
A Machine Learning Approach for Layout Inference in Spreadsheets

Elvis Koci1, Maik Thiele1, Oscar Romero2 and Wolfgang Lehner1

1Database Technology Group, Department of Computer Science, Technische Universität Dresden, Dresden, Germany
2Departament d’Enginyeria de Serveis i Sistemes d’Informaciò (ESSI), Universitat Politecnica de Catalunya

(UPC-BarcelonaTech), C-Jordi Girona 1, Compus Nord, Barcelona, Spain

Keywords: Speadsheets, Tabular, Layout, Structure, Machine Learning, Knowledge Discovery.

Abstract: Spreadsheet applications are one of the most used tools for content generation and presentation in industry and
the Web. In spite of this success, there does not exist a comprehensive approach to automatically extract and
reuse the richness of data maintained in this format. The biggest obstacle is the lack of awareness about the
structure of the data in spreadsheets, which otherwise could provide the means to automatically understand
and extract knowledge from these files. In this paper, we propose a classification approach to discover the
layout of tables in spreadsheets. Therefore, we focus on the cell level, considering a wide range of features not
covered before by related work. We evaluated the performance of our classifiers on a large dataset covering
three different corpora from various domains. Finally, our work includes a novel technique for detecting and
repairing incorrectly classified cells in a post-processing step. The experimental results show that our approach
delivers very high accuracy bringing us a crucial step closer towards automatic table extraction.

1 INTRODUCTION

Spreadsheet applications have evolved to be a tool
of great importance for transforming, analyzing, and
representing data in visual way. In industry, a consid-
erable amount of the company’s knowledge is stored
and managed in this form. Domain experts from these
companies use spreadsheets for financial analysis, lo-
gistics and planning. Also, spreadsheets are a popular
format in the Web. Of particular importance are those
that can be found in Open Data platforms, where gov-
ernments, important institutions, and non profit orga-
nizations are making their data available.

All this make spreadsheets a valuable source of
information. However, they are optimized to be user-
friendly rather than machine-friendly. The same data
can be formatted in different ways in a spreadsheet
depending on the information the user wants to con-
vey. It is relatively easy for humans to interpret the
presented information, but it is rather hard to do the
same algorithmically. As a result, we are constrained
to cumbersome approaches that limit the potential
reuses of data maintained in these types of files. A
typical problem that arises in most enterprises is that
due to the lack of visibility the data stored in spread-
sheets is not available for enterprise-wide data analy-
ses or reuse.

Our goal is to overcome these limitations by de-

veloping a method that allows to discover tables in
spreadsheets, infer their layout and other implicit in-
formation. We believe that this approach can provide
us with the means to extract a richer and more struc-
tured representation of data from spreadsheets. This
representation will act as the base for transforming the
data into other formats, such as a relational table or
a JSON document, depending on their characteristics
and the application requirements.

The relational model seems to be one of the nat-
ural progressions for spreadsheet data, since organiz-
ing data into a tabular layout is an essential aspect of
both worlds. By bringing spreadsheets and RDBMS
closer we can open the door to many applications.
For instance, it would be easier to digest them into
a data warehouse and perform complex data analy-
sis. Essentially, spreadsheets can become a substan-
tial source of data for existing or new business pro-
cesses.

In the literature, spreadsheet table detection has
only scarcely been investigated often assuming just
the same uniform table layout across all spreadsheets.
However, due to the manifold possibilities to struc-
ture tabular data within a spreadsheet, the assump-
tion of an uniform layout either excludes a substantial
number of tables and data from the extraction process
or leads to inaccurate results. Therefore, this paper

Koci, E., Thiele, M., Romero, O. and Lehner, W.
A Machine Learning Approach for Layout Inference in Spreadsheets.
DOI: 10.5220/0006052200770088
In Proceedings of the 8th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2016) - Volume 1: KDIR, pages 77-88
ISBN: 978-989-758-203-5
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

77



focuses on incorporating layout classification in the
spreadsheet table extraction process. In detail, we ad-
dress the following aspects:

• Spreadsheet Building Blocks: Incorporating
lessons learned from spreadsheet research,
we propose five layout building blocks for
spreadsheet tables.

• Features: We consolidate and extend a wide
range of features proposed in the literature for
each of the building blocks. Using feature se-
lection, we evaluate the relevance of each feature
with respect to the classification problem.

• Experimental Evaluation: We conduct an ex-
perimental evaluation on three spreadsheet cor-
pora and compare different classification algo-
rithms.

• Handling Classification Errors: We provide a
detailed discussion of classification errors and
propose a novel technique to detect and repair
misclassified cells.

The paper is organized as follows: In Section 2 we
define the classification problem for layout inference
in spreadsheets. The features used for the classifica-
tion problem are listed in Section 3. In Section 4 we
describe how we annotated spreadsheets for the super-
vised learning. The results from the evaluation of the
proposed approach are summarized in Section 5. In
Section 6 we discuss how to handle misclassification
in a post-processing task. Finally, we review related
work on table identification and layout discovery in
Section 7.

2 THE CLASSIFICATION
PROBLEM

The objective of capturing the tabular data embedded
in spreadsheets can be treated as a classification prob-
lem where the specific structures of a table have to
be identified. In the first part of this section we de-
fine these structures or building blocks that form our
classes. In the second part we specify the data item
granularity on which the classification task will be
performed.

2.1 Spreadsheet Layout Building Blocks

Considering that tables embedded in spreadsheets
vary in shape and layout, it is required not only to
identify them but also recognize their building blocks.
We define five building blocks for spreadsheet tables:
Headers, Attributes, Metadata, Data and Derived (see

Figure 1: The Building Blocks.

