
Determining the Near Optimal Architecture of Autoencoder using

Correlation Analysis of the Network Weights

Heng Ma, Yonggang Lu* and Haitao Zhang
School of Information Science and Engineering, Lanzhou University, Gansu, 730000, China

Keywords: Deep Learning, Autoencoder, Architecture Optimization, Correlation Analysis.

Abstract: Currently, deep learning has already been successfully applied in many fields such as image recognition,

recommendation systems and so on. Autoencoder, as an important deep learning model, has attracted a lot

of research interests. The performance of the autoencoder can greatly be affected by its architecture. How-

ever, how to automatically determine the optimal architecture of the autoencoder is still an open question.

Here we propose a novel method for determining the optimal network architecture based on the analysis of

the correlation of the network weights. Experiments show that for different datasets the optimal architecture

of the autoencoder may be different, and the proposed method can be used to obtain near optimal network

architecture separately for different datasets.

1 INTRODUCTION

Since the concept of deep learning was proposed

(Hinton and Salakhutdinov, 2006), it has become

one of the hottest research topics in the machine

learning field. And it has been widely applied in

various fields, such as natural language processing

(NLP) (Collobert and Weston, 2008), image recog-

nition (Ciresan et al., 2012), recommendation sys-

tems (Van den Oord et al., 2013), bioinformatics

(Chicco et al., 2014), and so on. The successful

application of these research projects in the industry

also illustrates the great advantage of deep learning

(Levine et al., 2016).

Deep learning is a method based on several mod-

els of neural networks (autoencoder and MLP).

However, although the performance of deep learning

is greatly dependent on the network architecture, the

current deep learning methods can't adaptively ad-

just the number of layers and the nodes of each lay-

er. In fact, the same problem also exists in the early

age of the research on neural network, so many

sophisticated methods have been put forward to

optimize architecture of neural network (Reiter-

manova, 2008).

The most common approach is brute-force meth-

od (Reed, 1993). This method tries all kinds of net-

work architecture in a reasonable range, and finally

*Corresponding author

finds an optimal architecture that is suitable for

training datasets. Because of the high computational

complexity, people seldom use this method directly.

The pruning algorithms (Reed, 1993) is another

method, its principle is to remove the redundant

parts of network through certain indicators. The

concrete implementation of pruning method is as

follows: weight saliency (Mozer et al.. 1989), opti-

mal brain damage (OBD) (LeCun et al., 1989), op-

timal brain surgeon (OBS) (Hassibi et al., 1993), etc.

The only difference among these methods is to use

different strategies for computing indicators. Since

indicator calculation is based on error function, the

main drawback of pruning methods is high computa-

tional complexity. Network construction technique

(Lee, 2012) can also be used to optimize architec-

ture. It begins with a minimal network, then dynam-

ically adds and trains hidden units until a satisfacto-

ry architecture is reached. The cascade correlation

method (Fahlman and Lebiere, 1989) is a famous

representative of this technique. This method has the

following advantages: training is fast, being useful

for incremental learning, results can be cached, and

so on. But the disadvantages are also obvious: its

candidate nodes are independent, and the interac-

tions between related nodes are not considered. So it

is only suitable for networks with relatively simple

architecture. There are many other techniques, for

example, probability optimization techniques and

regularization techniques (Reitermanova, 2008).

Ma, H., Lu, Y. and Zhang, H.
Determining the Near Optimal Architecture of Autoencoder using Correlation Analysis of the Network Weights.
DOI: 10.5220/0006039000530061
In Proceedings of the 8th International Joint Conference on Computational Intelligence (IJCCI 2016) - Volume 3: NCTA, pages 53-61
ISBN: 978-989-758-201-1
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

53

However, these methods are also only suitable for

optimizing simple network, for example, the net-

work with one hidden layer and small number of

nodes. Recently, genetic algorithms are widely used

to optimize network architecture and weights (Fisze-

lew et al., 2007). But its slow convergence rate is a

very influential factor. So corresponding to complex

deep learning models with many hidden layers, new

methods need to be developed for the architecture

optimization.

The proposed architecture optimization method

in the paper is specifically aimed at the complex

deep learning model with many hidden layers and a

large number of nodes, which can adjust the number

of the nodes in multiple hidden layers. To improve

the efficiency, the optimization is based on the cor-

relation analysis of the node weights initialized us-

ing the Restricted Boltzmann Machine (RBM) (Hin-

ton and Salakhutdinov, 2006). Different from the

traditional methods, the time-consuming network

training process is avoided in the proposed architec-

ture optimization method.

