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Abstract: Currently, deep learning has already been successfully applied in many fields such as image recognition, 

recommendation systems and so on. Autoencoder, as an important deep learning model, has attracted a lot 

of research interests. The performance of the autoencoder can greatly be affected by its architecture. How-

ever, how to automatically determine the optimal architecture of the autoencoder is still an open question. 

Here we propose a novel method for determining the optimal network architecture based on the analysis of 

the correlation of the network weights. Experiments show that for different datasets the optimal architecture 

of the autoencoder may be different, and the proposed method can be used to obtain near optimal network 

architecture separately for different datasets. 

1 INTRODUCTION 

Since the concept of deep learning was proposed 

(Hinton and Salakhutdinov, 2006), it has become 

one of the hottest research topics in the machine 

learning field. And it has been widely applied in 

various fields, such as natural language processing 

(NLP) (Collobert and Weston, 2008), image recog-

nition (Ciresan et al., 2012), recommendation sys-

tems (Van den Oord et al., 2013), bioinformatics 

(Chicco et al., 2014), and so on. The successful 

application of these research projects in the industry 

also illustrates the great advantage of deep learning 

(Levine et al., 2016). 

Deep learning is a method based on several mod-

els of neural networks (autoencoder and MLP). 

However, although the performance of deep learning 

is greatly dependent on the network architecture, the 

current deep learning methods can't adaptively ad-

just the number of layers and the nodes of each lay-

er. In fact, the same problem also exists in the early 

age of the research on neural network, so many 

sophisticated methods have been put forward to 

optimize architecture of neural network (Reiter-

manova, 2008). 

The most common approach is brute-force meth-

od (Reed, 1993). This method tries all kinds of net-

work architecture in a reasonable range, and finally 
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finds an optimal architecture that is suitable for 

training datasets. Because of the high computational 

complexity, people seldom use this method directly. 

The pruning algorithms (Reed, 1993) is another 

method, its principle is to remove the redundant 

parts of network through certain indicators. The 

concrete implementation of pruning method is as 

follows: weight saliency (Mozer et al.. 1989), opti-

mal brain damage (OBD) (LeCun et al., 1989), op-

timal brain surgeon (OBS) (Hassibi et al., 1993), etc. 

The only difference among these methods is to use 

different strategies for computing indicators. Since 

indicator calculation is based on error function, the 

main drawback of pruning methods is high computa-

tional complexity. Network construction technique 

(Lee, 2012) can also be used to optimize architec-

ture. It begins with a minimal network, then dynam-

ically adds and trains hidden units until a satisfacto-

ry architecture is reached. The cascade correlation 

method (Fahlman and Lebiere, 1989) is a famous 

representative of this technique. This method has the 

following advantages: training is fast, being useful 

for incremental learning, results can be cached, and 

so on. But the disadvantages are also obvious: its 

candidate nodes are independent, and the interac-

tions between related nodes are not considered. So it 

is only suitable for networks with relatively simple 

architecture. There are many other techniques, for 

example, probability optimization techniques and 

regularization techniques (Reitermanova, 2008). 

Ma, H., Lu, Y. and Zhang, H.
Determining the Near Optimal Architecture of Autoencoder using Correlation Analysis of the Network Weights.
DOI: 10.5220/0006039000530061
In Proceedings of the 8th International Joint Conference on Computational Intelligence (IJCCI 2016) - Volume 3: NCTA, pages 53-61
ISBN: 978-989-758-201-1
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

53



However, these methods are also only suitable for 

optimizing simple network, for example, the net-

work with one hidden layer and small number of 

nodes. Recently, genetic algorithms are widely used 

to optimize network architecture and weights (Fisze-

lew et al., 2007). But its slow convergence rate is a 

very influential factor. So corresponding to complex 

deep learning models with many hidden layers, new 

methods need to be developed for the architecture 

optimization.  

The proposed architecture optimization method 

in the paper is specifically aimed at the complex 

deep learning model with many hidden layers and a 

large number of nodes, which can adjust the number 

of the nodes in multiple hidden layers. To improve 

the efficiency, the optimization is based on the cor-

relation analysis of the node weights initialized us-

ing the Restricted Boltzmann Machine (RBM) (Hin-

ton and Salakhutdinov, 2006). Different from the 

traditional methods, the time-consuming network 

training process is avoided in the proposed architec-

ture optimization method. 