Figure 1). A “Header” (H) cell represents the label
of a column and can be flat or hierarchical (stacked).
Hierarchical structures can be also found in the left-
most or right-most columns of a table, which we call
“Attributes” (A), a term first introduced in (Chen and
Cafarella, 2013). Attributes can be seen as instances
from the same or different (relational) dimensions
placed in one or multiple columns in a way that con-
veys the existence of a hierarchy. We label cells as
“Metadata” (M) when they provide additional infor-
mation about the table as a whole or its specific sec-
tions. Examples of Metadata are the table name, cre-
ation date, and the unit for the values of a column. The
remaining cells form the actual payload of the table
and are labeled as “Data”. Additionally, we use the
label “Derived” (B) to distinguish those cells that are
aggregations of other Data cells’ values. Derived cells
can have a different structure from the core Data cells,
therefore we need to treat them separately. Figure 1
provides examples of all the aforementioned building
blocks.

2.2 Working at the Cell Granularity

One potential solution for the table identification and
layout recognition tasks would be to operate un-
der some assumptions about the typical structure of
spreadsheet tables. That means expecting spread-
sheets to contain one or more tables with typical lay-
outs that are well separated from each other. In such
scenario we could define simple rules and heuristics
to recognize the different parts. For example, the
top row could be marked as Header when it contains
mostly string values. Additionally, cells containing
the string “Table:” are most probably Metadata. How-
ever, this approach can not scale to handle arbitrary
spreadsheet tables. Since, the corpora we have con-
sidered include spreadsheets from various domains,
we need to find a more accurate and more general so-
lution.

For this reason, our approach focuses on the

KDIR 2016 - 8th International Conference on Knowledge Discovery and Information Retrieval

78



Figure 2: The Cell Classification Process.

smallest structural unit of a spreadsheet, namely the
cell. At this granularity we are able to identify ar-
bitrary layout structures, which might be neglected
otherwise. For instance, it is tricky to classify rows
when multiple tables are stacked horizontally. The
same applies for the cases when Metadata are inter-
mingled with Header or Data. Nevertheless, we ac-
knowledge that the probability of having misclassifi-
cations increases when working with cells instead of
composite structures such as rows or columns. There-
fore, our aim is to come up with novel solutions that
mitigate this drawback.

Figure 2 illustrates the three high-level tasks that
compose our cell classification process. Initially, the
application reads the spreadsheet file and extracts the
features of each non-blank cell. Here we considered
different aspects of the cell, summarized in Section 3.
In the next step, cells are classified with very high
accuracy (see Section 5.2) based on their features. Fi-
nally, a post-processing step improves the accuracy
of the classifier even further by applying a set of rules
that are able to identify cells that are most probably
misclassified and have to be relabeled.

To complete the picture, Figure 2 also includes
the Table Reconstruction task, which forms a separate
topic and is therefore left as future work.

3 FEATURE SPECIFICATION

In this paper we consider cell features especially for
Microsoft Excel spreadsheets. However, most of
the features listed in the next sections can be used
for other spreadsheet tools as well. To process the
spreadsheet files and extract the features we are using
Apache POI1, which is the most complete Java library
for handling Excel documents. Many of the features
listed below are directly accessible via the classes of
this library. Others require a custom implementation.
More details on this project can be found on our web-
site 2. These features incorporate and extend the fea-
tures proposed by (Adelfio and Samet, 2013; Chen

1https://poi.apache.org/
2https://wwwdb.inf.tu-dresden.de/misc/DeExcelarator

and Cafarella, 2013; Eberius et al., 2015)

3.1 Content Features

The content features describe the cell value, but not
its format. We have considered the cell type (numeric,
string, boolean, date, or formula), and whether the cell
is a hyperlink or not. For numeric cells we check if
the value is within a specified year range, to distin-
guish values that could also be interpreted as dates.
Furthermore, we record the length of the value and
the number of tokens that compose it. The latter is
always one for non-string cells. Finally, we have de-
fined 13 textual features relevant only to cells con-
taining string values. We have listed below a subset
of these features.

• IS CAPITALIZED: Whether the string is in title
case.

• STARTS WITH SPECIAL: True, if the first character
is a special symbol.

• IS ALPHANUMERIC: Whether the string contains
only alphabetic and numeric characters.

• CONTAINS PUNCTUATIONS : True, if the string
contains punctuation characters. Here, we are not
considering the colon character, which is the sub-
ject of separate feature.

• WORDS LIKE TOTAL: If the string contains tokens
like “total”, “sum”, and “max”, this feature is set
to true.

3.2 Cell Style Features

In addition to content features, the style of the cell
can provide valuable indicators for the classification
process. Since the total number of these features is
large, we have arranged them below into subgroups.

• ALIGNMENT: Type of horizontal and vertical align-
ment, and number of indentations.

• FILL: Whether the cell is filled with a color or not,
and the type of fill pattern.

• ORIENTATION: Whether the contents are rotated.

A Machine Learning Approach for Layout Inference in Spreadsheets

79



• CONTROL: Checks if the options “wrap text” and
“shrink to fit” are set to true.

• MERGE: Checks if the cell is merged and record
the number of cells in the merged region. If not
merged, it is set to 1.

• BORDERS: The type of the top, bottom, left, and
right border. Excel supports 14 border types.
Also, we count the number (from 0 to 4) of de-
fined borders for the cell.

3.3 Font Features

The features of this group describe the font of the cell.
We have considered various aspects of the font, such
as its size, effects, style and color.
• FONT COLOR DEFAULT: Whether the font color is

the default one (i.e., black) or not.
• FONT SIZE: A numeric value between 1 and 409.
• IS BOLD: Whether the font is bold.
• IS ITALIC: Whether the font is italic.
• IS STRIKE OUT: Whether the font is striked out.
• UNDERLINE TYPE: Single, single accounting, dou-

ble, double accounting, none.
• OFFSET TYPE: Superscript, subscript or none.
• FORMATTING RUNS: Number of unique formats in

the cell.

