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Abstract: This paper examines the implicit maintenance of diversity within a population through the inclusion of a
layered genotype-phenotype map (GP-map) in a Genetic Algorithm (GA), based on the principal of Neutral
theory (Kimura, 1968). The paper compares a simple GA (SGA), incorporating a variety of diversifying tech-
niques, to the multi-layered GA (MGA) as proposed by the authors. The MGA creates a neutral representation
by including a layered GP-map based on the biological concepts ofTranscriptionandTranslation. In standard
GAs, each phenotype is represented by a distinct genotype. However by allowing a higher number of alleles to
encode phenotypic information on the genotype, one can create a situation where a number of genotypes may
represent the same phenotype. Through this process one can introduce the idea of redundancy or neutrality
into the representation. This representation allows for adaptive mutation (hot spots) and silent mutation (cold
spots). This combination enables the level of diversity to dynamically adjust during the search, and directs the
search towards closely related neutral sets. Previous work has shown that introducing this type of representa-
tion can be beneficial; in this paper we show how this representation is useful at introducing and maintaining
diversity. Here we compare the performance of the MGA against traditional diversifying techniques used in
conjunction with a SGA over a fully deceptive changing landscape.

1 INTRODUCTION

Genetic algorithms are search mechanisms based on
Darwinian principals. However, simple genetic algo-
rithms (SGA), through the representation used, im-
plement a process of evolution without including the
concept of neutral mutations. That is, representations
in SGA do not adopt the notion of Neutral theory.
Neutral theory can be described as a situation where
the size of the search space is increased, without an
equivalent increase in the solution space. This al-
lows silent mutations to occur, where a mutated in-
dividual, at the genotypic level, can still represent the
same phenotype. Kimura’s work indicated that the
vast majority of mutations are caused by genetic drift
rather than selection (Kimura, 1968). With this in
mind, while natural selection is an important feature
in the evolutionary process, only a fraction of DNA
changes result in adaptation. This means that the ma-
jority of mutations taking place are phenotypically
silent (Kimura, 1983). The motivation is to develop
a tunable, synonymous, non-trivial GA representation
which incorporates neutrality and to compare the im-
plicit diversity created by the representation with that
of a SGA, using a variety of diversifying techniques.
The contribution is to examine the use of a GA which

is designed to implicitly maintain diversity within the
population through its representation and to analyse
the impact of the representation on population evolu-
tion. The paper is laid out as follows: Section 2 gives
a brief background to Neutral theory and the use of
neutrality in GAs. Section 3 outlines the genotype-
phenotype map (GP-map) used in the paper, while
Section 4 describes the experiments undertaken. Sec-
tion 5 outlines and analyses the results and Section 6
concludes.

2 BACKGROUND

Previous research on the use of neutrality in evolu-
tionary search produced mixed results. Smith et al.
(Smith et al., 2001) highlighted the effect of neutral
networks on the evolutionary search and concluded
that neutrality does not provide an advantage. Ebner
et al. (Ebner et al., 2001) examined the use of mu-
tation and found that high levels of mutation could
be sustained through the presence of neutral net-
works. They also identified that neutral networks as-
sist in maintaining diversity in the population, which
could prove useful over changing landscapes. Simi-
lar results were also found in (Grefenstette and Cobb,
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1993). Research carried out by Yu and Miller (Yu and
Miller, 2001) illustrated that through the incorpora-
tion of neutrality, mutation may or may not be adap-
tive depending on the gene in question. They also
examined neutrality using the OneMax problem, with
results indicating that neutrality is advantageous as it
allows the absorption of destructive mutations. Other
research in the area includes (Hill and O’Riordan,
2105) which looked at the population dynamics of
neutrality using a deceptive problem over a changing
landscape. Results indicated that neutrality had a pos-
itive impact, allowing the search to escape local op-
tima following the environmental changes. Problem
difficulty also impacted on the usefulness of neutral-
ity, as shown in (Hill and O’Riordan, 2104) and (Hill
and O’Riordan, 2013).