The proposed method has the following ad-

vantages: First, it can be well applied to the complex

network architecture optimization. Because the

computing unit of the method is the set of multiple

nodes rather than a single node, the method can be

easily extended for the network with a lot of layers.

Second, the proposed architecture optimization is

based on the correlation analysis between the

weights of the nodes after initialization rather than

the error function after training, the efficiency is

greatly improved.

The rest of paper is organized as follows. In Sec-

tion 2, we first briefly introduce the working flow of

deep learning model and the mechanism of RBM in

network initialization. And then we discuss in detail

about the calculation of correlation coefficient in

Subsection 2.1. At last, Subsection 2.2 shows the

detailed steps of method about optimizing multiple

hidden layer nodes. In Section 3, we present the

experimental results through analyzing and compar-

ing different datasets. Finally, Section 4 draws con-

clusions and discusses the future research direction.

2 ARCHITECTURE

OPTIMIZATION METHOD

Autoencoder, as a kind of deep learning model, is

often used for dimensionality reduction (Laurens

van der Maaten et al., 2009). Our proposed method

is based on this model framework. It consists of the

encoder module which transforms high dimensional

input data into low dimensional output data (code),

and the decoder module which reconstructs the high

dimensional data from the code. The construction of

the autoencoder is mainly concentrated on the en-

coder module because the decoder module can be

approximately regarded as transposition of the en-

coder module. Our method is to optimize the struc-

ture of the encoder module. In the training of deep

learning, RBM is used to initialize the weights of the

nodes. The usage of RBM is a significant improve-

ment of the deep learning model because it is diffi-

cult to optimize the weights of the nodes of the mul-

tiple hidden layers without good initial weights

(Hinton and Salakhutdinov, 2006).

RBM is a kind of stochastic two-layer network

containing a visible layer corresponding to the input

and a hidden layer corresponding to the output. The

two layers are fully connected, that is to say, each

node of the hidden layer connects to all the nodes of

the visible layer, but the nodes in the same layer

cannot connect to each other. In the initialization

process, the network will be divided into multiple

RBMs and the output of previous RBM will become

the input of the next RBM, so as to achieve the ex-

traction of input data information layer by layer.

The second step is the weights fine-tuning after

RBM initialization. Using the traditional weights

fine-tuning methods, for example, backpropagation

(BP), can fine-tune weights by minimizing the data

reconstruction error.

The proposed network architecture optimization

method working on the above framework is depicted

in Figure 1. In the initial stage, a simple network

with very small number of nodes in each hidden

layer is created, which corresponds to the architec-

ture of nodes connected by solid lines in Figure 1.

The architecture optimization is achieved by dynam-

ic growth of the number of the nodes of the hidden

layers, where the added nodes correspond to the

nodes connected by dotted lines in Figure 1. At each

step, the same number of nodes (Ni nodes) are added

to the target layer, then the correlation analysis on

the weights of all the nodes (the weights of the node

stand for the weights between all the nodes of the

previous layer and the current node) in the layer is

carried out. In our method, Ni nodes which have the

smallest correlation with the rest of the nodes are

selected from all the nodes. The correlation coeffi-

cient between the selected nodes and the rest of the

nodes are computed (See Subsection 2.1 for details).

At the end, when the correlation coefficient is great-

er than a given threshold, the dynamic growth of the

number of the nodes is stopped and the number of

NCTA 2016 - 8th International Conference on Neural Computation Theory and Applications

54

the nodes for the layer is determined. For the next

hidden layer, the above process is repeated. Detailed

implementation is introduced in Subsection 2.2.

Figure 1: Illustration of the architecture optimization. The

nodes connected by solid lines are the original nodes. The

nodes connected by the dotted lines are the added nodes.

2.1 Correlation Coefficient between
Two Sets of the Nodes

The definition of correlation coefficient between two

sets of nodes is the theoretical basis of our method.

The correlation coefficient is used to analyze the

relationship between one group of nodes called

Main_Nodes and the other group of nodes called

Other_Nodes in the same layer. In the first step, we

get S nonzero eigenvalues called SltedValues and

the corresponding eigenvectors called SltedVectors

of the weights of the Main_Nodes by principal com-

ponent analysis (PCA), and then construct the prin-

cipal component space (PCS) using the SltedVectors

(Figure 2). The unit vectors of the SltedVectors are

represented as {�⃗� 1, �⃗� 2, … , �⃗� S}, while the correspond-

ing eigenvalues called SltedValues are represented

as {1, 2, …, S }. If the weights of Other_Nodes

are represented as 𝐼 , the projection of 𝐼 to the prin-

cipal component space, represented as 𝐼𝑃⃗⃗ ⃗ , can be

derived from:

 𝐼𝑃⃗⃗ ⃗ = ∑ (𝐼 ∙ �⃗� 𝑖)�⃗� 𝑖
𝑆
𝑖=1 (1)

The vertical component 𝐼𝑉⃗⃗ ⃗ is defined as:

𝐼𝑉⃗⃗ ⃗ = 𝐼 − 𝐼𝑃⃗⃗ ⃗ (2)

Given 𝐼𝑃⃗⃗ ⃗ and 𝐼𝑉⃗⃗ ⃗, we can calculate the main correla-

tion coefficient by the following formula:

corrmain =
|𝐼𝑃⃗⃗ ⃗|

|𝐼𝑃⃗⃗ ⃗| + |𝐼𝑉⃗⃗ ⃗|
 (3)

The above formula only concerns with the direction

relations between 𝐼 and PCS, while the SltedValues

computed from Main_Nodes are ignored. So another

correlation coefficient is defined in formula (4)

which gives main components more weights. For the

correlation between 𝐼𝑃⃗⃗ ⃗ and �⃗⃗� which is the dominant

component, the largest eigenvalue is used as the

weight. If the directions of 𝐼𝑃⃗⃗ ⃗ and �⃗⃗� is more con-

sistent (the greater value of |𝐼𝑃𝐷
⃗⃗ ⃗⃗ ⃗|), the correlation

coefficient is greater.

corrtune =
∑ (𝐼 ∙ �⃗� 𝑖)𝜆𝑖

𝑆
𝑖=1

∑ 𝜆𝑖
𝑆
𝑖=1 |𝐼 |

 (4)

Figure 2: Illustration of correlation coefficient. The princi-

pal component space (PCS) is constructed from SltedVec-

tors. �⃗� is the vertical direction to the principal component

space. �⃗⃗� is the dominant component. 𝐼 is the weights of the

Other_Nodes. 𝐼𝑉⃗⃗ ⃗ and 𝐼𝑃⃗⃗ ⃗ are the projections of 𝐼 on �⃗� and

PCS respectively. 𝐼𝑃𝐷
⃗⃗⃗⃗⃗⃗ is the projection of 𝐼𝑃⃗⃗ ⃗to �⃗⃗� .

The overall correlation coefficient is given by the

following formula:

corr = corrmain ∗ (α + (1 − α) ∗ corrtune) (5)

where α stands for the ratio parameter. In order to

determine the value of α, we conduct experiments

by changing the value of α from 0 to 1. It is found

that α = 0.8 is a good choice.

The pseudo code for calculating the correlation

coefficient between two given node sets is shown in

Figure 3.

2.2 Architecture Optimization

In this subsection, how the correlation coefficient is

used to realize architecture optimization is de-

scribed. The process of architecture optimization is

divided into two steps, the first step is to compute

the correlation coefficient, and the second step is to

control the growth of the nodes by comparing the

correlation coefficient with a given threshold.

In the first step, RBM initialization on the cur-

rent hidden layer containing both the added nodes

and the original nodes will be carried out in order to

obtain the weights of the nodes. Then the correlation

Decoder
module

Input
data

...

...

Hidden
layer 1

Hidden
layer 2

Hidden
layer 3

Output
layer

V

D

I

Principal
Component

Space

VI

PI

PDI

Determining the Near Optimal Architecture of Autoencoder using Correlation Analysis of the Network Weights

55

Figure 3: The pseudo code of calculating correlation coefficient.

coefficient of the weights of the layer is computed as

introduced in Subsection 2.1.

In the second step, the architecture optimization

on the autoencoder model is carried out. The pseudo

code for the architecture optimization is shown in

Figure 4.

3 EXPERIMENTS

The method is implemented using Matlab. In order

to verify the performance of the proposed method,

the following datasets are used: MNIST, USPS,

Binary Alphadigits and MFEAT. The first three

datasets are available at: http://www.cs.nyu.edu/

~roweis/data.html. The MFEAT dataset is available

at: http://archive.ics.uci.edu/ml/datasets.html.

The MNIST dataset is a dataset of handwritten

digits (0-9), it contains 70000 images of size 2828.

Considering the high computational cost, 250 sam-

ples of each class are selected as the training set, and

50 samples of each class are selected as the test set.

The USPS dataset is another handwritten digits

dataset which contains images of size 1616 and

there are 1100 samples in each class. As same as

MNIST, 250 samples of each class are selected as

the training set, and other 50 samples of each class

are selected as the test set.