3.4 Reference Features

These features explore the Excel formulas and their
references in the same or other worksheets. Here, not
only have we considered references from the same
worksheet (intra-references), but also references from
the other worksheets in the file (inter-references). The
observation is that the formula cells are mostly found
in Data or Derived regions, and that the cells refer-
enced by these formulas are predominantly Data. Be-
low, we list the features used in our analysis.
• FORMULA VAL TYPE: The result of the formula can

be numeric, string, boolean, date, or not applica-
ble (n/a).

• IS AGGREGATION FORMULA: Whether the formula
is an aggregation or not.

• REF VAL TYPE: The referencing formula can out-
put a numeric, string, boolean, date, or not appli-
cable (n/a).

• REF IS AGGREGATION FORMULA: Whether the ref-
erencing formula is an aggregation or not.

We had to introduce the value “Not Applicable” for
each of these features, since there are cells that do not
contain formulas and are not referenced by a formula.

3.5 Spatial Features

We have also considered features that describe the
“neighborhood” of the cell. This includes the location
of the cells (defined by the row and column number)
and the features of its neighbors. Only the neighbors
that share a border (edge) with the cell are inspected,
i.e., the top, down, left, and right. When the neigh-
boring cells are blank or outside of the bounds of the
sheet, we set the value of the corresponding features
to “Not Applicable” (n/a).
• ROW NUM: The index of the row the cell is located

in.
• COLUMN NUM: The index of the column the cell is

located in.
• NUMBER OF NEIGHBORS: The number (from 0 to

4) of neighboring cells that are not blank. For
merged cells, we consider each side (the top and
bottom row, and the left and right column) in an
aggregated manner. If there is at least one non-
blank cell, the side is considered as active and thus
marked as 1. Otherwise, we mark it as 0.

• MATCHES {TOP,BOTTOM,LEFT,RIGHT} STYLE:
Whether the neighbor has the same style as the
cell.

• MATCHES {TOP,BOTTOM,LEFT,RIGHT} TYPE:
Whether the neighbor has the same content type
as the cell.

• {TOP,BOTTOM,LEFT,RIGHT} NEIGHBOR TYPE:
The content type of the neighbor. It can take one
of the values mentioned in Section 3.1.

4 CREATING THE GROUND
TRUTH

The supervised classification processes requires a
ground truth dataset, which is used for both training
and validation. In Section 4.1 we briefly describe the
three spreadsheet corpora used to extract and gener-
ate a representative set of spreadsheets. To create the
training data we developed a spreadsheet labeling tool
(see Section 4.2) that provides the means to annotate
ranges of cells. Given that tool, we randomly selected
and annotated files from the three corpora for which
we provide statistics in Section 4.3.

4.1 Spreadsheet Corpora and Training
Data

For our experiments we have considered spreadsheets
from three different sources. Euses (Fisher and

KDIR 2016 - 8th International Conference on Knowledge Discovery and Information Retrieval

80



Rothermel, 2005) is one of the oldest and most
frequently used corpora. It has 4,498 unique spread-
sheets, which are gathered through Google searches
using keywords such as “financial” and “inventory”.
The Enron corpus (Hermans and Murphy-Hill, 2015)
contains over 15,000 spreadsheets, extracted from the
Enron email archive. This corpus is of particular in-
terest, since it provides access to real-world business
spreadsheets used in industry. The third corpus is
Fuse (Barik et al., 2015) that contains 249,376 unique
spreadsheets, extracted from Common Crawl3. Each
spreadsheet in Fuse is accompanied by a JSON file
that contains metadata and statistics. Unlike the other
two corpora, Fuse can be reproduced and extended.

4.2 The Annotation Tool

Using the Eclipse SWT4 library we developed an in-
teractive desktop application that ensures good qual-
ity annotations. The original Excel spreadsheet is em-
bedded into a Java window and protected from user
alteration. To create an annotation, the user selects
a range of cells (region) and then chooses the appro-
priate predefined label. A rectangle, which is filled
with the color associated to the label, covers the an-
notated region. The application evaluates the anno-
tations and rejects the inappropriate ones. For exam-
ple, the user cannot annotate ranges that are empty or
overlapping with existing annotations. The data from
all the created annotations are stored in a new sheet,
named “Range Annotation Data”. This sheet is pro-
tected and hidden once the file is closed. Figure 3
provides an example of an annotated sheet.

Figure 3: Annotated Sheet.

In addition to the building block described in Sec-
tion 2, we have introduced the possibility to annotate

3http://commoncrawl.org/
4https://www.eclipse.org/swt/

a region (area) that represents a whole table. A rect-
angle with thick blue borders marks its boundaries.
We need the “Table” annotation for two main reasons:
Firstly, we can govern the labeling process, to assure
valid annotations. For example, Data can only exist
inside a Table. However, Metadata can be left out-
side when they provide information relevant to mul-
tiple Tables. Secondly, these annotations will help us
evaluate the Table Reconstruction task, in the future.

4.3 Annotation Statistics

The graphs below provide an overview of the col-
lected annotations and the contribution of each cor-
pus.

We considered each corpus individually and as-
signed a unique number to their files. Using a random
number generator we extracted subsets of files. From
these, we annotated a total of 465 worksheets (216
files) and 898 tables.

In Figure 5 we examine the annotated cells. The
total number of cells for each label (class) is placed at
the top of the column bar. There was a small amount
of cells that did not match any of the defined labels.
These are usually random notes that do not have a
clear function and do not provide additional context
(information) about the table. We decided to omit
such cells.