The proposed method has the following ad-

vantages: First, it can be well applied to the complex 

network architecture optimization. Because the 

computing unit of the method is the set of multiple 

nodes rather than a single node, the method can be 

easily extended for the network with a lot of layers. 

Second, the proposed architecture optimization is 

based on the correlation analysis between the 

weights of the nodes after initialization rather than 

the error function after training, the efficiency is 

greatly improved. 

The rest of paper is organized as follows. In Sec-

tion 2, we first briefly introduce the working flow of 

deep learning model and the mechanism of RBM in 

network initialization. And then we discuss in detail 

about the calculation of correlation coefficient in 

Subsection 2.1. At last, Subsection 2.2 shows the 

detailed steps of method about optimizing multiple 

hidden layer nodes. In Section 3, we present the 

experimental results through analyzing and compar-

ing different datasets. Finally, Section 4 draws con-

clusions and discusses the future research direction. 

2 ARCHITECTURE  

OPTIMIZATION METHOD 

Autoencoder, as a kind of deep learning model, is 

often used for dimensionality reduction (Laurens 

van der Maaten et al., 2009). Our proposed method 

is based on this model framework. It consists of the 

encoder module which transforms high dimensional 

input data into low dimensional output data (code), 

and the decoder module which reconstructs the high 

dimensional data from the code. The construction of 

the autoencoder is mainly concentrated on the en-

coder module because the decoder module can be 

approximately regarded as transposition of the en-

coder module. Our method is to optimize the struc-

ture of the encoder module. In the training of deep 

learning, RBM is used to initialize the weights of the 

nodes. The usage of RBM is a significant improve-

ment of the deep learning model because it is diffi-

cult to optimize the weights of the nodes of the mul-

tiple hidden layers without good initial weights 

(Hinton and Salakhutdinov, 2006). 

RBM is a kind of stochastic two-layer network 

containing a visible layer corresponding to the input 

and a hidden layer corresponding to the output. The 

two layers are fully connected, that is to say, each 

node of the hidden layer connects to all the nodes of 

the visible layer, but the nodes in the same layer 

cannot connect to each other. In the initialization 

process, the network will be divided into multiple 

RBMs and the output of previous RBM will become 

the input of the next RBM, so as to achieve the ex-

traction of input data information layer by layer.  

The second step is the weights fine-tuning after 

RBM initialization. Using the traditional weights 

fine-tuning methods, for example, backpropagation  

(BP), can fine-tune weights by minimizing the data 

reconstruction error.  

The proposed network architecture optimization 

method working on the above framework is depicted 

in Figure 1. In the initial stage, a simple network 

with very small number of nodes in each hidden 

layer is created, which corresponds to the architec-

ture of nodes connected by solid lines in Figure 1. 

The architecture optimization is achieved by dynam-

ic growth of the number of the nodes of the hidden 

layers, where the added nodes correspond to the 

nodes connected by dotted lines in Figure 1. At each 

step, the same number of nodes (Ni nodes) are added 

to the target layer, then the correlation analysis on 

the weights of all the nodes (the weights of the node 

stand for the weights between all the nodes of the 

previous layer and the current node) in the layer is 

carried out. In our method, Ni nodes which have the 

smallest correlation with the rest of the nodes are 

selected from all the nodes. The correlation coeffi-

cient between the selected nodes and the rest of the 

nodes are computed (See Subsection 2.1 for details). 

At the end, when the correlation coefficient is great-

er than a given threshold, the dynamic growth of the 

number of the nodes is stopped and the number of 
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the nodes for the layer is determined. For the next 

hidden layer, the above process is repeated. Detailed 

implementation is introduced in Subsection 2.2. 

 

Figure 1: Illustration of the architecture optimization. The 

nodes connected by solid lines are the original nodes. The 

nodes connected by the dotted lines are the added nodes. 

2.1 Correlation Coefficient between 
Two Sets of the Nodes 

The definition of correlation coefficient between two 

sets of nodes is the theoretical basis of our method. 

