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Abstract: In the past, the Neurosolver, a neuromorphic planner and a general problem solver, was used in several 

exploratory applications, such as Blocks World and Towers of Hanoi puzzles, that in which we investigated 

its problem solving capabilities. In all of them, there was only one agent that had a single point of view focus: 

how to solve a posed problem by generating a sequence of actions to get the system from its current state to 

some goal state. In this paper, we report on our experiments with exploring the Neurosolver’s capabilities to 

deal with more sophisticated challenges in solving problems. For that purpose, we employed the Neurosolver 

as a driver for adversary games. In that kind of environment, the Neurosolver cannot just generate a plan and 

then follow it through.  Instead, the plan has to be revised dynamically step by step in response to the other 

actors following their own plans realizing adversarial points of view. We conclude that while the Neurosolver 

can learn to play an adversarial game, to play it well it would need a good teacher.  

1 INTRODUCTION 

The goal of the research that led to the original 

introduction of Neurosolver, as reported in 

(Bieszczad et al., 1998), was to design a 

neuromorphic device that would be able to solve 

problems in the framework of the state space 

paradigm. Fundamentally, in this paradigm, a 

question is asked how to navigate a system through 

its state space so it transitions from the current state 

into some desired goal state. The states of a system 

are expressed as points in an n-dimensional space. 

Trajectories in such spaces formed by state transitions 

represent behavioral patterns of the system. A 

problem is presented in this paradigm as a pair of two 

states: the current state and the desired, or goal, state. 

A solution to the problem is a trajectory between the 

two states in the state space. 

The Neurosolver can solve such problems by first 

building a behavioral model of the system and then 

by traversing the recorded trajectories during both 

searches and resolutions as will be described in the 

next section. 

In this paper, we report on our explorations of the 

capabilities of the Neurosolver to construct a 

behavioral model for carrying out more complex 

tasks. For that purpose, we employed it as a controller 

for playing an adversarial game. Specifically, we 

used a variety of versions of the Neurosolver and 

training techniques to construct automatically a driver 

for the computer player in the game of TicTacToe. 

The Neurosolver has proven itself as a reliable 

problem solver finding trajectories in problem spaces 

of several problems between the current system state 

and the desired goal state (Bieszczad, 2006, 2007, 

2011, 2015). In the application reported in here, the 

Neurosolver confirms that it is a reliable tool for 

producing sequences between two configurations of 

the TicTacToe board. However, an adversarial game 

is an interactive activity rather than a plan prepared a 

priori and then followed through. Simply, adversaries 

do not follow the same plan (and especially the plans 

of their opponents!), so the Neurosolver must 

recalculate the plan after each adversarial move. That 

requires more time, but again it’s something that the 

Neurosolver can handle well. Unfortunately, that is 

not all; the rules of the game must be followed and 

not all configurations are allowed to be successors of 

a given move, even though they might be minimizing 

the path to a goal (i.e., one of the winning game 

configurations). That is a particularly unpleasant 

challenge for automated training that uses randomly 

generated games for training, since even if the game 

ends with a winning configuration, it is difficult to 

evaluate the player’s quality reliably. 

The original research on Neurosolver modeling 

was inspired by Burnod’s monograph on the 

workings of the human brain (Burnod, 1988). The 
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class of systems that employ state spaces to present 

and solve problems has its roots in the early stages of 

AI research that derived many ideas from the studies 

of human information processing; among them on 

General Problem Solver (GPS) (Newell and Simon, 

1963). This pioneering work led to very interesting 

problem solving (e.g. SOAR (Laird, Newell, and 

Rosenbloom, 1987)) and planning systems (e.g. 

STRIPS (Nillson, 1980). 

The Neurosolver employs activity spreading 

techniques that have their root in early work on 

semantic networks (e.g., (Collins and Loftus, 1975) 

and (Anderson, 1983)). 

The Neurosolver is a network of interconnected 

nodes. Each node is associated with a state in a 

problem space. In the case of the TicTacToe game, a 

state is associated with a single configuration of the 

board. In its original application, the Neurosolver is 

presented with a problem by two signals: the goal 

associated with the desired state and the sensory 

signal associated with the current state. In the context 

of the TicTacToe game, the current state is the initial 

broad configuration (i.e., an empty board), and the 

desired state is one of the winning board 

configurations. A sequence of firing nodes that the 

Neurosolver generates represents a trajectory in the 

state space. Therefore, a solution to the given problem 

is a succession of firing nodes starting with the node 

corresponding to the current state of the system, and 

ending with the node corresponding to the desired 

state of the system. In case of the TicTacToe game, a 

sequence represents a winning game. 