As can be seen in Figure 5, the number of Data
cells is by orders of magnitude larger than the other

(a) Sheets (b) Tables
Figure 4: Annotation Statistics.

Figure 5: Annotated Cells.

A Machine Learning Approach for Layout Inference in Spreadsheets

81



label numbers. To adjust the class distribution we un-
dersampled the Data class, considering only the most
difficult case, which are the first and the last row and
three random rows in between. By applying this tech-
nique the Data class was reduced to 32,875 instead of
808,179 cells. Considering also the other four classes
the final gold standard consists of 52,948 cells in to-
tal.

Also, Figure 5 provides a look into the character-
istics of the three corpora. For instance, the selected
spreadsheets from Enron corpus are more likely to
contain Derived cells (aggregations). This result is
somehow expected since, as stated before, Enron
spreadsheets are coming from the industry, which is
characterized by a heavier use of formulas. Also, Eu-
ses has a high contribution in the Derived cells con-
sidering the number of annotated sheets from this cor-
pus. Moreover, we observe that Fuse contributes the
vast majority of Metadata cells. Enron and Euses have
a high contribution in the Attribute cells. These char-
acteristics surely influence the classification results,
which are discussed in Section 5.

5 EVALUATION

5.1 Feature Selection

We used Weka5, a well known tool for machine learn-
ing tasks, for feature selection and classification. Ini-
tially, we binarized nominal features with more than
two values, which gave us 219 features in total. We
used the “RemoveUseless” option to remove the fea-
tures that do not vary at all or vary too much. Addi-
tionally, we manually removed those features that are
practically constant (i.e., at least 99.9% of cases the
value is the same). Furthermore, we decided to ex-
clude from the final set features that check the style
and content type of the neighbors (see last 3 items in
Section 3.5). These features will be subject of future
experiments related both to the classification task and
the post-processing step. We provide more details on
this matter in Section 6.

The remaining 88 features were evaluated
using the InfoGainAttribute, GainRatioAttribute,
ChiSquaredAttribute, ConsitencySubset, and CfsSub-
set feature selection methods. For each one of them
we performed 10 folds (runs). A bidirectional Best
First search was used for ConsitencySubset and Cfs-
Subset, while the other methods can only be coupled
with Ranker search.

5http://www.cs.waikato.ac.nz/ml/weka/

From the results we considered most of the fea-
tures that score high in these selection methods. Al-
though, we were predominantly influenced by Con-
sistencySubset results, since ,when tested, they pro-
vide the highest classification accuracy for the small-
est number of features. We also included in the fi-
nal set features that are strong indicators despite the
fact that they describe small number of instances.
“Words Like Table” is an example of such features,
where 48 out of total 49 positive (true) cases are in-
stances of the Metadata class.

Table 1: Selected Content and Style Features.
Content Cell Style
LENGTH# IDENTATIONS#

NUM OF TOKENS# H ALIGNMENT DEFAULT?
LEADING SPACES# H ALIGNMENT CENTER?
IS NUMERIC? V ALIGNMENT BOTTOM?
IS FORMULA? FILL PATTERN DEFAULT?

STARTS WITH NUMBER? IS WRAPTEXT?
STARTS WITH SPECIAL? NUM OF CELLS#

IS CAPITALIZED? NONE TOP BORDER?
IS UPPER CASE? THIN TOP BORDER?
IS ALPHABETIC? NONE BOTTOM BORDER?

CONTAINS SPECIAL CHARS? NONE LEFT BORDER?
CONTAINS PUNCTUATIONS? NONE RIGHT BORDER?

CONTAINS COLON? MEDIUM RIGHT BORDER?
WORDS LIKE TOTAL? HAS 0 DEFINED BORDERS?
WORDS LIKE TABLE?
IN YEAR RANGE?

Table 2: Selected Font, Reference and Spatial Features.
Font Reference Spatial

FONT SIZE# IS AGGRE FORMULA? ROW NUMBER#
FONT COLOR DEFAULT? REF VAL NUMERIC? COL NUMBER#

IS BOLD? HAS 0 NEIGHBORS?
NONE UNDERLINE? HAS 1 NEIGHBOR?

HAS 2 NEIGHBORS?
HAS 3 NEIGHBORS?
HAS 4 NEIGHBORS?

Table 1 and 2 list the selected features, 43 in to-
tal. Those suffixed with ? represent boolean features.
While, those suffixed with # represent numeric fea-
tures.

The results from the classification evaluation, de-
scribed in Section 5.2, show that the above features
are good indicators for the ground truth dataset. How-
ever, in general spreadsheets exhibit different charac-
teristics depending on the domain they come from.
For example, we expect that reference features are
more important for industrial rather than for Web
spreadsheets, since the former are characterized by
heavier use of formulas. Therefore, an independent
feature selection might be required for other spread-
sheet datasets in order to achieve near optimum accu-
racy. Nevertheless, in the appendix we provide more
details about the feature selection results from our ex-
periments.

KDIR 2016 - 8th International Conference on Knowledge Discovery and Information Retrieval

82



5.2 Classifiers

In our evaluation, we consider various classification
algorithms, most of which have been successfully
applied to similar tasks in the literature. Specifically,
we consider CART (Breiman et al., 1984) (Simple-
CART in Weka), C4.5 (Quinlan, 1993) (J48 in Weka),
Random Forest (Breiman, 2001) and support vector
machines (Vapnik, 1982) (SMO in Weka), which
uses the sequential minimal optimization algorithm
developed by (Platt, 1998) to train the classifier. Here
we consider both a polynomial kernel and an RBF
kernel. We evaluate the classification performance
using 10-fold cross validation. The results of our
evaluation are displayed in Table 3.