The correlation coefficient is used to analyze the 

relationship between one group of nodes called 

Main_Nodes and the other group of nodes called 

Other_Nodes in the same layer. In the first step, we 

get S nonzero eigenvalues called SltedValues and 

the corresponding eigenvectors called SltedVectors 

of the weights of the Main_Nodes by principal com-

ponent analysis (PCA), and then construct the prin-

cipal component space (PCS) using the SltedVectors 

(Figure 2). The unit vectors of the SltedVectors are 

represented as  {�⃗� 1, �⃗� 2, … , �⃗� S}, while the correspond-

ing eigenvalues called SltedValues are represented 

as {1, 2, …, S }. If the weights of Other_Nodes 

are represented as 𝐼 , the projection of  𝐼  to the prin-

cipal component space, represented as 𝐼𝑃⃗⃗  ⃗ , can be 

derived from: 

 𝐼𝑃⃗⃗  ⃗ = ∑ (𝐼 ∙ �⃗� 𝑖)�⃗� 𝑖
𝑆
𝑖=1  (1) 

The vertical component 𝐼𝑉⃗⃗  ⃗ is defined as: 

𝐼𝑉⃗⃗  ⃗ = 𝐼 − 𝐼𝑃⃗⃗  ⃗ (2) 

Given 𝐼𝑃⃗⃗  ⃗ and 𝐼𝑉⃗⃗  ⃗, we can calculate the main correla-

tion coefficient by the following formula: 

corrmain =
|𝐼𝑃⃗⃗  ⃗|

|𝐼𝑃⃗⃗  ⃗| + |𝐼𝑉⃗⃗  ⃗|
 (3) 

The above formula only concerns with the direction 

relations between 𝐼  and PCS, while the SltedValues 

computed from Main_Nodes are ignored. So another 

correlation coefficient is defined in formula (4) 

which gives main components more weights. For the 

correlation between 𝐼𝑃⃗⃗  ⃗ and �⃗⃗�  which is the dominant 

component, the largest eigenvalue is used as the 

weight. If the directions of  𝐼𝑃⃗⃗  ⃗ and �⃗⃗�  is more con-

sistent (the greater value of |𝐼𝑃𝐷
⃗⃗ ⃗⃗  ⃗|), the correlation 

coefficient is greater. 

corrtune =
∑ (𝐼 ∙ �⃗� 𝑖)𝜆𝑖

𝑆
𝑖=1

∑ 𝜆𝑖
𝑆
𝑖=1 |𝐼 |

 (4) 

 

Figure 2: Illustration of correlation coefficient. The princi-

pal component space (PCS) is constructed from SltedVec-

tors. �⃗� is the vertical direction to the principal component 

space. �⃗⃗� is the dominant component.  𝐼 is the weights of the 

Other_Nodes. 𝐼𝑉⃗⃗  ⃗ and 𝐼𝑃⃗⃗  ⃗ are the projections of 𝐼 on �⃗� and 

PCS respectively. 𝐼𝑃𝐷
⃗⃗⃗⃗⃗⃗ is the projection of 𝐼𝑃⃗⃗  ⃗to �⃗⃗� . 

The overall correlation coefficient is given by the 

following formula: 

corr = corrmain ∗ (α + (1 − α) ∗ corrtune) (5) 

where α stands for the ratio parameter. In order to 

determine the value of α, we conduct experiments 

by changing the value of α from 0 to 1. It is found 

that α = 0.8 is a good choice. 

The pseudo code for calculating the correlation 

coefficient between two given node sets is shown in 

Figure 3. 

2.2 Architecture Optimization 

In this subsection, how the correlation coefficient is 

used to realize architecture optimization is de-

scribed. The process of architecture optimization is 

divided into two steps, the first step is to compute 

the correlation coefficient, and the second step is to 

control the growth of the nodes by comparing the 

correlation coefficient with a given threshold. 

In the first step, RBM initialization on the cur-

rent hidden layer containing both the added nodes 

and the original nodes will be carried out in order to 

obtain the weights of the nodes. Then the correlation 
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Figure 3: The pseudo code of calculating correlation coefficient. 

coefficient of the weights of the layer is computed as 

introduced in Subsection 2.1.  

In the second step, the architecture optimization 

on the autoencoder model is carried out. The pseudo 

code for the architecture optimization is shown in 

Figure 4. 

