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Abstract: Building a system able to cope with various phenomena which falls under the umbrella of semantic similarity
is far from trivial. It is almost always the case that the performances of a system do not vary consistently or
predictably from corpora to corpora. We analyzed the source of this variance and found that it is related to
the word-pair similarity distribution among the topics in the various corpora. Then we used this insight to
construct a 4-module system that would take into consideration not only string and semantic word similarity,
but also word alignment and sentence structure. The system consistently achieves an accuracy which is very
close to the state of the art, or reaching a new state of the art. The system is based on a multi-layer architecture
and is able to deal with heterogeneous corpora which may not have been generated by the same distribution.

1 INTRODUCTION

Exhaustive language models are difficult to build be-
cause overcoming the effect of data sparseness re-
quires an infeasible amount of training data. In the
task of Semantic Text Similarity (STS)1, the systems
must quantifiably identify the degree of similarity be-
tween pairs of short pieces of text, like sentences.
On the basis of relatively small training corpora, an-
notated with a semantic similarity score obtained by
averaging the opinions of several annotators, an au-
tomatic system may learn to identify classes of sen-
tences which could be treated in the same way, as
their meaning is basically the same. It has been shown
that good results from STS systems may help to im-
prove the accuracy on related tasks, such as Para-
phrasing (Glickman and Dagan, 2004), Textual En-
tailment (Berant et al., 2012), Question Answering
(Surdeanu et al., 2011), etc.

However, building a system able to cope with var-
ious phenomena which fall under the umbrella of se-
mantic similarity is far from trivial. Various types of
knowledge must be considered when dealing with se-
mantic similarity, and the methodology of linking to-
gether different pieces of information is a matter of
research. It is almost always the case that the perfor-
mances of a system do not vary consistently or pre-
dictably from corpora to corpora. The STS corpora
used in STS competitions, and the task description
1http://ixa2.si.ehu.es/stswiki/index.php/Main_Page

papers (Agirre et al., 2012; Agirre et al., 2013; Agirre
et al., 2014; Agirre et al., 2015) testify that there is
no system that consistently scores the best across cor-
pora, and big variation of system performance may
occur.

The contribution of this paper consists of three-
fold: (1) we first investigate the variation of system
performance to alleviate the variances, (2) we propose
a multi-layer system to comprehensively handle dif-
ferent linguistic features coming from heterogeneous
source of data to predict the semantic similarity scores
between texts, and (3) we evaluate the system on all
available datasets for the task. To our best knowl-
edge, this is the first attempt to evaluate a system on
all datasets in STS task. The goal is to present a STS
system able to consistently achieve state of the art, or
near state-of-the-art result on all STS datasets from
2012 - 2015.

The heterogeneity of sources considered for these
corpora makes it difficult to maintain the hypothesis
of the same probability distribution of terms for train-
ing and testing, therefore we have to adapt our system
to handle this situation, which is better described as
a mixture of more or less independent and unknown
Gaussians. The system is modular having four prin-
cipal layers: (i) string similarity, (ii) semantic word
similarity, (iii) word alignment, and (iv) structural in-
formation. These are combined in order to build a
classifier which correspond satisfactorily to our goal.
To prove this, we present comparatively the results of
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our system against the top three results for each year
individually.

The paper continues as follows: in the next section
we present an extensive literature on semantic sim-
ilarity which proved instrumental in the building of
the actual system. In Section 3 we analyze the varia-
tion in system performance for STS. In Section 4 we
present the system based on four layers. Section 5 de-
scribes the experiment settings and Section 6 presents
the evaluation results. The paper ends with a section
dedicated to conclusions and further work.

2 RELATED WORK

The Semantic Text Similarity (STS) task has become
one of the most popular research topics in NLP. Two
main approaches have been widely used for tack-
ling this task, namely Distributional Semantic Models
(DSMs) and Knowledge-based similarity approaches.

