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Abstract: The main aim of this paper is to stress the fact that the sufficient variability of activation functions (AF) is 
important for an Extreme Learning Machine (ELM) approximation accuracy and applicability. A slight 
modification of the standard ELM procedure is proposed, which allows increasing the variance of each AF, 
without losing too much from the simplicity of random selection of parameters. The proposed modification 
does not increase the computational complexity of an ELM training significantly. Enhancing the variation of 
AFs results in reduced output weights norm, better numerical conditioning of the output weights calculation, 
smaller errors for the same number of the hidden neurons. The proposed approach works efficiently together 
with the Tikhonov regularization of ELM. 

1 INTRODUCTION 

Extreme Learning Machine (ELM) is widely 
accepted assignment of the learning algorithm for a 
single-hidden- layer, feedforward neural network. 
The main concepts behind the ELM are that: (i) the 
weights and biases of the hidden nodes are generated 
randomly and are not adjusted and (ii) the output 
weights are determined analytically. ELM may be 
applied for modeling (regression) as well as 
classification problems, and various modifications of 
the basic algorithm are possible. The literature 
concerning ELMs is numerous, but some recent 
review papers extensively describe the recent trends 
and modifications of the standard algorithm (Huang, 
Huang, Song, and You, 2015), (Liu, Lin, Fang, and 
Xu, 2015), (Lin, Liu, Fang, and Xu, 2015). Very short 
learning times and the simplicity of the algorithm are 
the most attractive features ELMs. On the other hand, 
several publications report that ELM may: create ill-
condition numerical problems (Chen, Zhu, and Wang, 
2013), introduce overfitting, require too big number 
of neurons (Liu et al., 2015), that the influence of 
number of neurons and parameters of random weights 
selection on the resulting performance is unclear and 
requires analysis (Parviainen and Riihimäki, 2013). 
The necessity of improving the numerical properties 
of ELM was noticed in several recent publications 
(Akusok, Bjork, Miche, and Lendasse, 2015). 

In this contribution a standard ELM applied for 
regression problems with batch data processing is 
considered. Numerical properties of the standard 
algorithm are commented and insufficient variation 
of the AFs is recognized as the reason of huge output 
weights and large modeling errors. The modification 
of the input weights and biases selection procedure is 
proposed to improve the ELM accuracy and 
applicability.  

2 STANDARD ELM MODELING 

2.1 Components of ELM 

2.1.1 Training Data 

The training data for a n-input ELM compose a batch 
of N samples: ሼ(ݔ, ݔ				,(ݐ ∈ ܴ, ݐ ∈ ܴ,			݅ = 1,… ,ܰሽ,  (1) 

where ݔ denote the inputs and ݐ the desired outputs, 
that form the target (column) vector: ܶ = ଵݐ] ⋯  ே]்.   (2)ݐ

It is commonly accepted that the inputs are 
normalized to the interval [0,1] each. 
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2.1.2 Hidden Neurons 

The single, hidden layer of M neurons transforms the 
input data into a different representation, called the 
feature space. The most popular are “projection-based 
neurons”. Each n-dimensional input is projected by 
the input layer weights ݓ் = ,ଵݓ] … ݇			,[,ݓ =1, . .  and the bias ܾ into the k-th neuron input and ܯ
next a nonlinear transformation ℎ, called activation 
function (AF), is applied to obtain the neuron output. 
The matrix form of the hidden layer performance on 
the batch of N samples is represented by a ܰ  ܯ×
matrix: 

ܪ = ℎଵ(ݓଵ் ଵݔ + ܾଵ) ⋯ ℎெ(ݓெ்ݔଵ + ܾெ)⋮ ⋱ ⋮ℎଵ(ݓଵ் ேݔ + ܾଵ) ⋯ ℎெ(ݓெ்ݔே + ܾெ)൩.  (3) 