The node used in the Neurosolver is based on a 

biological cortical column (references to the relevant 

neurobiological literature can be found in (Bieszczad, 

1998)). It consists of two divisions: the upper and the 

lower, as illustrated in Figure 1. The upper division is 

a unit integrating internal signals from other upper 

divisions and from the control center providing the 

limbic input (i.e., a goal or — using more psycholo-

gycal terms — a drive or desire). The activity of the 

upper division is transmitted to the lower division 

where it is subsequently integrated with signals from 

other lower divisions and the thalamic (i.e., sensory) 

input. The upper divisions constitute a network of 

units that propagate search activity from the goal, 

while the lower divisions constitute a network of 

threshold units that integrate search and sensory 

signals, and subsequently generate sequences of 

firing nodes. A sequence of outputs of the lower 

divisions of the network constitutes the output of the 

whole node; a response of the network to the input 

stimuli. 

 

Figure 1: Neurosolver learning rule. 

In the original Neurosolver, the strength of all 

inter-nodal connections is computed as a function of 

two probabilities: the probability that a firing source 

node will generate an action potential in this 

particular connection, and the probability that the 

target node will fire upon receiving an action 

potential from the connection. 

An alternate implementation follows the Hebbian 

approach that increments the strength of the 

connection that carried the action potential that cause 

the recipient to fire. In this approach, a certain small 

value is added to the weight of a connection on each 

successful pairing. To keep the values under control 

all weights of afferent and efferent connections may 

be normalized so their sum does not exceed 1. This 

model approximates well the statistical model 

described in the previous paragraph. 

One other option for training is making all 

weights the same (for example, equal to 1); 

alternately, the weights may be ignored completely to 

improve efficiency. In this approach, multiple 

presentations of data do not affect the model. In such 

implementation, the system produces optimized 

(shortest) solution paths that are independent of the 

frequency of sample presentations. 

 

Figure 2: Learning state space trajectories through bi-

directional traces between nodes corresponding to 

transitional states of the system. 

TicTacToe (also know as “noughts and crosses” 

or “Xs and Os”) is a very popular game that is very 
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simple in its most fundamental form using a board of 

9 squares that can be either empty or hold one of the 

the two player symbols: a cross or a circle (or some 

other markers) as shown in Figure 3. 

Each of the two players is assigned one of the two 

symbols: a cross (‘X’) or a circle (‘O’). The game 

proceeds by placing players symbols on the still 

empty board squares. The objective of the game is to 

align 3 same symbols in a vertical, horizontal, or 

diagonal line. 

There are numerous variations of the game; e.g., 

larger boards can be used, including a border-less 

version. As well, the number of symbols in a winning 

arrangement may vary. 

 

Figure 3. A TicTacToe board used in the experiments. The 

board shows the configuration encoded as ‘001121202’ in 

the implementation. 

TicTacToe has been used extensively in research 

on Artificial Intelligence (e.g., Russell et al., 2010), 

because its problem space is manageable, so even an 

exhaustive search can be used on today’s computers 

in case of its simpler versions. For example, the 

number of states in a 3-by-3 version used in the work 

reported here is 39=19,683 and the number of possible 

games is 9!=362,880. Each game is a sequence of 

moves from the the board with all empty squares to 

one of the final configurations representing either a 

win for ‘X’, or a win for ‘O’, or a tie. There are two 

final configurations shown in Figure 4. Usually, the 

problem space is considerably reduced by 

preprocessing that reflects a number of observations 

such as board symmetry, rotation, and player 

symmetry. 

    

Figure 4. Two board configurations showing a win for 

crosses encoded as ‘122010211’ (left side) and a tie 

encoded as ‘122211112’. 

2 IMPLEMENTATION 

2.1 Models 

In this implementation, each state of the puzzle is 

represented internally as as a 9-element string of 

characters ‘0’, ‘1’, and ‘2’ representing the 

configuration of the board. The string is constructed 

by concatenating 3-element strings representing each 

of the rows in the board. ’0’ represents and empty 

square, ‘1’ - an ‘X’, and ‘2’ - an ‘O’. Using numbers 

rather than letters helps internally as the game is 

implemented in Python using the NumPy library, and 

it’s easy to move a configuration to a NumPy array 

for some flexible operations provided by that library. 

