specified for a software

implementation/configuration. We propose a

controller that involves: (i) observation mechanisms

of the system characteristics (energy, quality of

service ..) (ii) reconfiguration mechanisms that acts

on software tasks. The controller acts following

internal or external events that induce configurations.

A reconfiguration can add/remove implementation or

change the configuration path of a task that belongs

to the current implementation. Fig.3 shows the class

diagram of the controller.

Figure 3: Class diagram of the controller.

 The controller class supervises the system

environment. It receives internal or external events

like user requests or peripheral entries and initiates

necessary reconfiguration. In fact, the controller is

responsible for loading the initial configuration of the

system, switching modes by moving from one

implementation to another and modifying the task’s

paths using the reconfiguration manager. A

configuration matrix is defined in order to associate

each implementation mode with its mapping on the

hardware units. The columns of the matrix are tasks

and associating functions, matrix lines are the

different system implementations. The intersection

between lines and columns defines a target processor

ID. For each implementation/configuration of the

system, we create an entry in the controller matrix

after applying the I-codesign methodology.

5 CASE STUDY

We propose in this section to apply the I-codesign

methodology to a software specification composed of

three implementations: S1 = {T1, T3}, S2 = {T1, T3,

T4} S3 = {T2, T3, T4}.

Motivational Example: We propose to apply the

Icodesign techniques to S1. It is composed of two

independent tasks T1= {F11, F12, F13, F14, F15, F16} and

T3= {F31, F32, F33, F34, F35, F36, F37, F38}. T1 and T3

are represented respectively in Fig.4 and Fig.5.

Figure 4: Software task T1.

Figure 5: Software task T3.

The scheduling properties of the tasks T1 and T3 are

listed respectively in Table 1 and Table 2.

Table 1: Scheduling parameters of T1.

Function Execution

Time

Deadline Period Si

F11 5 120 150 5

F12 3 120 200 7

F13 2 90 210 2

F14 6 110 150 6

F15 2 120 190 3

F16 2 200 250 5

This software model will be affected to a hardware

architecture composed of three homogeneous

processors PE1, PE2 and PE3. The hardware units have

the characteristics shown in table 3. Each PE is

running with its highest frequency f, voltage V and its

memory size Si. We present in this section the results

of I-codesign on S1. The scheduling algorithm is EDF

(Earliest Deadline First).

New Co-design Methodology for Real-time Embedded Systems

359

Table 2: Scheduling parameters of T3.

Function Execution

time

Deadline Period Si

F31 3 60 150 4

F32 3 80 200 2

F33 5 90 210 5

F34 5 110 180 6

F35 5 120 190 3

F36 4 160 210 1

F37 1 180 220 5

F38 4 190 260 4

Table 3: Processor characteristics.

PE F(Mhz) V(V) Weight

max

Battery

(watt)

PE1 250/150 1.2/095 40 10

PE2 300/200 1.3/1.08 40 10

PE3 400/120 1.7/0.85 40 10

5.1 Functional Partitioning

The first step is to evaluate the inclusion/exclusion

constraints and generate initial clusters with locked

functions. These clusters will hold the functions

which respect the inclusion/exclusion constraints.

The functional partitioning creates two clusters. On

the first cluster C1, F11 and F12 of T1 are affected with

F36 and F37 of T3. F14, F31, F33 and F34 are affected to

the second cluster C2. The functional graph is

constructed for each task. Fig.6 represents the

functional graphs of T1 and T3 respectively. We affect

C1to PE1’s parameters value and C2 to PE2’s

parameters value. Then, we verify the energy and

memory constrains first then we check the real-time

constraints. The consumed energy on PE1 is E=1.44

 10 and the consumed memory space is Mem=2740

on PE1. On PE2, E=4_10 and Mem=12 40. The

feasibility analysis is verified easily using the

CHEDDAR tool (Singhoff et al., 2004) for instance.