The Binary Alphadigits dataset is a handwritten

alphabet and digits dataset. It contains a total of 36

classes from “1” to “9”, and “A” to “Z", the size of

the image is 2016 and each class contains 39 sam-

ples. For 39 images of each class, 33 images are

used as the training set and 6 images as the test set.

The MFEAT dataset is also a handwritten nu-

merals dataset which contains ten classes from "0" to

"9". The size of image is 1615 and each class con-

tains 200 samples. For 200 images of each class, 150

images are used as the training set and 50 other

images as the test set.

CalculateCorr(Main_Nodes, Other_Nodes,) {

 // Input: Main_Nodes: the input set of the nodes used to construct the

 // Other_Nodes: the input set of the Nodes projected to the

 // : the ratio parameter

 // Output: the correlation coefficient between Main_Nodes and Other_Nodes

 // Notes: the weights attribute of a node stands for the weights between the node and all

 // the nodes of the previous layer, M stands for the number of the nodes of the

 // previous layer.

 Main_NodeWeights[1...N1, 1...M] Main_Nodes.weights;

 Other_NodeWeights[1...N2,1...M] Other_Nodes.weights;

 [Eigenvectors[1...M,1...M], Eigenvalues[1...M]] PCA(Main_NodeWeights);

 [SltedVectors[1...M,1...S], SltedValues[1...S]] remove zero eigenvalues and the
 corresponding eigenvectors from [Eigenvectors, Eigenvalues];

 for i 1 to N2 do {

 PerRow_Other_Normalized normalize each row of Other_NodeWeights;

 for j 1 to S do {

 Parallel_Main(j,:) ;

 Parallel_Tune(j) ;

 }

 Parallel the sum of the Parallel_Main by rows;

 Vertical Other_NodeWeights(i,:) - Parallel;

 corr_main ;

 corr_tune ;

 Result(i) ;

 }

 return the mean of Result;

 }

PCS

PCS

2

_ (:,)
(:,)

(:,)

TOther NodeWeights SltedVectors j
SltedVectors j

SltedVectors j

Parallel

Parallel Vectical

_ .Parallel Tune SltedValues

SltedValues

_ ((1) _)corr main corr tune

_ _ (:,)

(:,)

PerRow Other Normalized SltedVectors j

SltedVectors j

NCTA 2016 - 8th International Conference on Neural Computation Theory and Applications

56

Figure 4: The pseudo code of architecture optimization.

The initial network architecture is set to 1000-

200-50-30 in all the experiments. The size of the 1st

hidden layer is fixed at 1000, and the number of the

nodes in the 2nd and the 3rd hidden layers are in-

creased from the initial sizes which are 200 and 50

respectively to determine the near optimal number of

the nodes in the experiments.

3.1 Parameter Selection

In this subsection, the effects of different RBM

training epochs on our method are compared using

multiple datasets, and a good threshold of the corre-

lation coefficient is derived. The final autoencoder

architecture generated through our method is com-

pared with the standard architecture (1000-500-250-

30) used in (Hinton and Salakhutdinov, 2006). The

parameters of RBM are listed below: learning rate

for weights 𝜀𝑤=0.1, learning rate for biases of visi-

ble units 𝜀𝑣𝑏=0.1, learning rate for biases of hidden

units 𝜀ℎ𝑏=0.1, the weight cost is 0.0002, the initial

momentum is 0.5, the final momentum is 0.9, and

learning is done with 1-step Contrastive Divergence.

At the same time, we adjust the training epoch of

backpropagation from 200 to 20, because it is found

that in the standard autoencoder framework, the

reconstruction error becomes steady when the train-

ing epoch reaches above 15.

In order to analyze the relationship between the

correlation coefficients and the number of nodes, we

first fix nodes number of the 2nd hidden layer to

500, then increase the number of the nodes of the

3nd hidden layer from 50 to 500, and the number of

nodes added at each step is 25. We also set 5 differ-

ent RBM training epochs, 10, 50, 100, 300 and 500,

respectively. The results are shown in Figure 5.