There are some examples of the configuration 

representation shown in Figures 4 and 5. 

The Neurosolver consists of a collection of nodes 

representing the configurations (states) of the board. 

Each node has two dictionaries that represent efferent 

and afferent connections with keys being string 

representations of neighboring configurations (states) 

and values representing the corresponding weights. A 

node can be activated up to a certain platform 

maximum that can be adjusted to control the time that 

the Neurosolver is given to perform computations. 

There are two activity thresholds that control activity 

propagation for searching and for following solutions 

as explained shortly. 

2.2 The Neurosolver Operation 

The Neurosolver requires three main stages to solve a 

problem: training, searching, and solving. 

These stages can be interwound in online learning 

mode. In the offline learning mode the first stage is 

separated from the two others. 
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2.2.1 Training 

As training sample games are presented to the 

Neurosolver, nodes and connections are added to the 

model. A node is added to the Neurosolver when a 

corresponding configuration (state) is present as one 

element of a training sample. Consecutive pairs of 

board configurations represent transitions between 

configurations; they constitute game moves. During 

training, the Neurosolver is presented with all moves 

in each training sample game. If not yet in the model, 

a node representing a configuration is added when the 

configuration represents the first element of the 

sample pair, or when it is presented as the target of 

the transition. Learning always affects two nodes: a 

‘from’ node and a ‘to’ node. The dictionaries holding 

references to nodes representing forward and 

backward neighbors (successors and predecessors) in 

the training sample are constructed in the process. In 

the Hebbian model, the weights are adjusted 

accordingly by incrementing them by a certain value 

and normalizing. In the model with fixed cone-ctions, 

just a fact of being a neighbor matters, so the weights 

in that case are ignored and not adjusted. 

The implementation includes offline and online 

modes. In the online mode both a command line and 

GUI interfaces were implemented. Figures 4 and 5 

show the GUI interface. However, training - although 

preferable due to the human involvement in 

evaluating the quality of the training samples as 

explained later - using such manual approach is very 

time consuming. To make the process fast, a game 

generator has been implemented. The generator 

ensures that a valid game is generated by randomly 

generating the next valid board configuration and 

testing whether the most recently generated 

configuration is one of the final states. If the final 

state in the generated game is the winner or a tie, the 

whole game is presented as a learning sample to the 

Neurosolver. With the spirit of learning from 

somebody else’s experience, a game won by the 

adversary (the human player) the game is transitioned 

to a form that represents exactly same sequence of 

moves but with the computer as the winner and also 

used as a training sample. The process merely substi-

tutes all ‘1s’ to ‘2s’ (i.e., ’Xs’ to ‘Os’) and vice versa. 

The ties were added to the training because they 

evidently improved the capabilities of the model as 

shown in the section analyzing the experimental data. 

2.2.2 Searching 

After the training is complete, the Neurosolver will 

have built a connection map between numerous states 

of the problem domain. The next step is to activate 

the node representing the goal state and allow the 

propagation process to spread this search activity 

along the connection paths in the direction that is 

reverse to the flows of sample games used in training. 

If there were only one game learned, then the flow 

would be from the last configuration to the first. 

There are however many training samples used in 

training, so the activity spreads out as a search tree 

looking for the node representing the starting state. 

The extent of the search tree is controlled by imposing 

a search threshold; a node that is a leaf in the search 

tree is allowed to propagate its activity further only if 

its activity exceeds the value of the search threshold. 

The starting node is activated in preparation for 

incoming search activity flow, so when that activity 

reaches it the node may fire if its activity exceeds the 

firing threshold. At that moment, the next stage of the 

Neurosolver operation, solving, will start. That 

process is explained in the next section. 

A TicTacToe Game data set from UCI repository 

was used as the basis of a data set to select the goals. 

The UCI set only shows negative and positive 

outcomes for ‘Xs’. Using the UCI set, a data set of all 

non-loosing states was produced. Each game in the 

new set was labeled with ‘1’ for ‘X’ winners, ‘2’ for 

‘O’ winners, and with ‘3’ for ties. The new set was 

used for two types of training sessions: one with ties 

included and another one with ties excluded. The 

section analyzing the results illustrates the impact of 

using ties in the learning process. 