3 GENOTYPE-PHENOTYPE
MAPPING (GP-MAP)

In relation to redundancy, Information Theory pro-
vides a measurement of information. The information
contained in a sequence, measured inBits B, can be
defined as the number ofbits b required to represent
that given information. In other words you need to
be able to distinguish between the Bits, which repre-
sent the amount of information and the bits, which are
used to represent the information (Rothlauf, 2002). If
b > B, then your representation incorporates an ele-
ment of redundancy. With regard to the multi-layered
mapping of the MGA and using the notation out-
lined in (Rothlauf, 2002), as you progress through
the layers, the level of redundancy alters. In the tran-
scription layer, which maps|φg| (the genotype space)
→ |φd| (the DNA space)→ |φr | (the RNA space),
k= 1 (wherek represents the order of the phenotypic
building block) and there is no redundancy, therefore
b= B andkr = 1 (wherer can be defined as the num-
ber of genotypic building blocks of lengthkkr used
to represent a phenotypic building blocks of length
k). In this paper, the chromosome length,lg = 24 and
|φg|= 2lg. The DNA space|φd| consists of characters
selected from a 4 character alphabet, with the DNA
string ld = 12 andk = 3. Therefore,|φd| = 4ld also
|φd| = |φr | and ld = lr (the RNA string) . The trans-
lation layer which maps|φr | → |φp| (the phenotype
space), introduces redundancy into the mapping. In
the translation layer,b> B, r = 1, kr = 3 andk = 1.
The RNA building blocks have sizekkr and the re-
dundancy is uniform. Ask represents the order of
the phenotypic building blocks, there are 2k different
phenotypes, which are represented by 4kkr different
RNA strings. In other words, there are 4kkr differ-

ent possibilities to encode a single phenotypic bit and
|φp|= 2lp. In this paper, the phenotype stringlp = 4.
Although the redundancy is uniform, the Hamming
distances are not minimal and therefore the redun-
dancy is not linear.

Figure 1: 6-bit MGA Representation Mapping.

In summary,|φg| = {0,1}lg wherelg is the geno-
type length. The transcription phase maps|φg| →
|φd| → |φr |. Where: |φd| = {A,C,G,T}lg/2 with the
following mappings: 00→ A; 01→ C; 10→ G and
11 → T. A bijective mapping maps|φd| → |φr |,
where: |φr | = {A,C,G,U}lg/2. U is biologically in-
spired and has no impact on the evolution unless we
include operators at this level. Following transcrip-
tion, the translation phase takes place, mapping the
RNA space to a phenotype space|φp|, |φr | → |φp|,
where:|φp| = {0,1}l/c, c is the cardinality chosen at
initialisation to create a translation table, which maps
3 characters to a phenotype bit (either 0 or 1). The
level of redundancy is determined byc, in this paper
c= 6 (see Figure 1), and implies|φg|> |φp| asc> 1.
Missense mutation or substitution refers to a change
in one amino acid in a protein, arising from a point
mutation in a single nucleotide. Missense mutation in
nature is carried out at the RNA level. In relation to
the MGA, the Missense mutation mapping is as fol-
lows: A→U , C→ G, G→ A andU →C. The varia-
tion operators, one-point crossover and single-point
mutation occur at the genotype level prior to tran-
scription and missense mutation takes place before
translation. This mapping implicitly maintains related
genetic diversity within the population, thus allowing
the occupation by the population, of a greater number
of neutral networks. This is possible as adaptive mu-
tation occurs atc locations (hot zones) on the chro-
mosome. The effect of this is to allow silent muta-
tion to occur atlg − c locations (cold zones), which
allows 2lg−c genotypes represent the same phenotype.
This increases the level of diversity within the popu-
lation and allows the creation of neutral sets, which
self-organise during evolution.
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4 EXPERIMENT SET UP

Solutions and sub-solutions are normally lost in a
SGA population for three reasons:selection pressure,
selection noiseand operator disruption. Selection
pressure occurs as the result of the selection process,
with less fit solutions disappearing from the popula-
tion. Selection noise is the result of the variance of
the selection process due to random choices between
identically fit solutions. Operator disruption takes
place through the implementation of the crossover
and mutation operators which possess the ability to
destroy good solutions. In an attempt to avoid prema-
ture convergence, techniques for diversifying a pop-
ulation generally attempt to reduce individually or in
combination with one another, selection pressure, se-
lection noise or operator disruption (Mahfoud, 1995).

Diversity within a population can serve a number
of purposes, such as delaying convergence (note that
premature convergence can be defined as the conver-
gence to non-global optima) in order to promote ex-
ploration. Hence the maintenance of diversity within
a population is a desirable feature for GAs. Diver-
sification methods capable of reducing all three cri-
teria, selection noise, selection pressure and operator
disruption exist. The problem lies in the fact that re-
ducing all three criteria to arbitrarily low levels re-
sults in the GA carrying out little or no useful search
(Mahfoud, 1995). The maintenance of diversity for its
own sake is undesirable; what is required is diversity
that promotes good strings (Goldberg and Richard-
son, 1987).