Table 3: Classifier Evaluation: All measures are reported as
percentages for the following classes: Attribute (A), Data
(D), Header (H), Metadata (M), and Derived (B).

Classifier Metric A D H M B Weight. Avg.

Rand. Forest Precision 96.9 98.6 97.9 97.8 97.7 98.2
Recall 96.8 99.2 98.0 94.1 94.2 98.2
F1 96.8 98.9 98.0 95.9 95.9 98.2

J48 Precision 95.1 98.1 95.9 93.9 96.4 97.1
Recall 94.8 98.5 96.1 92.1 93.6 97.1
F1 94.9 98.3 96.0 93.0 95.0 97.1

Simple Cart Precision 94.3 97.6 95.1 92.1 95.2 96.4
Recall 94.3 98.0 95.3 89.8 92.2 96.4
F1 94.3 97.8 95.2 91.0 93.7 96.4

SMO Poly Precision 89.7 95.1 93.7 89.8 93.6 94.0
Recall 94.7 96.9 90.1 83.1 84.9 94.0
F1 92.2 96.0 91.9 86.3 89.1 94.0

SMO Rbf Precision 88.6 93.7 91.6 91.9 94.9 92.8
Recall 91.9 97.4 89.0 70.3 80.9 92.8
F1 90.2 95.5 90.3 79.6 87.3 92.7

As can be seen in this table, the scores for all the
classes (labels) are satisfactory. We note that deci-
sion tree based classifiers perform better than SMO in
this classification task. In particular, Random Forest
produces the highest results. Another interesting fact
is that all the classifiers perform worst with Metadata
and Derived classes. The main reason, seems to be
low recall for these classes.

Table 4: Random Forest Confusion Matrix.

Total A D H M B
4222 4087 88 29 18 0 Attributes

32875 70 32626 86 33 60 Data
9791 36 139 9597 19 0 Header
3369 26 86 88 3169 0 Metadata
2691 0 153 2 0 2536 Derived

Table 4 displays the confusion matrix from the
evaluation of the Random Forest classifier. The values
with bold font, in the diagonal of the matrix, represent
the number of correctly classified cells per label. We
have marked with red color the “problematic” values.
There is a considerable number of incorrectly clas-
sified data cells, as can be seen in the second row.

However, the bigger concern is that other classes are
often misclassified as data (see second column). This
was somehow expected for Derived cells, since they
are close (similar) to the Data cells. These misclas-
sifications together with the low number of instances
are the main reasons for the low recall of the Derived
class. Also, we note that Metadata cells tend to be
falsely classified as Header and Data, which conse-
quently impacts the recall of this class. One poten-
tial reason for these results can be the big variety of
Metadata cells. In other words, these cells do not ex-
hibit the level of homogeneity found in other classes
of cells.

To provide a more concrete picture on the accu-
racy of the classification, we decided to train and run
10-fold cross validation using Random Forest classi-
fier on the full dataset of annotated cells (828,252)
with the selected features. The F1 measure does not
change much for the Attributes (96.6%) and Header
(97.7%) cells. The classifier scores 99.9% on F1 mea-
sure for Data cells, since the full dataset contains a
vast number of instances of this class. The F1 mea-
sure decreases for Metadata and Derived, 93.5% and
94.9% respectively.

Figure 6: Percentage of Sheets with 2 or Less Misclassifi-
cations.

Figure 6 displays the percentage of sheets for
which the classifier has misclassified 2 or less cells.
We have stacked those cases that have 0 misclassifi-
cation with those that have 1 or 2. We observe that
more than half of the sheets are classified with no er-
rors. Also, we notice that the classifier has the highest
accuracy in the Fuse sheets and the lowest in the En-
ron sheets.

6 POST-PROCESSING

The objective of the post-processing phase (Step 3
in Figure 2) is to detect and repair misclassifications
based on spatial patterns (rules) which were deduced

A Machine Learning Approach for Layout Inference in Spreadsheets

83



from an empirical study of the classification results.
We believe that unusual arrangements of labels could
hint the existence of misclassifications. For exam-
ple, finding a Data cell in a row that otherwise has
only Header cells is considered to be unexpected. The
same can be said when an Attribute cell is completely
surrounded by instances of the Metadata class.

Identifying incorrectly classified cells is only one
part of the repairing process. We would also like to
update the labels of these cells. Again here we con-
sider the arrangement of labels close to the cell, which
we will refer to as the neighborhood of the cell. In the
examples provided above, influenced by the neighbor-
hood, we would have updated the labels to Header and
Metadata respectively.

As seen from the examples, the classification la-
bels provide a valuable context. Since our evaluation
shows that the classification process has high accu-
racy, we expect the vast majority of identified cases
to be true positives. In other words, we assume that
the neighborhood of the cell mostly contains correctly
classified cells. In the following sections we discuss
in more detail the identification and relabeling steps.

6.1 Misclassification Patterns

We studied misclassification patterns in the classifi-
cation results for the full dataset of annotated cells.
From 1,237 misclassified cells, we identified 672
unique patterns. From the first 40 most repeated pat-
terns we inferred generic (for all labels) rules to dis-
cover misclassifications. Below we discuss five of
these rules.

Here our intention is to provide the intuition be-
hind each rule (pattern), rather than its specific im-
plementation. Figure 7 provides a visual represen-
tation of the considered rules. The cells filled with
green lines (Influencer) represent neighbors that share
the same label but different from the one filled with
red dots (i.e., the potential misclassification). The
“Tunel” pattern tries to identify cells that are com-
pletely or partially surrounded by instances of a dif-
ferent cell class. We only consider the instances of
these pattern that occur horizontally.