Distributional Semantic Models (DSMs) is a fam-
ily of approaches based on the distributional hypoth-
esis (Harris, 1968), according to which the meaning
of a word is determined by the set of textual contexts
in which it appears. These models represent words
as vectors that encode the patterns of co-occurrences
of a word with other expressions extracted from a
large corpus of language (Sahlgren, 2006; Turney
et al., 2010). DSMs are very popular for tasks such
as semantic similarity. The different meanings of a
word are described in a space and words used in sim-
ilar contexts are represented by vectors (near) in this
space. On the basis of such methods, semantically
similar words will appear in points near the (seman-
tic) space. Textual contexts can be defined in different
ways, thus giving rise to different semantic spaces.

Knowledge-based similarity approaches quantify
the degree to which two words are semantically re-
lated using information drawn from semantic net-
works (Budanitsky and Hirst, 2006). Most of the
widely used measures (e.g. Leacock and Chodorow,
Wu and Palmer, Lin, and Jiang and Conrath, among
others) of this kind have been found to work well on
the WordNet taxonomy. All these measures assume
as input a pair of concepts, and return a value indi-
cating their semantic similarity. Though these mea-
sures have been defined between concepts, they can
be adapted into word-to-word similarity metrics by
selecting for any given pair of words those two mean-
ings that lead to the highest concept-to-concept simi-
larity.

If we focus on sentence to sentence similarity,
three prominent approaches are usually employed.
The first approach uses the vector space model

(Meadow, 1992) in which each text is represented as
a vector (bag-of-words). The similarity between two
given texts is computed by different distance/angel
measures, like cosine similarity, Euclidean, Jaccard,
etc. The second approach assumes that if two sen-
tences are semantically equivalent, we should be able
to align their words or expressions. The alignment
quality can serve as a similarity measure. This ap-
proach typically pairs words from two sentences by
maximizing the summation of the word similarity
of the resulting pairs (Mihalcea et al., 2006). The
last approach employs different measures (like lexi-
cal, semantic and syntactic) from several resources as
features to build machine learning models for train-
ing and testing (Bär et al., 2012; Šarić et al., 2012;
Shareghi and Bergler, 2013; Marsi et al., 2013; Vo
et al., 2014).

As for the specific case of measuring semantic
similarity between two given sentences, the Semantic
Textual Similarity (STS) tasks2 3 have been officially
organized and have received an increasing amount
of attention (Agirre et al., 2012; Agirre et al., 2013;
Agirre et al., 2014; Agirre et al., 2015).

The UKP (Bär et al., 2012) was the first-ranked
system at STS 2012. This system used a log-linear
regression model to combine multiple text similarity
measures which range from simple measures (word
n-grams or common subsequences) to complex ones
(Explicit Semantic Analysis (ESA) vector compar-
isons (Gabrilovich and Markovitch, 2007), or word
similarity using lexical-semantic resources). Beside
this, it also used a lexical substitution system and sta-
tistical machine translation system to add additional
lexemes for alleviating lexical gaps. The final models
after the feature selection, consisted of 20 features,
out of the possible 300+ features implemented.

By contrast, the best system at STS 2013, UMBC
EBIQUITY-CORE (Han et al., 2013), adopted and
expanded the alignment approach into "align-and-
penalize" by giving penalties to both the words that
are poorly aligned and to the alignments causing se-
mantic or syntactic contradictions. At the word level,
it used a common Semantic Word Similarity model
which is a combination of LSA word similarity and
WordNet knowledge.

The DLS@CU (Sultan et al., 2014b) achieved
best result at STS 2014. It used the word align-
ment approach described in the literature (Sultan
et al., 2014a), which considered several semantic fea-
tures, e.g. word similarity, contextual similarity, and
alignment sequence. It (Sultan et al., 2015) again
achieved the best result as shown at STS 2015 us-

2http://www.cs.york.ac.uk/semeval-2012/task6/
3http://ixa2.si.ehu.es/sts/
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Figure 1: Variance of System Performance in STS 2012.

ing word alignment and similarities between compo-
sitional sentence vectors as its features. It adopted the
400-dimensional vectors developed in (Baroni et al.,
2014) using the word2vec toolkit (Mikolov et al.,
2013) to extract these vectors from a large corpus
(about 2.8 billion tokens). Word vectors between the
two input sentences were not compared, but a vector
representation of each input sentence was constructed
using a simple vector composition scheme, then the
cosine similarity between the two sentence vectors is
computed as the second feature. The vector repre-
senting a sentence is the centroid (i.e., the componen-
twise average) of its content lemma vectors. Finally,
these two features are combined using a ridge regres-
sion model implemented in scikit-learn (Pedregosa
et al., 2011). Besides DLS@CU, it is very interest-
ing that aligning words between sentences has been
the most popular approach for other top participants
ExBThemis (Hänig et al., 2015), and Samsung (Han
et al., 2015).