3 EXPERIMENTS 

The method is implemented using Matlab. In order 

to verify the performance of the proposed method, 

the following datasets are used: MNIST, USPS, 

Binary Alphadigits and MFEAT. The first three 

datasets are available at: http://www.cs.nyu.edu/ 

~roweis/data.html. The  MFEAT dataset is available 

at: http://archive.ics.uci.edu/ml/datasets.html.  

The MNIST dataset is a dataset of handwritten 

digits (0-9), it contains 70000 images of size 2828. 

Considering the high computational cost, 250 sam-

ples of each class are selected as the training set, and 

50 samples of each class are selected as the test set. 

The USPS dataset is another handwritten digits 

dataset which contains images of size 1616 and 

there are 1100 samples in each class. As same as 

MNIST, 250 samples of each class are selected as 

the training set, and other 50 samples of each class 

are selected as the test set. 

The Binary Alphadigits dataset is a handwritten 

alphabet and digits dataset. It contains a total of 36 

classes from “1” to “9”, and “A” to “Z", the size of 

the image is 2016 and each class contains 39 sam-

ples. For 39 images of each class, 33 images are 

used as the training set and 6 images as the test set. 

The MFEAT dataset is also a handwritten nu-

merals dataset which contains ten classes from "0" to 

"9". The size of image is 1615 and each class con-

tains 200 samples. For 200 images of each class, 150 

images are used as the training set and 50 other 

images as the test set. 

CalculateCorr(Main_Nodes, Other_Nodes,  ) {

   

   // Input: Main_Nodes: the input set of the nodes used to construct the 

   // Other_Nodes: the input set of the Nodes projected to the                 

   //   : the ratio parameter

   // Output: the correlation coefficient between Main_Nodes and Other_Nodes

   // Notes: the weights attribute of a node stands for the weights between the node and all 

   //        the nodes of the previous layer, M stands for the number of the nodes of the 

   //        previous layer.

   

   Main_NodeWeights[1...N1, 1...M]   Main_Nodes.weights;

   Other_NodeWeights[1...N2,1...M]   Other_Nodes.weights;

   [Eigenvectors[1...M,1...M], Eigenvalues[1...M]]   PCA(Main_NodeWeights);

   [SltedVectors[1...M,1...S], SltedValues[1...S]]   remove zero eigenvalues and the    
      corresponding eigenvectors from [Eigenvectors, Eigenvalues];

   for i   1 to N2 do {

      PerRow_Other_Normalized   normalize each row of Other_NodeWeights;

      for j   1 to S do {

   

         Parallel_Main(j,:)                                                     ;

      

         

         Parallel_Tune(j)                                           ;

      }

      Parallel   the sum of the Parallel_Main by rows;

      Vertical   Other_NodeWeights(i,:) - Parallel;

      corr_main                     ;

      corr_tune                              ;

      Result(i)                                ;

   }

   return the mean of Result;

  }
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Figure 4: The pseudo code of architecture optimization.

The initial network architecture is set to 1000-

200-50-30 in all the experiments. The size of the 1st 

hidden layer  is fixed at 1000, and the  number of the 

nodes in the 2nd and the 3rd hidden layers are in-

creased from the initial sizes which are 200 and 50 

respectively to determine the near optimal number of 

the nodes in the experiments. 

3.1 Parameter Selection 

In this subsection, the effects of different RBM 

training epochs on our method are compared using 

multiple datasets, and a good threshold of the corre-

lation coefficient is derived. The final autoencoder 

architecture generated through our method is com-

pared with the standard architecture (1000-500-250-

30) used in (Hinton and Salakhutdinov, 2006). The 

parameters of RBM are listed below: learning rate 

for weights 𝜀𝑤=0.1, learning rate for biases of visi-

ble units 𝜀𝑣𝑏=0.1, learning rate for biases of hidden 

units 𝜀ℎ𝑏=0.1, the weight cost is 0.0002, the initial 

momentum is 0.5, the final momentum is 0.9, and 

learning is done with 1-step Contrastive Divergence. 

At the same time, we adjust the training epoch of 

backpropagation from 200 to 20, because it is found 

that in the standard autoencoder framework, the 

reconstruction error becomes steady when the train-

ing epoch reaches above 15.  