In Figure 7.a we display one of the two possible
arrangements of this pattern. The “T-block” pattern
identifies misclassifications that occur in the border
between two different sections of the table. In addi-
tion to the one presented in Figure 7.b, the T-block
pattern can also occur when the “head” of the T-shape
is on the top row. The “Attribute Interrupter” (AIN)
pattern applies to Attribute cells (see Figure 7.c). For
this reason, AIN has a vertical nature. The intention
is to identify misclassified cells in Attribute columns.

(a) Tunel (b) T-blocks (c) AIN

(d) RIN (e) Corner

Figure 7: Misclassification Patterns.

The “Row Interrupter” (RIN) pattern discovers the
cases when a row is “invaded” by a cell of another
class. Figure 7.d displays the arrangement for this
pattern. Finally, the “Corner” pattern discovers mis-
classifications that occur in the corners of the table.
Therefore, there are four possible versions of this pat-
tern. Figure 7.e displays one of them. In this figure
we do not display the cells on the left and bottom,
since they are supposed to be blank or undefined (i.e.,
outside of the sheet borders).

Table 5 displays the number of times each pat-
tern occurs in the classification results. We should
note that the patterns are not mutually exclusive. In
the majority of times these patterns match incorrectly
classified cells. However, we also have a considerable
number of cases that the cell was correctly classified.

Table 5: Pattern Occurrences.

Pattern Incorrectly
Classified

Correctly
Classified Total

Tunel 45 12 57
AIN 41 1 42
RIN 29 4 33
T-blocks 28 1 29
Corner 13 2 15

6.2 Relabeling

In this section we describe our strategy for relabeling
the misclassified cells based on the matched pattern.
Essentially, we infer the new label from the neighbor-
ing cells we call “Influencers” (see Figure 7). For the
Tunel pattern we update the label to match the ma-
jority of the close-neighbors. When the T-block pat-
tern is identified, the label of the right and left close-
neighbors is used. We set the label for the central cell
to Attribute, when the AIN pattern occurs. For the
RIN pattern we flip the label to match the rest of the

KDIR 2016 - 8th International Conference on Knowledge Discovery and Information Retrieval

84



row. Finally, when the Corner pattern occurs, the la-
bel of the cell is updated to the match the rest of the
neighbors.

We decided to evaluate our approach, this time
flipping the label of the identified cells. We performed
these updates using all the patterns in a sequential
run. The updated list of labels from the occurrences
of the previous pattern becomes the input for the next
pattern. To avoid overlaps between them, we allow
updating the cell label only once. The patterns were
used in the ascending order of the number of correctly
classified cells they matched (see Table 5): AIN, T-
Blocks, Corner, RIN, Tunel. The results show that
we managed to repair 152 misclassified and lose 14
correctly classified. Table 6 summarizes the results of
this execution per label. Also, in Table 7 we provide
the updated F1 measures after the relabeling for the
full dataset of cells.

Table 6: Label Flips.

Attributes Data Header Metadata Derived
Gained 41 57 26 18 10
Lost 0 1 8 3 2

Table 7: F1 measures before and after relabeling.

Attributes Data Header Metadata Derived
Original 96.6 99.9 97.7 93.5 94.9
Relabeled 97.3 99.9 97.9 94 95.2

There is potential in using patterns for handling
misclassifications in a post-processing step. However,
this approach needs further refinement. We believe
that one way to improve it is by taking in consid-
eration the type and style of the neighbors. During
the classification process these features provide a mi-
nor improvement. However, under the label context
they should be able to provide us with stronger indica-
tions. We are also looking at methods for discovering
patterns automatically. The main aim is to identify
patterns that apply to specific classes, since we ex-
pect them to be more accurate than the generic ones.
The results displayed in Table 6 hint towards this di-
rection. Finally, we need to avoid overfitting on the
current classification results. Hence, we plan in the
future to perform tests in multiple samples.

7 RELATED WORK

7.1 Spreadsheet Layout Inference

The paper (Chen and Cafarella, 2013) describes
work on automatic extraction of relational data from
spreadsheets. The proposed approach processes

data frame spreadsheets (i.e., containing attributes or
metadata regions on the top/left and a block of nu-
meric values). In particular, the authors focus their
efforts on hierarchical spreadsheets (i.e., hierarchical
left or top attribute regions). They have used machine
learning techniques and few heuristics (i) to identify
the regions (layout) of the data frames and (ii) to ex-
tract the hierarchy of the attributes. This then be-
comes the input for the (iii) extraction of data in the
form of relational tuples. The extension of this work
is reported in (Chen and Cafarella, 2014). From the
first paper, we isolate the structure discovery meth-
ods, which are closely related to our research prob-
lem. In contrast to us, their approach is to classify
the rows in a spreadsheet using linear-chain, condi-
tional random field (CRF). Their evaluation is per-
formed on 100 random hierarchical spreadsheets from
their corpus (called Web). The results show that their
method, similar to us, has high accuracy for regions
that contain Data. However, for the remaining labels
the scores are lower. We should note that they have
not defined a separate class for Derived cells. Also,
what we call “Metadata” is further distinguished into
two separate classes, “Title” and “Footer”. In ad-
dition to this, the authors have established a set of
assumptions for the arrangement of data in spread-
sheets. Cases that do not comply to these expecta-
tions are simply not treated by their system. However,
as we argue in Section 2, the classification at the row
level together with the assumptions about the struc-
ture limit the abilities of the system.

Work on the extraction of schema from Web tab-
ular data, including spreadsheets, is presented in
(Adelfio and Samet, 2013). The authors have tested
various approaches to identify the layout of the ta-
bles in spreadsheets. All of them work on the row
level. Their evaluation shows that the most promising
results are achieved when a CRF classifier is used to-
gether with their novel approach for encoding cell fea-
tures into row features (called “logarithmic binning”).
In contrast to us, they have considered a much smaller
number of cell features (15 in total), since their ap-
proach had to work for both spreadsheets and HTML
tables. There are some differences with what regards
the defined labels. They have further differentiated
between simple and stacked Headers. Also, they have
not defined a separate label for Attributes cells. More-
over, they have defined two kinds of Metadata: “Title”
and “Non-relational”. Another aspect that differenti-
ates our work from theirs, is that we have considered
in our analysis industrial spreadsheets in addition to
the ones collected from the Web.