Besides these approaches, a new semantic repre-
sentation for lexical was proposed as semantic sig-
nature which is the multinomial distribution gener-
ated from the random walks over WordNet taxonomy
where the set of seed nodes is the set of senses present
in the item, (Pilehvar et al., 2013). This representa-
tion encompassed both when the item is itself a single
sense and when the item is a sense-tagged sentence.
This approach was evaluated on three different tasks
Textual Similarity, Word Similarity and Sense Simi-
larity; and it also achieved the state of the art on STS
2012 datasets.

3 VARIANCE OF SYSTEM
PERFORMANCE IN THE STS
TASK

After observing the results from the state-of-the-art
systems at the STS 2012 and 2013, we considered one
of the biggest problems to address is that results var-
ied from the different corpora, or in other words, the

Figure 2: Variance of System Performance in STS 2013.

results depend heavily on the given corpora. There
are two variances that can be addressed:

• First, the result of the state-of-the-art system is not
the best result on each corpus (variance between
systems, e.g. state of the art vs best-score system
on each corpus).

• Second, the variance of results from the same sys-
tem on different corpora in Figures 1 and 2 (re-
sults varied from 49% to 87% of the state-of-the-
art system in STS 2012, and 38% to 76% in STS
2013).

Therefore, we would like to investigate these vari-
ances to improve the state of the art and develop a
system which can obtain predictable results indepen-
dently on given corpora.

In this chapter, we analyze the source of variances
of accuracy on systems participating in the STS task
in 2012 and 2013 by two types of analysis: (1) anal-
ysis on the performance of participating systems, and
(2) corpora analysis on the various domains of data
which affect to the general performance of participat-
ing systems.

3.1 Performance Analysis of the STS
2012 - 2013

Firstly we analyze the difference between systems’
predictions and gold-standard on each dataset of the
STS 2012 and 2013.

Figure 1 shows that there is moderate gap between
the performance the of state-of-the-art system and the
best-score from other different systems over each cor-
pus. The difference on corpus SMT-news, OnWN
and MSRpar are quite large, which are approximately
11%, 6% and 5%, respectively.

Figure 2 shows that there are still some gaps in
performance between state of the art and best-score
systems on each corpus, except the corpus FNWN,
which state of the art system scored highest. Signif-
icantly, in the corpus OnWN, the difference is huge,
almost 10%.
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Figure 3: STS 2013 - Corpus FNWN - The word-pair similarity distribution using WordNet, Wikipedia and LCS mapped
to the semantic similarity classes [0-5]. Where the classes are gold-standard similarity scores [0-5] classified into different
brackets: Class_0 is [0-1), Class_1 is [1-2), Class_2 is [2-3), Class_3 is [3-4), Class_4 is [4-5), and Class_5 is [5].

Figure 4: STS 2013 - Corpus ONWN - The word-pair similarity distribution using WordNet, Wikipedia and LCS mapped
to the semantic similarity classes [0-5]. Where the classes are gold-standard similarity scores [0-5] classified into different
brackets: Class_0 is [0-1), Class_1 is [1-2), Class_2 is [2-3), Class_3 is [3-4), Class_4 is [4-5), and Class_5 is [5].
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The heterogeneity of sources makes it difficult for
a STS system to score consistently across different
corpora. However, the variation observed in the STS
tasks is rather significantly big, up to the point that
few reliable statements regarding choosing one sys-
tem over another can be made. In Figures 1 and 2,
we plotted the performance of the state-of-the-art sys-
tem on different datasets at the STS 2012 and 2013.
We can see that the accuracy of this system may vary
within a window of 38%. This variance is problem-
atic, but another variance is probably more serious
than that on a specific corpus, the variance between
the best performance of the state-of-the-art system
and the performance of best-score system (the best
result on different corpora may come from different
systems) can be up to 9% - 12%. For the STS task,
the margin 9-12% is significant, and many systems
achieving results within this distance to the state of
the art. The practical question is which system to
choose? How can one predict whether one system is
really the best system for a new, unknown corpus fed
as input?