As can be seen from Figure 5, under the different

RBM training epochs, the correlation coefficient

curve has a similar trend, in the initial stage of in-

creasing the number of nodes, the correlation coeffi-

ArchitectureOptimization(Nodes2, n2, Nodes3, n3, max_n2, nInc, TH) {

 // Nodes2: the nodes of the 2nd hidden layer

 // n2: the initial number of the nodes of the 2nd hidden layer

 // Nodes3: the nodes of the 3rd hidden layer

 // n3: the initial number of the nodes of the 3rd hidden layer

 // max_n2: the max number of the nodes of the 2nd hidden layer

 // nInc: the increment of the number of the nodes at each step

 // TH: the threshold of the correlation coefficient

 Nodes2.Num_Nodes n2;

 Nodes3.Num_Nodes n3;

 OptimizeLayer(Nodes2, max_n2, nInc, TH);

 // max_n3 is the max number of the nodes of the 3rd hidden layer;

 max_n3 Nodes2.Num_Nodes;
 OptimizeLayer(Nodes3, max_n3, nInc, TH);

}

OptimizeLayer(Nodes, max_num_nodes, nInc, TH) {

 while Nodes.Num_Nodes < max_num_nodes do {

 Nodes.Num_Nodes Nodes.Num_Nodes + nInc;

 initialize the weights of the Nodes using RBM;

 for i 1 to Nodes.Num_Nodes do {

 // calculating the correlation coefficient between

 // each node and the remaining nodes

 Corr_Each[i] CalculateCorr(Nodes-{Nodes[i]}, {Nodes[i]}, 0.8) ;

 }

 SltedNodes the nInc nodes having the largest Corr_Each values;

 RemNodes Nodes - SltedNodes;

 corr CalculateCorr(RemNodes, SltedNodes, 0.8);
 if corr > TH then {

 Nodes Nodes - SltedNodes;

 break;

 }

 }

}

Determining the Near Optimal Architecture of Autoencoder using Correlation Analysis of the Network Weights

57

Figure 5: The correlation coefficient curves of MNIST,

USPS, Binary Alphadigits and MFEAT datasets, under

different RBM training epochs.

cient increases rapidly with a large slope value.

When the number of nodes reaches about 250, the

slope of the curve becomes small, and the correlation

coefficient curve is close to steady. In order to bal-

ance computational complexity and reliability of the

results, the value of RBM training epochs is set to

300. The following experiments are all based on this

epoch value. From Figure 5, it is also found that the

threshold of the correlation coefficient will have a

great impact on the final network architecture. So

Table 1, Table 2, Table 3 and Table 4 are used to

show the derived network architecture under differ-

ent thresholds. In tables, "Threshold" stands for the

threshold of correlation coefficient; "Network archi-

tecture", "Training error" and "Test error" are the

experiment results of our method. The last row of

every table is the standard autoencoder architecture.

From Table 1 to Table 4, we can find that differ-

ent correlation coefficient thresholds correspond to

different derived network architecture. With the

increasing of the correlation coefficient threshold,

the number of the nodes of the 2nd and the 3rd layer

increases, and the training error and the test error

both decrease. It can be seen from the tables that a

value of 0.65 for the correlation coefficient divides

the thresholds corresponding to high and low error

values. So it is reasonable to select 0.65 as an appro-

priate value for the threshold of the correlation coef-

ficient.

Based on the analysis of the experiment results,

the RBM training epoch is set to 300 and the thresh-

old of correlation coefficient is set to 0.65. From

Table 1 to Table 4, it is also found that the training

error and the test error have the similar trend with

the increasing of the correlation coefficient threshold,

so only the test errors are used to evaluate the exper-

iments results in Subsection 3.2.1.

Table 1: The derived network architecture under different

thresholds of correlation coefficient for MNIST dataset.

Threshold Network architecture
Training

error

Test

error

0.75 1000-975-950-30 3.1427 10.8150

0.7 1000-850-425-30 3.3946 11.1748

0.65 1000-650-375-30 3.4251 11.1861

0.6 1000-425-225-30 4.0720 12.0827

0.55 1000-250-100-30 6.2062 14.1175

0.5 1000-200-50-30 10.3525 17.6577

Standard 1000-500-250-30 3.8137 11.6349

Table 2: The derived network architecture under different

thresholds of correlation coefficient for USPS dataset.

Threshold Network architecture
Training

error

Test

error

0.75 1000-975-950-30 2.0769 4.9900

0.7 1000-825-300-30 2.1622 5.0034

0.65 1000-650-175-30 2.4675 5.2466

0.6 1000-425-75-30 3.4843 6.3163

0.55 1000-200-50-30 5.0167 7.8166

0.5 1000-200-50-30 4.9150 7.6937

Standard 1000-500-250-30 2.2517 4.9890

Table 3: The derived network architecture under different

thresholds of correlation coefficient for Binary Alphadigits

dataset.