In order to verify that the communication delays do

not result in functions missing their deadlines we

Figure 6: Functional graph respectively of T1 and T3.

create message dependencies between functions and

we affect each message with the communication cost

between the corresponding functions using

CHEDDAR tool. The Utilization Factor is U=0.12 on

PE1 and U=0.2 on PE2. Hence, the feasibility test is

valid.

5.2 Hierarchical Partitioning

The hierarchical clustering aims to generate initial

clusters by evaluating the probability as a metric. We

dispose of a functional graph generated by the

functional partitioning phase. We extract the highest

edge’s probability for each non clustered function Fj

and cluster it with its related clustered functions.

Hence, the link Lij between Fi and Fj communicates

only the less probabilistic traffic. The generated

clusters are shown in Fig.7.

Figure 7: Resulted clusters respectively of T1 and T3.

Then, energy and memory constraints are checked. The

used memory size Mem=35 40 and E=3.2 10 on PE1.

On PE2, Mem=23 and E=8.4 10. The real-time

constraints are verified. The Utilization Factor is U=0.18 on

PE1 and U=0.29 on PE2. Hence, the feasibility test is valid.

5.3 Kernighan-Lin Optimization

Kernighan-Lin optimizes the partitions based on

some metrics. In our partitioning process we use the

combination of two metrics: the probability on the

connecting edges and the communication cost. The

resulted clusters after applying the Kernighan-Lin

optimization are represented in Fig.8. After applying

the Kernighan-Lin algorithm, we notice that F32 has

been moved from the cluster C2 to C1. The available

memory on PE1 is 5 and the memory space of F32 is

2, the new energy consumption on PE1 is E=4.1. The

utilization is measured with cheddar tool minding the

Figure 8: Resulted clusters respectively of T1 and T3.

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

360

communication delays on the links: U =0.22. All the

I-codesign constraints are valid. Fig.8 shows the final

clusters C1 and C2 where C1 will be placed on PE1

and C2 on PE2.

5.4 Scheduling Simulation Results

The scheduler receives the partitioning results as well

as the real-time characteristics of each function. Its

job is to determine which function executes on a

processor at a given time. We start with adjusting the

deadlines of the set of functions composing T1 and

T3. Table 5.6 and 5.7 present the adjusted values after

applying the precedence constraint formula (1).

Table 4: Adjusted scheduling parameters of T1.

Function
Execution

Time

Deadline

di
Period di

*

F11 5 120 150 88

F12 3 120 200 104

F13 2 90 210 90

F14 6 110 180 110

F15 2 120 190 120

F16 2 190 250 190

Table 5: Adjusted scheduling parameters of T3.

Function
Execution

time

Deadline

di
Period Di

*

F31 3 60 150 60

F32 3 80 200 80

F33 5 90 210 90

F34 5 110 180 110

F35 5 120 190 120

F36 4 160 210 115

F37 1 180 220 180

F38 4 190 260 190

5.5 Controller Generation

The application controller use a matrix where each

line contains the functions of tasks and the columns

are the different system implementations. In this case,

we have three implementations S1, S2 and S3. Table 6

shows the affectation of the task T1 in the controller

matrix for each implementation scenario.

Table 6: Matrix entry for task T1.

5.6 Evaluation

In this section, we evaluate the impact of the

probabilistic aspect of the software tasks on the

schedulability factors. We eliminate the probability

on the edges and apply the partitioning based only on

the communication costs. We schedule then the

generated clusters. The tests are performed using

CHEDDAR environment. Table 7 presents a

comparison of some schedulability parameters

between the partitioning results using the probability

and the communication costs (CC) in one hand and

the communication costs only on the other hand. It is

clear that the probability enhances the schedulability

quality along with the optimization of the traffic

circulation.

Table 7: Comparison of the scheduling parameters with and

without probabilistic estimations.

6 SIMULATIONS

We have developed a tool environment to evaluate

the potential communication costs, energy savings

and execution costs for our methodology. The

following subsections describe our tool and the

assumptions made in its design. We show later some

simulations results.