Although it is not obligatory that the hidden layer 
must contain only one kind of neurons, it is usually 
the case. Any piecewise differentiable function may 
be used as activation function: sigmoid, hyperbolic 
tangent, threshold are among the most popular.   
Another type of neurons used in ELM is “distance-
based” neurons, such as Radial Basis Functions 
(RBF) or multi-quadratic functions. Each neuron uses 
the distance from the centroid (represented by ݓ்  ) as 
the input to the nonlinear transformation (Guang-Bin 
Huang and Chee-Kheong Siew, 2004). The formal 
representation of ELM also generates the matrix 
similar to (3): ܪ =ℎଵ(‖ݓଵ − ,‖ଵݔ ܾଵ) ⋯ ℎெ(‖ݓெ − ,‖ଵݔ ܾெ)⋮ ⋱ ⋮ℎଵ(‖ݓଵ − ,‖ேݔ ܾଵ) ⋯ ℎெ(‖ݓெ − ,‖ேݔ ܾெ)൩.	(4) 

The acceptable number of neurons may be found 
using validation data, Leave-One-Out validation 
procedure, random adding or removing the neurons 
(Akusok et al., 2015) or ranking the neurons (Miche 
et al., 2010), (Feng, Lan, Zhang, and Qian, 2015), 
(Miche, van Heeswijk, Bas, Simula, and Lendasse, 
2011).  
The weights and the biases of the hidden neurons are 
generated on random. The uniform distributions in 
[-1,1] for the weights and in [0, 1] for the biases is the 
most popular choice. If the data are normalized to 
have the zero mean and the unit variance the normal 
distribution may be used to generate the neuron 
parameters (Akusok et al., 2015). 

2.1.3 Output Weights 

The output ܨ of an ELM is obtained by applying the 
 

output weights ߚ to the hidden neurons, therefore the 
outputs for all samples in the batch are: ܨ =  (5)     .ߚܪ

The output weights ߚ are found by minimizing the 
approximation error: ܧ = ߚܪ‖ − ܶ‖ଶ.   (6) 

The optimal solution is: ߚ௧ =  ାܶ,    (7)ܪ

where ܪା is the Moore–Penrose generalized inverse 
of matrix ܪ. 
The matrix ܪ possesses N rows and M columns. If the 
number of training samples N is bigger than the 
number of hidden neurons M,  ܰ ≥  and the matrix ,ܯ
H has full column rank, then ܪା =  (8)   .்ܪଵି(ܪ்ܪ)

If the number of training samples N is smaller than 
the number of hidden neurons M,  ܰ <  and the ,ܯ
matrix H has full row-rank, then ܪା =  ଵ,   (9)ି(்ܪܪ)்ܪ

but the last case is impractical in modeling. 

2.2 Numerical Aspects of ELM 

The calculation of the output weights is the most 
sensitive stage of the ELM algorithm and may be a 
reason for various numerical difficulties. Each of two 
ways may be selected to calculate ߚ௧	: specialized 
algorithms for calculation of pseudoinverse (8), or 
simply, calculation of following matrices: Λ = Ω			,ܪ்ܪ = ,ܶܪ ௧ߚ = ΛିଵΩ.  (10) 

The computational complexity of both approaches is 
similar, but the second one is characterized by smaller 
memory requirements (Akusok et al., 2015). For the 
both approaches working with moderate condition 
number of ܪ்ܪ  is crucial for the algorithm stability 
and is necessary to get moderate values of ߚ௧. Huge 
output weights may reinforce the round-off errors of 
arithmetical operations performed by the network and 
make the application impossible. 
The well-known therapy for numerical problems in 
ELM caused by ill-conditioned matrix H is Tikhonov 
regularization of the least-square problem (Huang et 
al., 2015), (Akusok et al., 2015). Instead of 
minimizing (6), the weighted problem is considered, 
with the performance index: 
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ܧ = ଶ‖ߚ‖ + ߚܪ‖ܥ − ܶ‖ଶ,  (11) 

where ܥ > 0 is a design parameter. The optimal 
solution is:  ߚ௧ = ቀଵ ܫ + ቁିଵܪ்ܪ  (12)  .்ܶܪ