Threshold Network architecture
Training

error

Test

error

0.75 1000-1000-950-30 1.0767 28.6581

0.7 1000-925-725-30 1.4014 28.5264

0.65 1000-825-450-30 1.7354 29.6531

0.6 1000-675-325-30 2.5168 30.4159

0.55 1000-425-225-30 3.8307 31.8818

0.5 1000-250-200-30 5.1563 32.8270

Standard 1000-500-250-30 3.4705 31.0856

Table 4: The derived network architecture under different

thresholds of correlation coefficient for MFEAT dataset.

Threshold Network architecture
Training

error

Test

error

0.75 1000-1000-950-30 1.4950 6.7036

0.7 1000-900-600-30 1.5700 6.7838

0.65 1000-750-300-30 1.7540 6.8433

0.6 1000-575-225-30 1.9229 7.0369

0.55 1000-325-100-30 2.9155 7.9328

0.5 1000-200-50-30 5.6372 9.7033

Standard 1000-500-250-30 1.9039 6.9822

3.2 Experiment Results and Analysis

By using the parameter values obtained in the last

section, we can get the near optimal network archi-

tecture of four datasets from Table 1 to Table 4. For

MNIST, the selected network structure is 1000-650-

0 100 200 300 400 500
0.3

0.4

0.5

0.6

Node Number (MNIST)

C
o

rr
e

la
ti
o

n
 C

o
e

ff
ic

ie
n

t

10

50

100

300

500

0 100 200 300 400 500
0.3

0.4

0.5

0.6

Node Number (USPS)

C
o

rr
e

la
ti
o

n
 C

o
e

ff
ic

ie
n

t

10

50

100

300

500

0 100 200 300 400 500
0.3

0.4

0.5

0.6

Node Number (Binary Alphadigits)

C
o

rr
e

la
ti
o

n
 C

o
e

ff
ic

ie
n

t

10

50

100

300

500

0 100 200 300 400 500
0.3

0.4

0.5

0.6

Node Number (MFEAT)

C
o

rr
e

la
ti
o

n
 C

o
e

ff
ic

ie
n

t

10

50

100

300

500

NCTA 2016 - 8th International Conference on Neural Computation Theory and Applications

58

375-30; for USPS, it is 1000-650-175-30; for Binary

Alphadigits, it is 1000-825-450-30, and for MFEAT,

it is 1000-750-300-30. In order to verify our method

and evaluate these results, reconstruction error and

the correlation coefficient between the distance

matrices of high dimensional raw data and the low

dimensional data (code) are used.

3.2.1 Evaluation using Reconstruction Error

Reconstruction error is a primary evaluation index of

the autoencoder performance. It is calculated by first

decoding these low dimensional codes to obtain the

reconstructed high dimensional data, followed by

computing the error between the reconstructed data

and the original data. We calculated the test error

from the test data using mean square errors (MSE).

Because the proposed method is used to adjust

both the number of the nodes in the 2nd and the 3rd

hidden layers, we firstly fix the number of the nodes

of the 2nd or the 3rd layer, and then change the

number of the nodes of the other layer. Taking the

test error curves of MNIST dataset shown in Figure

6 as an example, the curve in the left graph is pro-

duced under the condition that the number of the

nodes of the 3rd hidden layer is fixed to 375 and the

number of the nodes of the 2nd hidden layer increas-

es from 50 to 1000 with step 50. The curve in the

right graph is produced under the condition that the

number of the nodes of the 2nd hidden layer is fixed

to 650 and the number of the nodes of the 3rd hid-

den layer increases from 50 to 1000 by 50. In the

Figure 6, the red dot represents the selected optimal

number of the nodes of the current layer. It is found

that the test error curves of the 2nd and the 3rd layer

are both a relatively smooth curve that shows a

downward trend. With the increasing of the number

of the nodes, the slope becomes smaller. The select-

ed optimal number of nodes is located in the rela-

tively flat area of the curves, which indicates that the

method finds a near optimal network architecture for

the MNIST dataset.

The test error curves of USPS dataset are shown

in Figure 7, the test error curves of Binary Alphadig-

its dataset are shown in Figure 8, and the test error

curves of MFEAT dataset are shown in Figure 9. It

is found that the trend of those curves and the loca-

tion of the selected optimal node number are both

very similar to these of the MNIST dataset. So, the

proposed method can also find the near optimal

network architecture for the USPS, Binary Alpha

and MFEAT datasets.

Figure 6: The test error curves of MNIST dataset.

3.2.2 Evaluation using Correlation
Coefficient between Distance Matrices

In this subsection, the correlation coefficient be-

tween the distance matrices of high dimensional

input data and low dimensional code is used to eval-

uate the proposed method. The distance matrix of

high dimensional input data indicates the distribu-

tion relationship between the input samples. And the

distance matrix of low dimensional code indicates

the distribution relationship between the samples

after the dimension reduction. It is obvious that we

can evaluate the network architecture by comparing

the correlation between the two distance matrices.