6.1 Simulation Methodology

Using Java we developed a tool environment that

allows the partitioning and scheduling of the defined

software specification under energy, memory and

real-time constraints. The tool takes as an input

several sets of tasks characterized by different

parameters such as the probability estimations, the

communication costs and the exclusion/inclusion

between functions. The output is the controller

matrix. The parameters supplied to the simulator

include real time parameters for the functions at each

invocation. The simulation assumes that a constant

amount of energy is required for each cycle of

operation at a given voltage on a processor. The

hardware units are characterized with their memory

size, their battery charge, a list of frequencies and

voltage available and the throughput of

communication links that connects PEs.

New Co-design Methodology for Real-time Embedded Systems

361

Figure 9: Communication costs with 10, 20 and 40 tasks.

Figure 10: Energy consumption with 10, 20, and 40 tasks.

Figure 11: Number of preemption with 10, 20 and 40 tasks.

6.2 Simulation Results

We have performed several simulations of the

Icodesign methodology to determine the system

parameters that affect the communication costs, the

energy consumption and the number of preemption.

In the following simulations, we compare the

proposed work with the partitioning and scheduling

approaches in (Shi et al., 2012). We determine the

effects of varying the number of tasks on the

communication costs of the communicating

functions placed on different PEs. Fig.9 shows the

communication costs for task sets with 10, 20 and

40 tasks while Fig.10 shows the energy

consumption on the same task set. Fig.11 presents

the number of preemption with both algorithms

using the same task set. We notice that the I-

codesign shows a good results for communications

costs, energy savings and preemption values

especially with high-range processor utilization

values.

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

362

7 CONCLUSION

In this paper, a new co-design methodology is

introduced. The main contributions are adding

realtime memory and energy constraints to the

design process and generating a controller matrix

that maintains the defined systems characteristics

and constraints when executed. We have explored

the problem of task assignment with an objective to

respect inclusion/exclusion constraints, satisfy real-

time and memory constraints jointly and respect the

available amount of energy on the PEs. We carried

our experiments with the Earliest Deadline First

scheduling algorithm. Through the case study and

the simulation results, the probabilistic modeling is

proved to be efficient on communication cost,

energy consumption and number of pre-emption.

The traffic on the interconnection network is proved

to be reduced due to the probabilistic estimations of

the software tasks. However, the final

implementation of the tool environment needs

further improvements in mainly two aspects: first,

the development of a simulation framework for the

entire system and second, build a communication

interface to allow the hardware and the software

sides to interact.

REFERENCES

Banerjee, A., Mondal, A., Sarkar, A., and Biswas, S.

(2015). Real-time embedded systems analysis; From

theory to practice. Proceedings of VLSI Design and

Test (VDAT), 2015 19th International Symposium on,

Ahmedabad.

Banerjee, S., Bozorgzadeh, E., and Dutt, N. (2005).

Physically-aware HW-SW partitioning for

econfigurablearchitectures with partial dynamic

reconfiguration. Proceedings of 42nd Design

Automation Conference, 2005.

Cheng, O., Abdulla, W., and Salcic, Z. (2011). Hardware

Software Codesign of Automatic Speech Recognition

System for Embedded Real-Time Applications. IEEE

Transactions on Industrial Electronics.

C. M. Fiduccia and R. M. Mattheyes (1982). A Linear

Time Heuristic for Improving Network Partitions.

Proceedings of Design Automation, 1982. 19th

Conference on.

Ernst, R., Henkel, J., Benner, T., and Holtmann, U.

(1996). The COSYMA environment for

hardware/software cosynthesis of small embedded

systems. Proceddings of Microprocessors and

Microsystems.

Forget, J., Boniol, F., Grolleau, E., Lesens, D., and

Pagetti, C. (2010). Scheduling Dependent Periodic

Tasks without Synchronization Mechanisms.