3.2 Corpora Analysis of the STS 2013

Unless one is able to build systems that cope posi-
tively with these variances and the system predictably
obtains results within a non significant window to the
state of art, the whole approach seems jeopardized.
Therefore, it is important to understand the source
of this variation and to be able to restrain it within
an acceptable margin. In Figures 3 and 4, we plot
the distribution of similar word-pairs according to the
similarity score. It shows that on the corpora with
good results for a simple classifier, there is a good
co-variance between word similarity and the similar-
ity scores (Figure 4). Thus, a simple classifier which
relies on word and string similarity is more likely to
go wrong on the corpus where the similarity score is
not necessarily correlated with the number of similar
words-pairs.

The second variance shown in Figures 1 and 2
is that the results of the state-of-the-art system are
not balanced among the test corpora, and vary from
0.4937 to 0.8739 in STS 2012 and 0.3804 to 0.7642
in STS 2013). In fact, the result of SMT corpus is
much lower than others in STS 2013. Most of the sys-
tems obtained good results on headlines and OnWN,
but very low on FNWN and SMT. It means that most
of the systems may learn good features in headlines
and OnWN, but not in FNWN and SMT which re-
sulted low scores. In other words, there may be other
features remaining in FNWN and SMT that most of
systems at the STS 2013 missed. However, it could

also be a function of the difficulty of the data.
In order to find a way to alleviate this problem,

we investigated the types of similarity existing in the
STS 2013 corpora. We used the following common
techniques for computing text similarity for our in-
vestigation:

• A similarity based on Lin measure (Lin, 1998)
using WordNet hierarchy [WN] (computed by
the WordNet::Similarity package (Pedersen et al.,
2004)).

• A similarity based on Wikipedia concepts [Wiki]
(computed by the Wikipedia Miner package
(Milne and Witten, 2013)).

• A similarity based on the length of the Longest
Common Substring [LCS].

Using these three parameters, we picked ONWN
and FNWN datasets4 for analyzing the number of
similar word-pairs between sentence pairs, in accor-
dance to its gold-standard (human annotation) simi-
larity scores in the scale [0-5] split in six classes.

By comparing the plots in Figure 3 (corpus
FNWN) vs Figure 4 (corpus OnWN), we can see that
the shape of the bars tends to be uniform in Figure 4
while in the Figure 3 the distribution is rather hectic.
A threshold separation is likely to work better for cor-
pus ONWN than FNWN. This analysis confirms that
the high variance of the system’s accuracy is not only
related to the word-pair similarity distribution among
the gold-standard classes but also other features. In
order to improve the accuracy of STS systems, we
need to find solutions that add more information on
top of the word-pair similarity to improve the separa-
tion between classes when the prediction of the word-
pair similarity is high.

4 FOUR SEMANTIC LAYERS

In this section we describe our system, which is built
from different linguistic features. We construct a
pipeline system, in which each component produces
different features independently and at the end, all
features are consolidated by the machine learning tool
WEKA, which learns a regression model for predict-
ing the similarity scores from given sentence-pairs.
We adopt few typical STS features in UKP (also
known as DKPro) (Bär et al., 2012), such as string
similarity, character/word n-grams, and pairwise sim-
ilarity; however, beyond these typical features, we

4http://ixa2.si.ehu.es/sts/index.php%3Foption=com
_content&view=article&id=47&Itemid=54.html
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Figure 5: System Overview.

also add other distinguished features, such as syntac-
tic structure information, word alignment and seman-
tic word similarity. The System Overview in Figure 5
shows the logic and design processes in which differ-
ent components connect and work together.