After the distance matrices are computed using the

Euclidean distance, the Pearson's correlation coeffi-

cient (Stigler, 1989) between them is computed.

High value of the correlation coefficient infers ap-

propriate network architecture.

Figure 7: The test error curves of USPS dataset.

Figure 8: The test error curves of Binary Alphadigits

dataset.

0 500 1000
10

12

14

16

18

Selected Node

Number

Node Number (2nd layer)

T
e

s
t

E
rr

o
r

0 500 1000
10

12

14

16

18

Selected Node

Number

Node Number (3rd layer)

T
e

s
t

E
rr

o
r

0 500 1000
5

5.5

6

6.5

7

7.5

8

Selected Node

Number

Node Number (2nd layer)

T
e
s
t

E
rr

o
r

0 500 1000
4.5

5

5.5

6

6.5

7

7.5

8

Selected Node

Number

Node Number (3rd layer)

T
e
s
t

E
rr

o
r

0 500 1000
28

30

32

34

36

38

Selected Node

Number

Node Number (2nd layer)

T
e

s
t

E
rr

o
r

0 500 1000
28

30

32

34

36

38

Selected Node

Number

Node Number (3rd layer)

T
e

s
t

E
rr

o
r

Determining the Near Optimal Architecture of Autoencoder using Correlation Analysis of the Network Weights

59

Figure 9: The test error curves of MFEAT dataset.

Figure 10: The correlation coefficient curves of the dis-

tance matrices of MNIST dataset.

Figure 11: The correlation coefficient curves of the dis-

tance matrices of USPS dataset.

Figure 12: The correlation coefficient curves of the dis-

tance matrices of Binary Alphadigits dataset.

The correlation coefficient curves of the distance

matrices of MNIST, USPS, Binary Alphadigits and

MFEAT datasets are shown in Figure 10, Figure 11,

Figure 12 and Figure 13 respectively. From the

figures, it can be seen that for all the four datasets

the curves of the 3rd layer on the right side have the

similar trend: in the early stage of the increasing of

the node number, the correlation coefficient

Figure 13: The correlation coefficient curves of the dis-

tance matrices of MFEAT dataset.

increases rapidly and the slope of the curves is high,

and after the above stage, the curves show a slow

rise or a downward trend, and the selected optimal

nodes number is located in the relatively flat area of

the curves. It is also found that there is no obvious

common trend of the correlation curves of the 2nd

hidden layer for these four datasets. The correlation

coefficient of the 2nd layer is not directly related

with the output of the network. This may be why

there is no common pattern in the correlation curves

of the 2nd layer.

4 CONCLUSIONS

In this paper, we propose an architecture optimiza-

tion method for autoencoder. The method can adap-

tively adjust the number of the nodes of the hidden

layers to find a near optimal architecture of the net-

work for different datasets. The method is based on

the correlation analysis of the network weights after

RBM initialization. The experimental results show

that the proposed method can automatically produce

the near optimal architecture for the autoencoder. In

future work, we plan to analyze the relationship

between the size of the input data and the number of

the nodes in the 1st hidden layer, so that the archi-

tecture optimization of the whole network can be

realized.

ACKNOWLEDGEMENTS

This work is supported by the National Natural Sci-

ence Foundation of China (Grants No. 61272213)

and the Fundamental Research Funds for the Central

Universities (Grants No. lzujbky-2016-k07).

0 500 1000
6.5

7

7.5

8

8.5

9

9.5

Selected Node

Number

Node Number (2nd layer)

T
e
s
t

E
rr

o
r

0 500 1000
6.5

7

7.5

8

8.5

9

9.5

10

Selected Node

Number

Node Number (3rd layer)
T

e
s
t

E
rr

o
r

0 500 1000
0.7

0.72

0.74

0.76

0.78

Selected Node

Number

Node Number (2nd layer)

C
o

rr
e
la

ti
o

n
 C

o
e

ff
ic

ie
n

t

0 500 1000
0.4

0.5

0.6

0.7

0.8

Selected Node

Number

Node Number (3rd layer)

C
o

rr
e
la

ti
o

n
 C

o
e

ff
ic

ie
n

t

0 500 1000
0.8

0.82

0.84

0.86

0.88

Selected Node

Number

Node Number (2nd layer)

C
o
rr

e
la

ti
o
n
 C

o
e
ff

ic
ie

n
t

0 500 1000
0.7

0.75

0.8

0.85

0.9

0.95

Selected Node

Number

Node Number (3rd layer)