Proceedings of Real-Time and Embedded Technology

and applicationsSymposium (RTAS), 2010 16th IEEE.

I. Ghribi, Abdallah, R., M. Khalgui, and M. Platzner

(2015). New Codesign solutions for modeling and

partitioning probabilistic reconfigurable embedded

software. Proceddings of ESM 2015, United

Kingdom.

Janakiraman, N. and Kumar., P. N. (2014). Multi-

objective module partitioning design for dynamic and

partial reconfigurable system-on-chip using genetic

algorithm. Journal of Systems Architecture.

Joshi, P. V. and Gurumurthy, K. S. (2014). Analysing and

improving the performance of software code for Real

Time Embedded systems. Proceedings of Devices,

Circuits and Systems (ICDCS), 2014 2nd

International Conference on, Combiatore.

Liu, P., Wu, J., and Wang, Y. (2012). Integrated Heuristic

for Hardware/Software Co-design on Reconfigurable

Devices. Proceedings of Parallel and Distributed

Computing, Applications and Technologies, 2012

13th International Conference on, Beijing.

Nikolic, B., Awan, M. A., and Petters, S. M. (2011).

SPARTS: Simulator for Power Aware and Real-Time

Systems. Proceedings of IEEE 10th International

Conference on Trust, Security and Privacy in

Computing and communications, Changsha.

Pillai, P. and Shin, K. G. (2001). Real-time dynamic

voltage scaling for low-power embedded operating

systems. In Proceedings of the Eighteenth ACM

Symposium on Operating Systems Principles, NY,

USA.

Poornima, B. and Kumar, V. (2008). A multilevel

partitioning approach for efficient tasks allocation in

heterogeneous distributed systems. Journal of

SystemsArchitecture.

P. Pillai and S. G. Kang (2001). Real-time Dynamic

Voltage Scaling for Low-power Embedded Operating

Systems. Proceedings of the Eighteenth ACM

Symposium on Operating Systems Principles, USA.

R. Camposano and Wilberg (1996). Embedded system

design. Proceedings of Design Automation for

Embedded Systems.

Shi, R., Yin, S., Yin, C., Liu, L., and Wei, S. (2012).

Energy-aware task partitioning and scheduling

algorithm for reconfigurable processor. Proceedings

of Solid-State and Integrated Circuit Technology,

IEEE 11th International Conference on, Xi’an.

Singhoff, F., Legrand, J., Nana, L., and Marce, L. (2004).

Cheddar: A Flexible Real Time Scheduling

Framework. Proceedings of the 2004 Annual ACM

SIGAda International Conference on Ada: The

Engineering of Correct and Reliable Software for

Real-time Distributed Systems Using Ada and Related

Technologies, USA.

Tang, J. W., Hau, Y. W., and Marsono, M. (2015).

Hardware software partitioning of embedded System-

on-Chip applications. Proceedings of Very Large

Scale Integration, 2015 IFIP/IEEE International

Conference on, Daejeon.

New Co-design Methodology for Real-time Embedded Systems

363

 Teich, J. (2012). Hardware Software Codesign: The Past,

the Present, and Predicting the Future. Proceedings of

the IEEE.

 Vahid, F. and Gajski, D. D. (1995). Incremental hardware

estimation during hardware/software functional

partitioning. Proceedings of IEEE Transactions on

Very Large Scale Integration Systems.

 Wainer, G. (2013). Applying modelling and simulation

for development embedded systems. Proceedings of

2013 2nd Mediterranean Conference on Embedded

Computing (MECO).

Wang, X. W., Chen, W. N., Wang, Y., and Peng, C. L.

(2009). A Co-design Flow for Reconfigurable

Embedded Computing System with RTOS Support.

Proceedingsof Embedded Software and Systems,

2009. ICESS ’09. International Conference on,

Zhejiang.

ICSOFT-EA 2016 - 11th International Conference on Software Engineering and Applications

364