By comparing the performance of the MGA with a
SGA containing a number of diversifying techniques,
we can evaluate the diversity maintenance mecha-
nism implicit in the MGA representation. With re-
gard to the three mechanisms for promoting diversity,
the theory would suggest that Stochastic Universal
Selection (SUS) offers the ability to minimise selec-
tion noise, fitness scaling can decrease selection pres-
sure and lower rates of crossover and mutation can
reduce operator disruption (Mahfoud, 1995). How-
ever it is worth remembering that a relationship exists
between convergence and diversity in a GA popula-
tion. If there is no operator disruption and no selection
pressure, then the GA will maintain its initial popula-
tion and won’t perform any meaningful search. Also
with regard the mutation operator, as mutation rates
increase, the diversity produces is usually not useful
as the GA is approaching random search.

In this paper a four-bit changing deceptive land-
scape as outlined in (Hill and O’Riordan, 2105) was
used. Although this landscape is relatively small in
terms of the search space, it was chosen as it allows

the dynamics of the population evolution to be stud-
ied. The parameters chosen are outlined in Table
1. Over the set of experiments designed to examine
various diversifying techniques, we altered the selec-
tion mechanisms and scaling methods of the SGA.
We also conducted a number of experiments where
we increased the SGA’s variation operators. The mo-
tivation for these changes is to vary the selection
noise, selection pressure and operator disruption for
the SGA, thereby examining the impact of the inclu-
sion of well understood diversifying techniques into
the SGA, which in turn are then compared with the
performance of the MGA.

Table 1: Parameters Used.

Parameters MGA SGA
Runs 10 10
Generations 200 200
PopulationP 20 20
CrossoverPc 0.7 0.7
MutationPm 1/l 1/l
Missense Mutation 0.2 No
Selection Mechanisms Tournament Various
Scaling Methods No Various

In Section 5 we outline the results of the ex-
periments conducted. The selection noise experi-
ments explore the use of Stochastic Remainder Se-
lection (SRS) and SUS. The selection pressure exper-
iments examine Linear, Window, Sigma Truncation
and Boltzmann scaling techniques and niching tech-
niques, such as, crowding and Incest Reduction. Fi-
nally, the operator disruption experiments look at the
impact of increasing rates of crossover and mutation.

 0

 5

 10

 15

 20

 25

 30

 35

 20  40  60  80  100  120  140  160  180  200

F
itn

es
s

Generations

SGA & MGA 4-bit Deceptive Problem - Online/Offline Performance Analysis

MGA Off-line Performance
MGA On-line Performance
SGA Off-line Performance
SGA On-line Performance

Figure 2: SGA & MGA On-line/Off-line.

5 RESULTS

Figure 2 illustrates the off-line (averaged best fitness)
and on-line (averaged fitness) performance for both
the SGA and the MGA. The results indicate that the

ECTA 2016 - 8th International Conference on Evolutionary Computation Theory and Applications

142



changing 4-bit deceptive landscape initially proved
equally easy for both the SGA and the MGA, as they
both located the global optimum. This is shown by the
off-line performance of both GAs up to the change
of landscape at generation 50. After the landscape
changes, the SGA becomes trapped on the local op-
timum, while the MGA succeeds in locating the new
global optimum. To analyse the results statistically,
in this paper we used a Wilcoxon signed rank test to
compare the off-line results of the SGA and MGA,
and similarly to compare the on-line performances of
both the SGA and MGA. The results indicated that
the off-line results for both GAs were statistically
significant with ap-value< 2.2e−16. Similarly the
on-line results were also statistically significant (p-
value< 2.2e−16).

5.1 Neutral Networks

The neutral networks representing various fitness val-
ues are shown in Figure 3. Before the landscape
changes at generation 50, the most prominent neu-
tral network represents the global optimum pheno-
type (1111). As the population evolves, the MGA,
through itsM : 1 representation, allows the size of
neutral networks to adapt as the population evolves.
The next largest neutral networks represent the phe-
notypes(0111), (1110), (1101) and (1011), which
are the four genotypes closest in Hamming distance
to the optimum, indicating that the MGA’s population
evolves towards neighbouring neutral sets.
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Figure 3: Neutral Networks - Number of Genotypes with
Similar Fitness.