In (Eberius et al., 2013), the authors present De-
Excelerator, a framework which takes as input par-

A Machine Learning Approach for Layout Inference in Spreadsheets

85



tially structured documents, including spreadsheets,
and automatically transforms them into first normal
form relations. Their approach works based on a
set of rules and heuristics. For spreadsheets, these
have resulted from a manual study on real-world ex-
amples. The performance of the framework was as-
sessed by a group of 10 database students, on sample
of 50 spreadsheets extracted from data.gov. DeExcel-
erator received good scores for all the various tasks
it handles, including layout inference. Nevertheless,
we believe that our approach is much more powerful,
since the best features are learned automatically from
the annotated spreadsheets. Moreover, we have per-
formed our evaluation on a considerably larger sam-
ple, consisting of spreadsheets from various domains
and sources.

Techniques for header and unit inference for
spreadsheets are discussed in (Abraham and Erwig,
2004). This paper looks in the same research prob-
lem as us from a software engineering perspective.
The core idea is that formula (reference) errors can
be discovered more accurately in spreadsheets once
the system is aware of the table structure. To achieve
this, they have developed several spatial algorithms
(strategies), and a weighting scheme that combines
their results. Same as us, they work on the cell level,
but they use heuristics instead of learning methods.
They have defined four possible semantical labels for
a cell. The notion of Metadata cells does not exist in
their analysis. For the other classes we can find sim-
ilarities with the ones we have defined. They have
performed their evaluation on two datasets, consist-
ing of 10 and 18 spreadsheets correspondingly. The
results from their evaluation are encouraging. How-
ever, the lack of reproducibility and the small size of
these datasets makes it difficult to judge this approach
in much more general context.

7.2 Table Recognition and Layout
Discovery

One of the typical ways to present information (facts)
is by organizing data in a tabular format. As a result,
the problems of table recognition and layout discov-
ery have been encountered by various research com-
munities. Some of the most recent studies are related
to HTML (Web) tables. In (Wang and Hu, 2002), de-
cision trees and support vector machines (SVM) are
considered to differentiate between genuine and non-
genuine Web tables. The authors defined structural,
content type, and a word group features. The (Crestan
and Pantel, 2011) reports the study of large sample of
Web tables, which yielded a taxonomy of table lay-
outs. It also discusses heuristics, which are based on

features similar to the paper above, to classify Web
tables into the proposed taxonomy. In (Eberius et al.,
2015), the authors describe the creation of the Dres-
den Web Table Corpus, by proposing a classification
approach that works on the level of different table lay-
out classes.

8 CONCLUSIONS

In conclusion, we have presented our approach for
discovering the layout (structure) of the data in
spreadsheets. The first aspect of this approach in-
volves classifying the individual non-blank cells. Us-
ing our specialized tool, we have labeled the cells
from a considerable number of sheets, taken from var-
ious domains. The experiments show that our models
have high accuracy and perform well with all the de-
fined classes. The best results are achieved when Ran-
dom Forest is used to build the classification model.
Moreover, in this paper we discuss a technique for
identifying and correcting misclassifications. The cell
and its neighbors (i.e., cells adjacent to it) are ana-
lyzed for improbable label arrangements (patterns).
We update the label of the potentially misclassified
cell based on the matched pattern. Although not yet
mature, the results from the evaluation of this method
are encouraging. It is our aim, in the future, to work
on more elaborate techniques for identifying patterns
pointing to incorrectly classified cells. Also, part of
our future plans is to work on the identification of the
individual tables in a spreadsheet from the final output
of our classification approach.

ACKNOWLEDGEMENTS

This research has been funded by the European Com-
mission through the Erasmus Mundus Joint Doctorate
“Information Technologies for Business Intelligence -
Doctoral College” (IT4BI-DC).

REFERENCES

Abraham, R. and Erwig, M. (2004). Header and unit in-
ference for spreadsheets through spatial analyses. In
VL/HCC’04, pages 165–172. IEEE.

Adelfio, M. D. and Samet, H. (2013). Schema extraction
for tabular data on the web. VLDB’13, 6(6):421–432.

Barik, T., Lubick, K., Smith, J., Slankas, J., and Murphy-
Hill, E. (2015). FUSE: A Reproducible, Extendable,
Internet-scale Corpus of Spreadsheets. In MSR’15.

KDIR 2016 - 8th International Conference on Knowledge Discovery and Information Retrieval

86



Breiman, L. (2001). Random forests. Machine Learning,
45(1):5–32.

Breiman, L., Friedman, J., Olshen, R., and Stone, C. (1984).
Classification and Regression Trees. Wadsworth.

Chen, Z. and Cafarella, M. (2013). Automatic web spread-
sheet data extraction. In SSW’13, page 1. ACM.

Chen, Z. and Cafarella, M. (2014). Integrating spread-
sheet data via accurate and low-effort extraction. In
SIGKDD’14, pages 1126–1135. ACM.

Crestan, E. and Pantel, P. (2011). Web-scale table cen-
sus and classification. In WSDM’11, pages 545–554.
ACM.

Eberius, J., Braunschweig, K., Hentsch, M., Thiele, M., Ah-
madov, A., and Lehner, W. (2015). Building the dres-
den web table corpus: A classification approach. In
BDC’15. IEEE/ACM.