4.1 Data Preprocessing

The input data undergoes the data preprocessing in
which we use Tree Tagger (Schmid, 1994) to per-
form tokenization, lemmatization, and Part-of-Speech
(POS) tagging. On the other hand, we use the Stan-
ford Parser (Klein and Manning, 2003) to obtain the
dependency parsing from given sentences.

4.2 Layer One: String Similarity

We use Longest Common Substring (Gusfield, 1997),
Longest Common Subsequence (Allison and Dix,
1986) and Greedy String Tiling (Wise, 1996) mea-
sures.

Longest Common Substring is the longest string
in common between two or more strings. Two
given texts are considered similar if they are overlap-
ping/covering each other (e.g sentence 1 covers a part
of sentence 2, or otherwise).

Longest Common Subsequence is the problem
of finding the longest subsequence common to all
sequences in a set of sequences (often just two se-
quences). It differs from problems of finding com-
mon substrings: unlike substrings, subsequences are
not required to occupy consecutive positions within
the original sequences.

Greedy String Tiling algorithm identifies the
longest exact sequence of substrings from the text
of the source document and returns the sequence as
tiles (i.e., the sequence of substrings) from the source
document and the suspicious document. This algo-
rithm was implemented based on running Karp-Rabin

matching (Wise, 1993).

4.3 Layer Two: Semantic Word
Similarity

Semantic word similarity is the most basic semantic
unit which is used for inferring the semantic textual
similarity. There are several well-known approaches
for computing the pairwise similarity, such as seman-
tic measures using the semantic taxonomy WordNet
(Fellbaum, 1998) described by (Leacock et al., 1998;
Jiang and Conrath, 1997; Resnik, 1995; Lin, 1998;
Hirst and St-Onge, 1998; Wu and Palmer, 1994); or
other corpus-based approaches like Latent Semantic
Analysis (LSA) (Landauer et al., 1998), Explicit Se-
mantic Analysis (ESA) (Gabrilovich and Markovitch,
2007), etc.

Among the approaches described above, we de-
ploy three different approaches to compute the se-
mantic word similarity: the pairwise similarity algo-
rithm by Resnik (Resnik, 1995) on WordNet (Fell-
baum, 1998), the vector space model Explicit Se-
mantic Analysis (ESA) (Gabrilovich and Markovitch,
2007), and the Weighted Matrix Factorization (WMF)
(Guo and Diab, 2012).

Resnik Algorithm returns a score denoting how
similar two word senses are, based on the Information
Content (IC) of the Least Common Subsumer (most
specific ancestor node). As this similarity measure
uses information content, the result is dependent on
the corpus used to generate the information content
and the specifics of how the information content was
created.

Explicit Semantic Analysis (ESA) is a vecto-
rial representation of text (individual words or en-
tire documents) that uses a document corpus as a
knowledge base. Specifically, in ESA, a word is
represented as a column vector in the TF-IDF ma-
trix (Salton and McGill, 1983) of the text corpus and
a document (string of words) is represented as the
centroid of the vectors representing its words. The
ESA model is constructed by two lexical semantic re-
sources Wikipedia and Wiktionary.5,6

Weighted Matrix Factorization (WMF) (Guo
and Diab, 2012) is a dimension reduction model to
extract nuanced and robust latent vectors for short
texts/sentences. To overcome the sparsity problem
in short texts/sentences (e.g. 10 words on average),
the missing words, a feature that LSA/LDA typically
overlooks, is explicitly modeled. We use the pipeline
to compute the similarity score between texts.7

5http://en.wikipedia.org/wiki/Main_Page
6http://en.wiktionary.org
7http://www.cs.columbia.edu/ weiwei/code.html
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Besides these pairwise similarity methods, we
also use the n-gram technique at character and word
levels. We compare character n-grams (Barrón-
Cedeno et al., 2010) with the variance n=2, 3, ...,
15. By contrast, we compare the word n-grams us-
ing the Jaccard coefficient done by Lyon (Lyon et al.,
2001) and containment measure (Broder, 1997) with
the variance of n=1, 2, 3, and 4.