As the landscape changes the largest neutral net-
work represents the new local optimum(1111), as
this was the global optimum at the time of the change.
As the search continues the MGA’s population es-
capes the local optimum and has located the global
optimum. At this point, the most prominent neutral
network represents the phenotype(0000) (the new
global optimum). Also, the MGA population has

evolved towards a different group of neutral sets rep-
resenting the phenotypes(0001), (0010), (0100) and
(1000), all close, phenotypically, in Hamming dis-
tance to the global optimum.

Figure 4 looks at the composition of the neutral
sets, examining the number of identical genotypes in
each set. The figure indicates that there is a high de-
gree of diversity maintained within each neutral set,
with low numbers of identical genotypes present. The
number of identical genotypes representing the global
optimum varying between 2 and 4, illustrating the im-
pact of theM : 1 representation on the population.
Overall, the results indicate that the representation,
implicitly maintains useful building blocks within the
population, which promotes good strings and assist in
improving the adaptability of the MGA.

 0

 2

 4

 6

 8

 10

 20  40  60  80  100  120  140  160  180  200

N
um

be
r 

of
 S

im
ila

r 
G

en
ot

yp
es

Generations

MGA 4-bit Deceptive Problem - Genotype M:1 Representation Per Generation

Fitness 0 (0001 & 1000)
Fitness 2 (1011 & 0100)
Fitness 4 (1101 & 0010)
Fitness 6 (1110 & 0001)
Fitness 8 (1100 & 0011)

Fitness 10 (1010 & 0101)
Fitness 12 (1001 & 0110)
Fitness 14 (0110 & 1001)

Fitness 16 (0101 & 1010)
Fitness 18 (0011 & 1100)
Fitness 20 (1000 & 0111)
Fitness 22 (0100 & 1011)
Fitness 24 (0010 & 1101)
Fitness 26 (0001 & 1110)
Fitness 28 (0000 & 1111)
Fitness 30 (1111 & 0000)

Figure 4: Neutral Networks - Identical Genotype.

5.2 Selection Noise

As outlined by DeJong (De Jong, 1975), the vari-
ance of selection is one of the main contributors to
the idea of convergence. In order to examine selec-
tion variance or selection noise, we compare a number
of selection mechanisms designed to reduce selection
noise, namely SRS and SUS. With SRS, the fitness of
an individualfi is divided by the average fitness of the
population f̄ . For each stringi where fi/ f̄ is greater
than 1.0, the integer part of the number defines the
number of copies of the individual are put forward for
crossover. For example an individual with a fitness
value of 1.45, places one copy forward for crossover
and then has a 0.45 chance of putting a second copy
forward.

SUS on the other hand, is optimal with respect to
efficiency, bias (that is, the distance from the RWS
in relation to expected value) and the spread (range
of possible individuals put forward for crossover)
(Baker, 1985). SUS simulates a roulette wheel sim-
ilar to RWS. However, while RWS spins the wheeln
times (n= population size), SUS spins the wheel once,
usingn uniformly spaced pointers at the edge of the
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wheel. SUS has zero bias, is very efficient and min-
imises the spread and is regarded as the lowest noise
selection scheme.
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Figure 5: Selection Noise On-line/Off-line.

Figure 5 indicates that the SGA (with SRS and
SUS individually included), located the local opti-
mum in the initial population, (see the off-line per-
formances) due in part to the level of diversity (illus-
trated by the SGA on-line performance). However,
the population converges prematurely as the search
continues and diversity is quickly eliminated from
the population. Once the landscape changes, because
the population, for both the SRS and SUS SGAs,
were trapped on the deceptive local optimum, they
automatically located to new global optimum and re-
mained there for the duration of the search. The MGA
on the other hand located the global optimum both be-
fore and after the landscape change.

Table 2: Off-Line & On-Line Selection p-values.

Off-Line SRS SUS MGA
SRS − 0.04131 0.09138
SUS 0.04131 − 0.4005
On-Line
SRS − 0.2732 < 2.2e−16

SUS 0.2732 − < 2.2e−16

The statistical analysis of the results between the
MGA and the SGA are shown in Table 2 and indi-
cate that the off-line and on-line performance of SRS
and SUS are quite similar to one-another. Comparing
the MGA’s off-line results to those of the SRS SGA,
shows a less significant result than that of the off-line
MGA and SUS SGA. The on-line performance of the
MGA differs significantly from both of the SGAs.

Figure 6, illustrates the rate of convergence within
the population and shows both the SGA (using SRS)
and the SGA (using SUS) converging quickly. The
MGA maintains a higher degree of diversity, both at a
phenotypic and genotypic level which assists in suc-
cessfully locating the global optimum, both before

and after the landscape change, as the level of diver-
sity maintained allows the search to escape from the
local optimum.