Eberius, J., Werner, C., Thiele, M., Braunschweig, K.,
Dannecker, L., and Lehner, W. (2013). Deexcelera-
tor: A framework for extracting relational data from
partially structured documents. In CIKM’13, pages
2477–2480. ACM.

Fisher, M. and Rothermel, G. (2005). The euses spreadsheet
corpus: a shared resource for supporting experimenta-
tion with spreadsheet dependability mechanisms. In
SIGSOFT’05, volume 30, pages 1–5. ACM.

Hermans, F. and Murphy-Hill, E. (2015). Enron’s spread-
sheets and related emails: A dataset and analysis. In
Proceedings of ICSE ’15. IEEE.

Liu, H. and Yu, L. (2005). Toward integrating feature
selection algorithms for classification and clustering.
IEEE Transactions on knowledge and data engineer-
ing, 17(4):491–502.

Platt, J. C. (1998). Fast training of support vector machines
using sequential minimal optimization. In Advances
in Kernel Methods - Support Vector Learning. MIT
Press.

Quinlan, J. R. (1993). C4.5: Programs for Machine Learn-
ing. Morgan Kaufmann Publishers Inc.

Vapnik, V. (1982). Estimation of Dependences Based
on Empirical Data. Springer Series in Statistics.
Springer-Verlag New York, Inc.

Wang, Y. and Hu, J. (2002). A machine learning based ap-
proach for table detection on the web. In WWW’02,
pages 242–250. ACM.

APPENDIX

Below we provide a table with the “top” 20 features
ordered by mean rank, which is calculated based on
the results from 5 feature selection methods. As men-
tioned in Section 5.1, a 10 fold cross validation was
performed for each one of these methods. The Cfs-
Subset (Cfs) and ConsistencySubstet (Con) output the
number of times a feature was selected in the final
best subset. The other three methods output the rank
of the feature.

Table 8: Top 20 features, considering the results from 5
feature selection methods: InfoGainAttribute (IG), Gain-
RatioAttribute (GR), ChiSquaredAttribute (Chi), CfsSubset
(Cfs), and ConsitencySubset (Con).

Nr Feature IG GR Chi Cfs Con Mean
1 IS BOLD? 3 2 4 10 10 37.04
2 NUM OF TOKENS# 2 17 2 10 10 35.9
3 H ALIGNMENT CENTER? 7 19 8 10 10 34.76
4 COL NUM# 4 43 3 10 10 32.56
5 ROW NUM# 1 52 1 10 10 31.53
6 HAS 4 NEIGHBORS? 10 32 13 10 7 30.59
7 INDENTATIONS# 30 4 14 10 1 23.39
8 IS STRING? 5 6 6 10 0 22.11
9 FORMULA VAL NUMERIC? 9 14 9 10 0 21.28

10 IS AGGRE FORMULA? 15 1 7 0 8 20.86
11 NUM OF CELLS# 24 7 11 10 0 20.65
12 REF VAL NUMERIC? 14 22 18 0 10 20.01
13 IS CAPITALIZED? 17 33 20 0 10 19
14 H ALIGNMENT DEFAULT? 12 41 16 0 10 18.89
15 IS NUMERIC? 8 26 10 0 6 18.66
16 LENGTH# 6 56 5 0 10 18.29
17 V ALIGNMENT BOTTOM? 27 40 30 0 10 17.35
18 LEADING SPACES# 50 8 33 10 0 17.31
19 CONTAINS PUNCTUATIONS? 28 42 31 0 10 17.08
20 IS ITALIC? 52 12 34 10 0 16.88

In order to combine these otherwise incompara-
ble results, we decided to use the geometric mean.
Features having good rank (from the attribute meth-
ods) and selected in many folds (from subset meth-
ods) should be listed higher in the table than others.
We would also like to favor those feature for which
the selection methods agree (the results do not vary
too much). For the cases where the variance is big,
we would like to penalize the extreme negative results
more than extreme positive results. To achieve this
for InfoGainAttribute (IG), GainRatioAttribute (GR),
and ChiSquaredAttribute (Chi) methods we invert the
rank. This means the feature that was ranked first
(ranki = 1) by the selection method will now take
the biggest number (the total number of features is
88). In general, we calculate the inverted rank as
(N + 1)− ranki, where N is the total number of fea-
tures and ranki is the rank for the ith feature in the list
of results from the specified feature selection method.

Once the ranks are inverted we proceed with the
geometric mean. Since the geometric mean does not
accept 0s, we add 1 to each one of the terms be-
fore calculation. Furthermore, we subtract 1 from
the result. Finally, we order the features descendingly
based on the calculated mean.

The information presented in Table 8 aims at high-
lighting promising features. Especially, the seven
first features are listed high, because they achieve rel-
atively good scores in all the considered methods.
However, more sophisticated techniques, such as the
ones discussed at (Liu and Yu, 2005), are required to
integrate results from different feature selection meth-
ods.

For completeness, in Table 9 we display the result-
ing F1 measures when using Random Forest with the
first 7, 15, and 20 features from Table 8. Addition-

A Machine Learning Approach for Layout Inference in Spreadsheets

87



ally, we performed the same evaluation with all the
88 features. Also, we list again the results from Sec-
tion 5.1, for the 43 features that we used in our main
experimental evaluation.

Table 9: F1 measures (as %) per label and number of fea-
tures.

Nr. Features Attributes Data Header Metadata Derived
7 75.5 91.8 86.1 60.8 72.8

15 79.2 94.3 90.7 66.2 86.6
20 90.3 97.6 95.8 88.9 92.8
43 96.8 98.9 98.0 95.9 95.9
88 97.1 99.0 98.0 95.9 96.3

KDIR 2016 - 8th International Conference on Knowledge Discovery and Information Retrieval

88