4.4 Layer Three: Word Alignment

At the shallow level of comparing texts and com-
puting their similarity score, we deploy two machine
translation evaluation metrics: the METEOR (Baner-
jee and Lavie, 2005) and TERp (Snover et al., 2006).
However, our analysis shows that the TERp result
does not really contribute to the overall performance,
yet sometimes it may affect our system negatively.
Hence, we remove this metric from the system.

Metric for Evaluation of Translation with Ex-
plicit ORdering (METEOR) (Banerjee and Lavie,
2005) is an automatic metric for machine transla-
tion evaluation, which consists of two major com-
ponents: a flexible monolingual word aligner and a
scorer. For machine translation evaluation, hypothesis
sentences are aligned to reference sentences. Align-
ments are then scored to produce sentence and corpus
level scores. We use this word alignment feature to
learn the similarity between words and phrases in two
given texts in case of different orders.

4.5 Layer Four: Syntactic Structure

Intuitively, the syntactic structure plays an important
role for the human being to understand the meaning of
a given text. Thus, it also may help to identify the se-
mantic equivalence between two given texts. We ex-
ploit the syntactic structure information by the mean
of three different approaches: Syntactic Tree Kernel,
Distributed Tree Kernel and Syntactic Generalization.
We describe how each approach learns and extracts
the syntactic structure information from texts to be
used in our STS system.

Syntactic Tree Kernel. Given two trees T1 and
T2, the functionality of tree kernels is to compare two
tree structures by computing the number of common
substructures between T1 and T2 without explicitly
considering the whole fragment space. According
to (Moschitti, 2006), there are three types of frag-
ments described as the subtrees (STs), the subset trees
(SSTs) and the partial trees (PTs). A subtree (ST) is
a node and all its children, but terminals are not STs.
A subset tree (SST) is a more general structure since
its leaves need not be terminals. The SSTs satisfy

the constraint that grammatical rules cannot be bro-
ken. When this constraint is relaxed, a more general
form of substructures is obtained and defined as par-
tial trees (PTs).

The Syntactic Tree Kernel is a tree kernels ap-
proach to learn the syntactic structure from syntac-
tic parsing information, particularly, the Partial Tree
(PT) kernel is proposed as a new convolution kernel
to fully exploit dependency trees. The evaluation of
the common PTs rooted in nodes n1 and n2 requires
the selection of the shared child subsets of the two
nodes, e.g. [S [DT JJ N]] and [S [DT N N]] have [S
[N]] (2 times) and [S [DT N]] in common. We use the
tool svm-light-tk 1.5 to learn the similarity of syntac-
tic structure.8

Syntactic Generalization (SG). Given a pair of
parse trees, the Syntactic Generalization (SG) (Galit-
sky, 2013) finds a set of maximal common subtrees.
Though generalization operation is a formal operation
on abstract trees, it yields semantics information from
commonalities between sentences. Instead of only ex-
tracting common keywords from two sentences, the
generalization operation produces a syntactic expres-
sion. This expression maybe semantically interpreted
as a common meaning held by both sentences. This
syntactic parse tree generalization learns the seman-
tic information differently from the kernel methods
which compute a kernel function between data in-
stances, whereas a kernel function is considered as a
similarity measure.

SG uses least general generalization (also called
anti-unification) (Plotkin, 1970) to anti-unify texts.
Given two terms E1 and E2, it produces a more gen-
eral one E that covers both rather than a more spe-
cific one as in unification. Term E is a generalization
of E1 and E2 if there exist two substitutions σ1 and
σ2 such that σ1(E) = E1 and σ2(E) = E2. The most
specific generalization of E1 and E2 is called anti-
unifier. Technically, two words of the same Part-of-
Speech (POS) may have their generalization which is
the same word with POS. If lemmas are different but
POS is the same, POS stays in the result. If lemmas
are the same but POS is different, lemma stays in the
result. The software is available here.9

Distributed Tree Kernel (DTK). (Zanzotto and
Dell’Arciprete, 2012) This is a tree kernels method
using a linear complexity algorithm to compute vec-
tors for trees by embedding feature spaces of tree
fragments in low-dimensional spaces. Then a recur-
sive algorithm is proposed with linear complexity to
compute reduced vectors for trees. The dot product
among reduced vectors is used to approximate the