In order to analyze the relationship between the 

correlation coefficients and the number of nodes, we 

first fix nodes number of the 2nd hidden layer to 

500, then increase the number of the nodes of the 

3nd hidden layer from 50 to 500, and the number of 

nodes added at each step is 25. We also set 5 differ-

ent RBM training epochs, 10, 50, 100, 300 and 500, 

respectively. The results are shown in Figure 5. 

As can be seen from Figure 5, under the different 

RBM training epochs, the correlation coefficient 

curve has a similar trend, in the initial stage of in-

creasing the number of nodes, the correlation coeffi- 
 

ArchitectureOptimization(Nodes2, n2, Nodes3, n3, max_n2, nInc, TH) {

   

   // Nodes2: the nodes of the 2nd hidden layer

   // n2: the initial number of the nodes of the 2nd hidden layer

   // Nodes3: the nodes of the 3rd hidden layer

   // n3: the initial number of the nodes of the 3rd hidden layer

   // max_n2: the max number of the nodes of the 2nd hidden layer

   // nInc: the increment of the number of the nodes at each step

   // TH: the threshold of the correlation coefficient

      

   Nodes2.Num_Nodes   n2;

   Nodes3.Num_Nodes   n3;

   OptimizeLayer(Nodes2, max_n2, nInc, TH);

   // max_n3 is the max number of the nodes of the 3rd hidden layer;

   max_n3   Nodes2.Num_Nodes; 
   OptimizeLayer(Nodes3, max_n3, nInc, TH);

}

OptimizeLayer(Nodes, max_num_nodes, nInc, TH) {

   while Nodes.Num_Nodes < max_num_nodes do {

      Nodes.Num_Nodes   Nodes.Num_Nodes + nInc;

      initialize the weights of the Nodes using RBM;

      for i   1 to Nodes.Num_Nodes do {

         // calculating the correlation coefficient between 

         // each node and the remaining nodes 

         Corr_Each[i]   CalculateCorr(Nodes-{Nodes[i]}, {Nodes[i]}, 0.8) ;

      }

      SltedNodes   the nInc nodes having the largest Corr_Each values;

      RemNodes   Nodes - SltedNodes;

      corr   CalculateCorr(RemNodes, SltedNodes, 0.8);
      if corr > TH then {

         Nodes   Nodes -  SltedNodes;

         break;

      }

   }

}
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Figure 5: The correlation coefficient curves of MNIST, 

USPS, Binary Alphadigits and MFEAT datasets, under 

different RBM training epochs. 

cient increases rapidly with a large slope value. 

When the number of nodes reaches about 250, the 

slope of the curve becomes small, and the correlation  

coefficient curve is close to steady. In order to bal-

ance computational complexity and reliability of the 

results, the value of RBM training epochs is set to 

300. The following experiments are all based on this 

epoch value. From Figure 5, it is also found that the 

threshold of the correlation coefficient will have a 

great impact on the final network architecture. So 

Table 1, Table 2, Table 3 and Table 4 are used to 

show the derived network architecture under differ-

ent thresholds. In tables, "Threshold" stands for the 

threshold of correlation coefficient; "Network archi-

tecture", "Training error" and "Test error" are the 

experiment results of our method. The last row of 

every table is the standard autoencoder architecture. 

From Table 1 to Table 4, we can find that differ-

ent correlation coefficient thresholds correspond to 

different derived network architecture. With the 

increasing of the correlation coefficient threshold, 

the number of the nodes of the 2nd and the 3rd layer 

increases, and the training error and the test error 

both decrease. It can be seen from the tables that a 

value of 0.65 for the correlation coefficient divides 

the thresholds corresponding to high and low error 

values. So it is reasonable to select 0.65 as an appro-

priate value for the threshold of the correlation coef-

ficient. 

Based on the analysis of the experiment results, 

the RBM training epoch is set to 300 and the thresh-

old of correlation coefficient is set to 0.65. From 

Table 1 to Table 4, it is also found that the training 

error and the test error have the similar trend with 

the increasing of the correlation coefficient threshold, 

so only the test errors are used to evaluate the exper-

iments results in Subsection 3.2.1. 

Table 1: The derived network architecture under different 

thresholds of correlation coefficient for MNIST dataset. 