Inevitably, this modification degrades the modeling 
accuracy. The proper choice of C depend on the 
problem structure and it is difficult to formulate 
general rules. The structure of the matrix H depends 
on the number of neurons, samples, and inputs, and 
on the shape of activations functions. The target 
vector has no influence on H.  
To demonstrate that ill-conditioning of the matrix ܪ்ܪ may really cause problems, a simple example is 
demonstrated. Consider the sigmoid activation 
functions with input weights and biases taken 
randomly according to the uniform distribution in the 
interval [-1,1], samples selected according to the 
same distribution in the unit cube and calculate the ܿ(ܪ்ܪ)݀݊. The mean of condition coefficients 
obtained in 20 experiments, for several numbers of 
inputs is presented in fig. 1.  
The number of hidden neurons was always smaller 
than a half of a number of samples. The condition 
number of ܪ்ܪ increases rapidly with a number of 
neurons and samples. Performing any calculations 
with the numbers as big as 1014 in the matrix Λିଵ is 
not reasonable.  
As it is visible, the problem of ill-conditioning 
escalates for small-dimensional modeling, 
paradoxically. The regularization is not able to solve 
this difficulty efficiently. To keep the condition 

number in reasonable constraints 
ଵ < 10ିହ must be 

used, as it is presented in fig. 2. It is much bigger than 

typically applied values 
ଵ = 50 ×݉ܽܿℎ݅݊݁	݈݁݊݅ݏ. 

3 ENHANCED VARIATION OF 
ACTIVATION FUNCTIONS 

The ELM is not able to learn the features from the 
data, as a fully trained neural network does. The 
randomly chosen weights happen to specify a linear 
mapping to the space of neuron arguments. There-
fore the nonlinear mapping of the data into a feature 
space should be able to extract the features sufficient 
for predicting the target variable of a regression task. 
It is not achieved at all times if the typical rules of 
neuron construction (described in section 2) are 
applied. 

 

Figure 1: Logarithm of the condition number of ܪ்ܪ as a 
function of batch size and the number of hidden neurons for 
different number of inputs. 

 

Figure 2: Logarithm of the condition number of ܪ்ܪ as a 
function of batch size and the number of hidden neurons for 
different number of inputs and the regularisation parameter ܥ = 10ହ. 

For instance consider a case with 4 neurons, 2 inputs, 
100 samples, weights and biases selection according 
to the uniform distribution in [-1,1]. The mean 
condition number of ܪ்ܪ in 2000 experiments is ∼10 and the exemplary plots of activation functions 
(from the last experiment) are presented in fig. 3. 
It may be noticed that the activation functions are 
almost linear and that the range of theirs outputs is 
limited.  
The importance of sufficient AFs variability was 
noticed previously (Parviainen and Riihimäki, 2013), 
(Kabziński, 2015). The challenge is to correct the 
random mechanism of weights and biases creation to 
increase variability without losing too much from the 
simplicity of random selection. 
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Figure 3: Plots of exemplary sigmoid activation functions 
obtained from a standard ELM. 

For sigmoid AFs the following procedure may be 
proposed: 
The first step to enlarge the variation of a sigmoid 
activation function is to increase the range of uniform 
random selection of input weights. It must be suitably 
fixed to guarantee that the sigmoid operation neither 
remains linear nor too strongly saturates in the input 
domain. Therefore the weights are selected from 
uniform random distribution in the interval [−ݍ,  .[ݍ
The values 5 < ݍ < 10 seems suitable.  
The selected weights for the k-th neuron are divided 
into positive and negative.  
Next, the biases may be selected to ensure that the 
range of a sigmoid function is sufficiently large. The 
minimal value of the sigmoid function 

 ℎ(ݔ) = ଵଵା௫	(ି൫௪ೖ௫ାೖ൯)   (13) 

in the unit cube is achieved at the vertex selected 
according to the following rules: ݓ, > 0 ⇒ ݔ = ,ݓ,0 < 0 ⇒ ݔ = 1		݅ = 1,… , ݊, 

(14) 

and equals ℎ, = ଵଵା௫	(ିቀ∑ ௪ೖ,:ೢೖ,ಬబ ାೖቁ)  , (15) 

while the maximal value is achieved at the point given 
by: ݓ, > 0 ⇒ ݔ = ,ݓ,1 < 0 ⇒ ݔ = 0		݅ = 1,… , ݊ 

(16) 

and equals ℎ,௫ = ଵଵା௫	(ିቀ∑ ௪ೖ,:ೢೖ,ಭబ ାೖቁ).  (17) 

Assuming that the minimal value of sigmoid AF 
should be smaller than the given ݎଵ , and the maximal 
value should be bigger than ݎଶ , 0 < ଵݎ < ଶݎ < 1 
yields the range for the bias selection. It follows from 
the inequalities  