8http://disi.unitn.it/moschitti/SIGIR-tutorial.htm
9https://code.google.com/p/relevance-based-on-parse-trees
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Table 1: Summary of STS datasets in years 2012 - 2015.
year dataset #pairs source
2012 MSRpar 1500 newswire
2012 MSRvid 1500 video descriptions
2012 OnWN 750 OntoNotes, WordNet glosses
2012 SMTnews 750 Machine Translation evaluation
2012 SMTeuroparl 750 Machine Translation evaluation
2013 headlines 750 newswire headlines
2013 FNWN 189 FrameNet, WordNet glosses
2013 OnWN 561 OntoNotes, WordNet glosses
2013 SMT 750 Machine Translation evaluation
2014 headlines 750 newswire headlines
2014 OnWN 750 OntoNotes, WordNet glosses
2014 Deft-forum 450 forum posts
2014 Deft-news 300 news summary
2014 Images 750 image descriptions
2014 Tweet-news 750 tweet-news pairs
2015 Images 750 image descriptions
2015 headlines 750 newswire headlines
2015 answers-students 750 student answers
2015 answers-forum 375 forum answers
2015 belief 375 forum

original tree kernel when a vector composition func-
tion with specific ideal properties is used. The soft-
ware is available here.10

5 DATASETS AND EXPERIMENT
SETTINGS

The STS datasets (Agirre et al., 2012; Agirre et al.,
2013; Agirre et al., 2014; Agirre et al., 2015) are
constructed from various sources associated with dif-
ferent domains, e.g newswire headlines, paraphrases,
video description, image captions, machine transla-
tion evaluation, Twitter news and messages, forum
data, glosses combination of OntoNotes, FrameNet
and WordNet, etc. Only in STS 2012, the train and
test datasets are provided, since STS 2013 onward,
no new training dataset is given, but only the new
test dataset, whereas datasets in previous years can

Figure 6: Component Analysis.

10https://code.google.com/p/distributed-tree-kernels

be used for training. Except the setup in STS 2012
where several of test sets have designated training
data, the STS 2013, 2014 setups are similar to STS
2015 with no domain-dependent training data. This
domain-independent character of STS data is a great
challenge for any system to achieve consistent perfor-
mance. The detail of datasets described in Table 1.

6 EVALUATIONS AND
DISCUSSION

The results are obtained with Pearson correlation,
which is the official measure used in both tasks.11 The
overall result is computed by the Weighted Mean of
the Pearson correlations on individual datasets which
is weighted according to the number of sentence pairs
in that dataset. We compare our system’s performance
with the baseline and the top three systems in each
STS competition in years 2012, 2013, 2014 and 2015.

Performance Comparison on all STS Datasets.
Tables 2,3,4, and 5 show our system performance in
each year. In overall, Table 6 shows the side-by-side
comparison between our system and the baseline, the
DKPro and the state-of-the-art (SOTA) systems on all
STS datasets. This confirms our stable and consis-
tent performance which always overcomes the base-
line (large margin 20-27%) and DKPro (4-13%) , and
achieves better or competitive results to SOTA sys-
tems.

Comparison to DKPro. Table 6 shows that
though we adopt some string and word similarity fea-
tures from DKPro, our system always outperforms
DKPro. The main difference between our system
and DKPro is that by adding two important modules
of processing word alignment and syntactic structure,
we consider more linguistic aspects in semantic infer-
ence leading to more robust and comprehensive capa-
bility to compute the semantic similarity. This proves
that this approach of multi-layer infrastructure opti-
mizes the system performance by delegating and cap-
turing various linguistic phenomena by proper seman-
tic layers, leading to higher precision and correlation.

Component Analysis. Figure 6 presents the anal-
ysis for each individual component in our STS sys-
tem. It shows the significance of each layer into the
overall performance on STS 2012, 2013, 2014 and
2015 datasets. Despite the fact that string and word
similarity layer occupies a larger portion in the overall
performance, the significance of other semantic lay-
ers is undenied. The design of multi-layer system im-

11http://en.wikipedia.org/wiki/Pearson_product-
moment_correlation_coefficient
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Table 2: Evaluation Results on STS 2012 datasets.