C
o
rr

e
la

ti
o
n
 C

o
e
ff

ic
ie

n
t

0 500 1000
0.8

0.81

0.82

0.83

0.84

0.85

0.86

Selected Node

Number

Node Number (2nd layer)

C
o

rr
e
la

ti
o

n
 C

o
e

ff
ic

ie
n

t

0 500 1000
0.72

0.74

0.76

0.78

0.8

0.82

0.84

Selected Node

Number

Node Number (3rd layer)

C
o

rr
e
la

ti
o

n
 C

o
e

ff
ic

ie
n

t

0 500 1000
0.935

0.94

0.945

0.95

0.955

0.96

Selected Node

Number

Node Number (2nd layer)

C
o

rr
e
la

ti
o

n
 C

o
e

ff
ic

ie
n

t

0 500 1000
0.91

0.92

0.93

0.94

0.95

0.96

0.97

Selected Node

Number

Node Number (3rd layer)

C
o

rr
e
la

ti
o

n
 C

o
e

ff
ic

ie
n

t

NCTA 2016 - 8th International Conference on Neural Computation Theory and Applications

60

REFERENCES

Chicco, D., Sadowski, P., & Baldi, P. 2014. Deep autoen-

coder neural networks for gene ontology annotation

predictions. In Proceedings of the 5th ACM Confer-

ence on Bioinformatics, Computational Biology, and

Health Informatics. ACM. pp. 533-540.

Ciresan, D., Meier, U., & Schmidhuber, J. 2012. Multi-

column deep neural networks for image classification.

In Computer Vision and Pattern Recognition (CVPR),

2012 IEEE Conference. IEEE. pp. 3642-3649.

Collobert, R., & Weston, J. 2008. A unified architecture

for natural language processing: Deep neural networks

with multitask learning. In Proceedings of the 25th in-

ternational conference on Machine learning. ACM.

pp. 160-167.

Fahlman, S. E. and Lebiere, C., 1990, The cascade-

correlation learning architecture, in Advances in NIPS,

edited by D. S. Touretzky, vol. 2, pp. 524–532.

Fiszelew, A., Britos, P., Ochoa, A., Merlino, H., Fernán-

dez, E., & García-Martínez, R. 2007. Finding optimal

neural network architecture using genetic algorithms.

Advances in computer science and engineering re-

search in computing science, 27, pp. 15-24.

Hassibi, B., Stork, D. G., & Wolff, G. J. 1993. Optimal

brain surgeon and general network pruning. In Neural

Networks, 1993., IEEE International Conference.

IEEE. pp. 293-299.

Hinton, G. E., & Salakhutdinov, R. R. 2006. Reducing the

dimensionality of data with neural networks. Science,

313(5786), pp. 504-507.

Laurens van der Maaten, Eric Postma & Jaap van den

Herik. 2009. Dimensionality reduction: A comparative

review. Tilburg, Netherlands: Tilburg Centre for Crea-

tive Computing, Tilburg University, Technical Report:

2009-005.

LeCun, Y., Denker, J. S., Solla, S. A., Howard, R. E., &

Jackel, L. D. 1989. Optimal brain damage. In Advanc-

es in NIPS, vol. 2, pp. 598-605.

Lee, T. C. 2012. Structure level adaptation for artificial

neural networks (Vol. 133). Springer Science & Busi-

ness Media.

Levine, S., Pastor, P., Krizhevsky, A., & Quillen, D. 2016.

Learning Hand-Eye Coordination for Robotic Grasp-

ing with Deep Learning and Large-Scale Data Collec-

tion. arXiv preprint arXiv:1603.02199.

Mozer, M. C., & Smolensky, P.. Skeletonization. 1989. A

technique for trimming the fat from a network via rel-

evance assessment. In Advances in Neural Information

Processing Systems. pp. 107-115.

Reed, R. 1993. Pruning algorithms-a survey. IEEE Trans-

actions on Neural Networks, 4(5), pp. 740-747.

Reitermanova, Z. 2008. Feedforward neural networks–

architecture optimization and knowledge extraction.

WDS’08 proceedings of contributed papers, Part I, pp.

159-164.

Stigler, S. M. 1989. Francis Galton's account of the inven-

tion of correlation.Statistical Science, pp. 73-79.

Van den Oord, A., Dieleman, S., & Schrauwen, B. 2013.

Deep content-based music recommendation. In Ad-

vances in Neural Information Processing Systems. pp.

2643-2651.

Determining the Near Optimal Architecture of Autoencoder using Correlation Analysis of the Network Weights

61