Threshold Network architecture 
Training 

error 

Test  

error 

0.75 1000-975-950-30 3.1427 10.8150 

0.7 1000-850-425-30 3.3946 11.1748 

0.65 1000-650-375-30 3.4251 11.1861 

0.6 1000-425-225-30 4.0720 12.0827 

0.55 1000-250-100-30 6.2062 14.1175 

0.5 1000-200-50-30 10.3525 17.6577 

Standard  1000-500-250-30 3.8137 11.6349 

Table 2: The derived network architecture under different 

thresholds of correlation coefficient for USPS dataset. 

Threshold Network architecture 
Training 

error 

Test 

error 

0.75 1000-975-950-30 2.0769 4.9900 

0.7 1000-825-300-30 2.1622 5.0034 

0.65 1000-650-175-30 2.4675 5.2466 

0.6 1000-425-75-30 3.4843 6.3163 

0.55 1000-200-50-30 5.0167 7.8166 

0.5 1000-200-50-30 4.9150 7.6937 

Standard  1000-500-250-30 2.2517 4.9890 

Table 3: The derived network architecture under different 

thresholds of correlation coefficient for Binary Alphadigits 

dataset. 

Threshold Network architecture 
Training 

error 

Test 

error 

0.75 1000-1000-950-30 1.0767 28.6581 

0.7 1000-925-725-30 1.4014 28.5264 

0.65 1000-825-450-30 1.7354 29.6531 

0.6 1000-675-325-30 2.5168 30.4159 

0.55 1000-425-225-30 3.8307 31.8818 

0.5 1000-250-200-30 5.1563 32.8270 

Standard  1000-500-250-30 3.4705 31.0856 

Table 4: The derived network architecture under different 

thresholds of correlation coefficient for MFEAT dataset. 

Threshold Network architecture 
Training 

error 

Test 

error 

0.75 1000-1000-950-30 1.4950 6.7036 

0.7 1000-900-600-30 1.5700 6.7838 

0.65 1000-750-300-30 1.7540 6.8433 

0.6 1000-575-225-30 1.9229 7.0369 

0.55 1000-325-100-30 2.9155 7.9328 

0.5 1000-200-50-30 5.6372 9.7033 

Standard  1000-500-250-30 1.9039 6.9822 

3.2 Experiment Results and Analysis 

By using the parameter values obtained in the last 

section, we can get the near optimal network archi-

tecture of four datasets from Table 1 to Table 4. For 

MNIST, the selected network structure is 1000-650-

0 100 200 300 400 500
0.3

0.4

0.5

0.6

Node Number (MNIST)

C
o

rr
e

la
ti
o

n
 C

o
e

ff
ic

ie
n

t

 

 

10

50

100

300

500

0 100 200 300 400 500
0.3

0.4

0.5

0.6

Node Number (USPS)

C
o

rr
e

la
ti
o

n
 C

o
e

ff
ic

ie
n

t

 

 

10

50

100

300

500

0 100 200 300 400 500
0.3

0.4

0.5

0.6

Node Number (Binary Alphadigits)

C
o

rr
e

la
ti
o

n
 C

o
e

ff
ic

ie
n

t

 

 

10

50

100

300

500

0 100 200 300 400 500
0.3

0.4

0.5

0.6

Node Number (MFEAT)

C
o

rr
e

la
ti
o

n
 C

o
e

ff
ic

ie
n

t

 

 

10

50

100

300

500

NCTA 2016 - 8th International Conference on Neural Computation Theory and Applications

58



375-30; for USPS, it is 1000-650-175-30; for Binary 

Alphadigits, it is 1000-825-450-30, and for MFEAT, 

it is 1000-750-300-30. In order to verify our method 

and evaluate these results, reconstruction error and 

the correlation coefficient between the distance 

matrices of high dimensional raw data and the low 

dimensional data (code) are used. 

3.2.1 Evaluation using Reconstruction Error 

Reconstruction error is a primary evaluation index of 

the autoencoder performance. It is calculated by first 

decoding these low dimensional codes to obtain the 

reconstructed high dimensional data, followed by 

computing the error between the reconstructed data 

and the original data. We calculated the test error 

from the test data using mean square errors (MSE). 