System MSRpar MSRvid SMTeur OnWN SMTnews Mean
Baseline 0.433 0.30 0.454 0.586 0.391 0.436
DKPro 0.62 0.808 0.376 0.657 0.462 0.584
UKP (1st) 0.683 0.874 0.528 0.664 0.494 0.677
Takelab (2nd) 0.734 0.880 0.477 0.680 0.399 0.675
SOFT-CARDINALITY (3rd) 0.641 0.856 0.515 0.711 0.483 0.671
ADW (Pilehvar et al., 2013) 0.694 0.887 0.555 0.706 0.604 0.711
OurSystem (OS) 0.748 0.894 0.458 0.755 0.505 0.711

Table 3: Evaluation Results on STS 2013 datasets.

System FNWN headlines OnWN SMT Mean
Baseline 0.215 0.540 0.283 0.286 0.364
DKPro 0.385 0.706 0.784 0.317 0.569
UMBC_EBIQUITY_PairingWords (1st) 0.582 0.764 0.753 0.380 0.618
UMBC_EBIQUITY_galactus (2nd) 0.743 0.705 0.544 0.371 0.593
deft-baseline (3rd) 0.653 0.843 0.508 0.327 0.580
OurSystem (OS) 0.450 0.732 0.843 0.356 0.611

Table 4: Evaluation Results on STS 2014 datasets.

Systems deft-forum deft-news headlines images OnWN tweet-news Mean
Baseline 0.353 0.596 0.510 0.513 0.406 0.654 0.507
DKPro 0.452 0.713 0.697 0.777 0.819 0.722 0.714
DLS@CU (1st) 0.483 0.766 0.765 0.821 0.859 0.764 0.761
MeerkatMafia (2nd) 0.471 0.763 0.760 0.801 0.875 0.779 0.761
NTNU (3rd) 0.531 0.781 0.784 0.834 0.850 0.676 0.755
OurSystem (OS) 0.508 0.762 0.765 0.818 0.896 0.749 0.768

Table 5: Evaluation Results on STS 2015 datasets.

System ans-forums ans-students belief headlines images Mean
Baseline 0.445 0.665 0.652 0.531 0.604 0.587
DKPro 0.696 0.712 0.699 0.766 0.808 0.746
DLS@CU-S1 (1st) 0.739 0.773 0.749 0.825 0.864 0.802
ExBThemis-themisexp (2nd) 0.695 0.778 0.748 0.825 0.853 0.794
DLS@CU-S2 (3rd) 0.724 0.757 0.722 0.825 0.863 0.792
OurSystem (OS) 0.713 0.744 0.733 0.808 0.858 0.783

Table 6: Comparison on all STS datasets.

Settings 2012 2013 2014 2015
Gain/Baseline 0.275 0.247 0.261 0.196
Gain/DKPro 0.127 0.042 0.054 0.037
Dist2SOTA 0.034 -0.007 0.007 -0.019

proves the overall performance from 3.7-12.7% more
by better robustness and comprehension to handle
more complicated semantic information via deeper
semantic layers.

Accordingly, we can claim that our system con-
sistently and stably performs at the state of the art or
top-tier level on all STS datasets from 2012 to 2015.
The framework of four different semantic layers helps
our system handle heterogeneous data from STS suc-

cessfully. By delegating and assigning different se-
mantic layers which deal with different types of in-
formation, the system can cope with and adapt to any
unknown domain data. This hypothesis is proven by
the constant performance on various datasets derived
from different domains in STS.

7 CONCLUSION AND FUTURE
WORKS

In this paper, we investigated the variance of system
performance in the STS task, then we presented a
novel framework to solve the greatest challenge of
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domain-independent data for Semantic Textual Sim-
ilarity task. We unify the task into four main layers
of processing to exploit the semantic similarity in-
formation from different presentation levels (lexical,
string, syntactic, alignment) to overcome the variance
of system’s performance on data derived from various
sources. Our framework is implemented and eval-
uated on all STS datasets and consistently achieves
either state of the art or near state-of-the-art perfor-
mance in regard to the top three best systems in every
STS competition from 2012 to 2015.
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