 ℎ, < ,ଵݎ ℎ,௫ >  ଶ,   (18)ݎ

that the bias ܾ should be selected on random, 
uniformly from ܾ ∈ [ തܽ, ܽ], where തܽ = −∑ ,:௪ೖ,வݓ − ݈݊ ቀ ଵమ − 1ቁ,  (19) ܽ = −݈݊ ቀ ଵభ − 1ቁ − ∑ ,:௪ೖ,ழݓ .  (20) 

Of course, this approach does not guarantee that the 
range of the AF will be [ݎଵ,  ଶ], as the parameters areݎ
still random variables, but at least has chance to be.  
A similar strategy may be applied for other 
“projection based” AFs. 

4 EFFECTIVENESS OF ELM 
WITH ENHANCED VARIATION 
OF ACTIVATION FUNCTIONS 

To demonstrate the effectiveness of the proposed 
method, consider a two-dimensional function  ݖ = sin	(2ݔ)ߨଵ + ,ଵݔ			,(ଶݔ ଶݔ ∈ [0,1]. (21) 

200 samples selected on random constitute the 
training set, and 100 samples the testing sets. The 
surface (21) was modeled by the standard ELM (S-
ELM), ELM with the enhanced variation of AFs (EV-
ELM) with parameters ݎଵ = 0.1, ଶݎ = 0.9, standard 
ELM with regularization (R-ELM) and ELM with 
regularization and the enhanced variation of AFs 
(EV-R-ELM) with parameters ܥ = 10ହ, ଵݎ =0.1, ଶݎ = 0.9. 
In fig. 4,5 the modeling errors and the conditioning of  
S-ELM and EV-ELM are compared. Application of 
EV-ELM allows smaller modeling errors and far 
better numerical properties of the obtained model. 
The output weights are ~10 times smaller in EV-
ELM then in S-ELM. 
The reason for this improvement is visible in fig. 6 
where the plots of 4 AFs (selected from 60) are 
presented. Fig. 6 and 3 demonstrate that in EV-ELM 
AFs are nonlinear and cover wider subinterval in 
[0,1], however not all of them vary from ݎଵ to ݎଶ. 
The advantage of EV-ELM is even more obvious if it 
is applied together with the regularization. Fig. 7, 8 
demonstrate the comparison between R-ELM and 
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Figure 4: Testing (dotted) and training (solid) errors for S-
ELM (brighter - green) and EV-ELM (darker – blue). 

EV-R-ELM. The regularization alone is able to keep 
the output weights on a moderate level, but the 
modeling becomes unacceptably inaccurate. The EV-
R-ELM improves the modeling accuracy and the 
conditioning together. Similar experiments were 
conducted for different modeling problems: with the 
training output corrupted by noise, with multiple 
inputs, with numerous extrema, and always the 
conclusions were similar. 

5 CONCLUSIONS 

The main aim of this paper was to stress the fact that 
the sufficient variability of AFs is important for an 
ELM model accuracy and applicability. A slight 
modification of the standard ELM procedure is 
proposed, which allows enhancing the variance of 
each AF, without losing too much from the simplicity 
of random selection of parameters. 
First, it is proposed to change the parameter of the 
random distribution of the input weights, next to 
modify the random distribution for the basses, taken 
already established weights into account. The 
proposed modification does not increase the 
computational complexity of an ELM training 
significantly – only two simple calculations for each 
bias are added. Enhancing the variation of AFs results 
in reduced output weights norm, better numerical 
conditioning of the output weights calculation, 
smaller errors for the same number of the hidden 
neurons. The proposed approach works efficiently 
together with the Tikhonov regularization applied in 
ELM. 
 

 

Figure 5: Logarithm of the norm of the output weights 
(stars) and ݈(்ܪܪ)݀݊ܿ)݃ (circles) for S-ELM (brighter 
- green) and EV-ELM (darker – blue). 

 

Figure 6: Selected AFs (4 from 60) from the EV-ELM 
model. 

 

Figure 7: Testing (dotted) and training (solid) errors for R-
ELM (brighter - green) and EV-R-ELM (darker – blue). 
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Figure 8: Logarithm of the norm of the output weights 
(stars) and ݈(்ܪܪ)݀݊ܿ)݃ (circles) for R-ELM (brighter 
- green) and EV-R-ELM (darker – blue). 
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