Because the proposed method is used to adjust 

both the number of the nodes in the 2nd and the 3rd 

hidden layers, we firstly fix the number of the nodes 

of the 2nd or the 3rd layer, and then change the 

number of the nodes of the other layer. Taking the 

test error curves of MNIST dataset shown in Figure 

6 as an example, the curve in the left graph is pro-

duced under the condition that the number of the 

nodes of the 3rd hidden layer is fixed to 375 and the 

number of the nodes of the 2nd hidden layer increas-

es from 50 to 1000 with step 50. The curve in the 

right graph is produced under the condition that the 

number of the nodes of the 2nd hidden layer is fixed 

to 650 and the number of the nodes of the 3rd hid-

den layer increases from 50 to 1000 by 50. In the 

Figure 6, the red dot represents the selected optimal 

number of the nodes of the current layer. It is found 

that the test error curves of the 2nd and the 3rd layer 

are both a relatively smooth curve that shows a 

downward trend. With the increasing of the number 

of the nodes, the slope becomes smaller. The select-

ed optimal number of nodes is located in the rela-

tively flat area of the curves, which indicates that the 

method finds a near optimal network architecture for 

the MNIST dataset. 

The test error curves of USPS dataset are shown 

in Figure 7, the test error curves of Binary Alphadig-

its dataset are shown in Figure 8, and the test error 

curves of MFEAT dataset are shown in Figure 9. It 

is found that the trend of those curves and the loca-

tion of the selected optimal node number are both 

very similar to these of the MNIST dataset. So, the 

proposed method can also find the near optimal 

network architecture for the USPS, Binary Alpha 

and MFEAT datasets. 

 

Figure 6: The test error curves of MNIST dataset. 

3.2.2 Evaluation using Correlation  
Coefficient between Distance Matrices 

In this subsection, the correlation coefficient be-

tween the distance matrices of high dimensional 

input data and low dimensional code is used to eval-

uate the proposed method. The distance matrix of 

high dimensional input data indicates the distribu-

tion relationship between the input samples. And the 

distance matrix of low dimensional code indicates 

the distribution relationship between the samples 

after the dimension reduction. It is obvious that we 

can evaluate the network architecture by comparing 

the correlation between the two distance matrices. 

After the distance matrices are computed using the 

Euclidean distance, the Pearson's correlation coeffi-

cient (Stigler, 1989) between them is computed. 

High value of the correlation coefficient infers ap-

propriate network architecture. 

 

Figure 7: The test error curves of USPS dataset. 

 

Figure 8: The test error curves of Binary Alphadigits 

dataset. 
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Figure 9: The test error curves of MFEAT dataset. 

 

Figure 10: The correlation coefficient curves of the dis-

tance matrices of MNIST dataset. 

 

Figure 11: The correlation coefficient curves of the dis-

tance matrices of USPS dataset. 

 

Figure 12: The correlation coefficient curves of the dis-

tance matrices of Binary Alphadigits dataset. 

The correlation coefficient curves of the distance 

matrices of MNIST, USPS, Binary Alphadigits and 

MFEAT datasets are shown in Figure 10, Figure 11, 

Figure 12 and Figure 13 respectively. From the 

figures, it can be seen that for all the four datasets 

the curves of the 3rd layer on the right side have the 

similar trend: in the early stage of the increasing of 

the    node    number,   the    correlation    coefficient 

 

Figure 13: The correlation coefficient curves of the dis-

tance matrices of MFEAT dataset. 

increases rapidly and the slope of the curves is high, 

and after the above stage, the curves show a slow 

rise or a downward trend, and the selected optimal 

nodes number is located in the relatively flat area of 

the curves. It is also found that there is no obvious 

common trend of the correlation curves of the 2nd 

hidden layer for these four datasets. The correlation 

coefficient of the 2nd layer is not directly related 

with the output of the network. This may be why 

there is no common pattern in the correlation curves 

of the 2nd layer. 

4 CONCLUSIONS  

In this paper, we propose an architecture optimiza-

tion method for autoencoder. The method can adap-

tively adjust the number of the nodes of the hidden 

layers to find a near optimal architecture of the net-

work for different datasets. The method is based on 

the correlation analysis of the network weights after 

RBM initialization. The experimental results show 

that the proposed method can automatically produce 

the near optimal architecture for the autoencoder. In 

future work, we plan to analyze the relationship 

between the size of the input data and the number of 

the nodes in the 1st hidden layer, so that the archi-

tecture optimization of the whole network can be 

realized.  
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