 0

 500

 1000

 1500

 2000

 2500

 0  50  100  150  200

H
am

m
in

g 
D

is
ta

nc
e

Generations

Selection Noise SGA & MGA - Genotype & Phenotype Convergence

MGA Genotype Hamming Distance
MGA Phenotype Hamming Distance
SGA (SRS) Genotype Hamming Distance
SGA (SUS) Genotype Hamming Distance

Figure 6: Selection Noise Convergence Rate.

5.3 Selection Pressure

With selection, the extraordinary individuals within
a population will begin to dominate the population
quite quickly and premature convergence will be-
gin to take hold. Even if there is significant di-
versity within a population, late in a run, the pop-
ulation’s average fitness (on-line) may be close to
the population’s best fitness (off-line). This leads
to a situation where the search for improvement be-
comes a “random-walk among the mediocre” (Gold-
berg, 1989).

5.3.1 Scaling Techniques

Fitness scaling has been used to overcome this prob-
lem. We now examine fitness scaling diversifying
techniques aimed at reducing the selection pressure
within the population:

• Linear scaling adjusts the fitness values of all
individuals within the population, such that the
fittest individual receives a fixed number of ex-
pected offspring and therefore prevents it from
reproducing too frequently. The fitness function
f
′
i = ax fi +b is used wherea andb are normally

selected so to allow the average individual receive,
on average, one offspring copy, and the best re-
ceives the specified number of copies (normally
two). This method may return a negative fitness
value.

• Window scaling, fitness is scaled by subtracting
from the raw fitness, the lowest fitness of any in-
dividual in the past number of scaling window
generations. The fitness function isf

′
i = fi − fw,

wherew is the window size and is typically some-
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where between 2 and 10 andfw is the worst value
observed in thew most recent generations.

• Sigma Truncation avoids returning negative fit-
ness values for individuals within the population
and incorporates problem dependant information
into the scaling mechanism. The fitness of an indi-
vidual f i

′
i is calculated as follows:f

′
i = fi − ( f̄ −

cxσ), wherec is a small integer value between 1
and 5, f̄ is the average raw fitness andσ is the pop-
ulation standard deviation. Negative values forf
are avoided as any resultf < 0 is set to zero. Indi-
viduals wherefi < c standard deviation from the
average fitness value are not selected.

• Boltzmann tournament selection procedure is de-
rived and implemented to give stable distribu-
tions within a population. It also creates another
niching mechanism for forming and sizing stable
subpopulations of individuals according to differ-
ences among them, if the cooling process is not
taken to the limit. Boltzmann scaling is expressed
as f

′
= efk/T and selection pressure is low when

the control parameterT is high.

The results of the scaling experiments are illustrated
in Figure 7 and Table 3. These results indicate that
the SGA using various scaling techniques, fails to
maintain enough diversity within the population to
avoid premature convergence. The statistical results
indicate that differences between the various scaling
methods, for these experiments, are minimal. The
most significant results are between the MGA and the
SGA using each of the scaling mechanisms. Figure
8, gives an overview of the rate of convergence as-
sociated with the SGA (incorporating scaling mecha-
nisms) and the MGA. The graph illustrates that Lin-
ear, Window, Sigma Truncation and Boltzmann SGA
loose diversity very quickly in the search, which re-
sults in the failure of the SGA to adapt after the land-
scape changes. The MGA implicitly maintains a level
of diversity within the population which assists in
adapting and locating the global optimum before and
after the landscape change.

Table 3: Off-Line & On-Line Scaling p-values.

Off-Line Linear Window Sigma T. Boltzmann MGA
Linear − 1 0.5807 0.5716 < 2.2e−16

Window 1 − 0.5807 0.5716 < 2.2e−16

Sigma T. 0.5807 0.5807 − 1 < 2.2e−16

Boltzmann 0.5716 0.5716 1 − < 2.2e−16

On-Line
Linear − 0.9319 0.1071 0.6711 < 2.2e−16

Window 0.9319 − 0.04809 0.9433 < 2.2e−16

Sigma T. 0.1071 0.04809 − 0.1353 < 2.2e−16

Boltzmann 0.6711 0.9433 0.1353 − < 2.2e−16
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Figure 7: Selection Pressure On-line/Off-line.
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5.3.2 Niching Techniques

Niching can be defined as an approach which en-
courages a number of distinct groups of genotypes to
develop and remain in the population, with reduced
pressure from the GA to converge towards a single
type of genotype. Crowding involves a form of nich-
ing of the population. With crowding, as implemented
in this paper, before crossover or mutation, normal
fitness weighted selection is used to select members
for the next generation. Crossover then takes place
on individuals selected randomly from this set. Af-
ter individuals have been selected for crossover, the
offspring are created as usual. For each offspring,
crowding factor, in this case 2, members of the sur-
vivors are selected randomly and the Hamming dis-
tance of each genotype from the offspring is calcu-
lated for 2 individuals. The offspring the replaces
whichever survivor is nearest in Hamming distance.
Incest reduction is used in conjunction with crowding
and introduces a mechanism to reduce the percent-
age of crossover between similar genotypes. After
being selected, pairs are then selected for crossover
by choosing the first parent at random from the list
of selected individuals, then choosing a pre-defined
(incest-reduction) number of possible candidates for
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Figure 9: Niching On-line/Off-line.

the other parent randomly. The Hamming distance
of each candidate from the first parent and the one
with the greatest Hamming distance is selected for
crossover.

The results of the SGA performance with crowd-
ing and Incest reduction are shown in Figure 9. The
results indicate that the performance of the SGA with
crowding are very similar to those of the SGA incor-
porating Incest reduction (off-linep-value= 0.03351
and the on-linep-value= 0.1663). Both niching tech-
niques fail to the escape the local optimum. The MGA
results differ, in that the diversity maintained within
the population allows the search escape the deceptive
trap. Comparing the MGA off-line and on-line results
statistically against both of the niching techniques,
indicated a high statistically significant difference in
performance. In relation to the rate of convergence.
Unlike the MGA, the niching techniques outlined,
lose diversity early in the search (see Figure 10), mak-
ing it difficult for the SGA to adapt and escape the
local optimum when the environment changed.
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Figure 10: Niching Techniques Convergence Rate.

5.4 Operator Disruption

For the operator disruption experiments, we increased
the rate ofPc andPm (see Figures 11 and 12 respec-

tively). Examining the results of increasing the rate
of crossover to 0.90, the SGA located the global op-
timum early in the search but failed to adapt once the
landscape changed. The results of increasing the rate
of mutation to 0.50, illustrate that the search is be-
ing directed by randomness, with the SGA constantly
moving to and from the global optimum, shown by the
off-line performance. The result also shown a very
large degree of change in the on-line performance.
The increased crossover results, both off-line and on-
line were significantly different from the MGA results
(off-line p-value= 2.2e−16 and on-linep-value=
0.0003238). The results using mutation also indicated
a statistically significant difference. The mutation off-
line results indicate that increased mutation rates are
statistically closer to the MGA results, however as the
on-line results indicate, the search was driven by ran-
domness and failed to produce good strings, meaning
the diversity maintained wasn’t useful in terms of a
search algorithm.
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Figure 11: Operator Disruption (Crossover) On-line/Off-
line.
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Figure 12: Operator Disruption (Mutation) On-line/Off-
line.

Regarding to the maintenance of diversity within
the population, Figure 13 outlines the impact of oper-
ator disruption. Increasing crossover failed to main-
tain diversity within the population, which converged
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quickly. The mutation experiment increased the level
of diversity within the population, but as mentioned
above, the search was directed by randomness. This
random diversity failed to assist in the search.
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Figure 13: Operator Disruption Convergence Rate.

6 CONCLUSION

The results presented, illustrate that through the
implementation of Neutral theory, as proposed by
Kimura (Kimura, 1968), the genotype-phenotype
mapping of the MGA allows for a tunable, non-trivial,
many-to-one relationship. By adopting this approach,
convergence at a phenotypic level can be achieved,
but genetic diversity is maintained at a genotypic
level. Through the MGA’s multi-layered genotype-
phenotype mapping, adaptive (hot spots) and silent
(cold spots) mutations become possible. This phe-
nomenon allows neutral networks evolve within the
population. The MGA, as a result of genetic drift,
converges on neutral sets close to one another in Ham-
ming space, which assists in relation to the adaptive-
ness of the MGA to changing environments. The
results indicate that neutrality, as introduced by the
MGA mapping, maintains a level of diversity within
the population, which assists in searching dynamic
landscapes as the diversity maintained by the MGA
promotes good strings. When compared to a SGA in-
corporating a number of diversifying techniques, the
implicit maintenance of diversity by the MGA proved
successful in searching the deceptive dynamic land-
scape. The MGA, as a result of genetic drift, con-
verges on neutral sets close to one another in Ham-
ming space.
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