2.2.3 Solving 

The last stage of the Neurosolver is to actually use all 

of the information collected thus far, and to generate 

an actual solution from the given current state to the 

specified goal state. Since all the nodes in the search 

tree are activated, we may consider them in 

anticipating state for the firing sequence. Therefore, 

when the firing node projects its activity weighted by 

the strength of the forward connections, the neighbor 

that has the highest anticipatory activity will fir next, 

That node is added to the solution, and then process 

repeats itself until the goal state is reached. When that 

happens, the solution to the problem has been 

produced. 

However, in contrast to the earlier experimental 

application of the Neurosolver, in adversarial games 

there are no single “solutions” that can be generated 

once up front and then used as a recipe to “solve the 

problem”. Hence, firstly there are many possible 

goals, so all of them get activated to start the search. 

In this way, the propagation process constructs 

multiple search trees. Since they span the same 
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network, the trees are not independent, so the activity 

from one goal affects trees rooted in other goal states. 

Secondly, the need arises to generate a single “next 

state” rather than a complete solution. Accordingly, 

the operation of the Neurosolver has been augmented 

by facility to produce one configuration rather than 

the whole sequence to one of the goal states. The 

latter would be rather unusable, since the adversaries 

usually do not follow each other advice. 

The next move can be suggested quickly in the 

model using Hebbian learning by following the 

strongest connection from the node corresponding to 

the current state. However, that approach just follows 

the frequency of training moves (state transitions) and 

is unreliable with automated training that uses 

random training samples. A ore reliable approach is 

to use the same activity propagation process as 

described, however collecting only the first transition 

rather than the complete solution. That process must 

be repeated for every game turn of the computer 

player. Hence, there are numerous solving processes 

involved in playing a single game. 

In the model with the fixed weights, activity spre-

ading is the only way to find suggested moves, since 

there is no probabilistic model to take advantage of. 

3 EXPERIMENTS 

Measuring the quality of the model is a challenge due 

to the difficulty is evaluating quantitatively the 

quality of moves. A computer player controlled by the 

Neurosolver can be evaluated qualitatively by an 

adversary human player, but that is limited and 

somewhat subjective. 

To get some quantitative measure of the 

Neurosolver capabilities, we used the data set from 

UCI to create a test set that includes all possible 

problems (games; i.e., sequences of moves) with the 

original board configuration with all squares empty as 

the current (start) state to a state representing every 

possible winning (for a selected player; ‘X’ or ‘O’) 

board configuration. We conducted several 

experiments trying to select the best training strategy. 

The following sections describe the results. 

In each of the experiments, we created five 

models of the Neurosolver-based TicTacToe 

controller each trained with progressively increasing 

number of sample games. Each game was generated 

randomly by generating valid moves and testing for 

the terminal state at every step. We experimented 

with varied number of presentations of each game, 

but ultimately decided that it’s better to spend the 

same time on generating more variety of games rather 

than reinforcing ones that were already presented. 

Therefore, each game was presented only once when 

generated. We allowed for repeats if the random 

process happened to produce a game more than once. 

The probability of that is not very high taking into 

account the number of possible games. 

3.1 Hebbian Learning with No Ties 
and No Move Validation 

In this experiments, we wanted to know if the 

Neurosolver performs as in the past on the problems 

that are solved by producing state transition paths 

between the start state and the goal state in the state 

space. In this session, we used only winning states as 

the goal states, and we did not validate the generated 

moves. We just wanted to confirm that the 
 

 

Figure 5: Success rate of the model built using the Hebbian 

learning with ties excluded and the validation of moves 

turned off. 

 

Figure 6: Success rate of the model built using the Hebbian 

learning with ties excluded and the validation of moves 

turned on. 
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Neurosolver behaves in the same way as in the past 

applications. 

It appears that the resulting model reliably 

produces paths between the starting board 

configurations and every winning terminal state as 

shown in Figure 5. With 1000 training samples the 

success rate measured as the percentage of successful 

attempts to find a path between the start and the goal 

is around 40%. With 10000 sample, the performance 

starts to approach 100%, and with 20000 samples and 

more the system is nearly perfect. 

3.2 Hebbian Learning with No Ties 
and with Move Validation 

The results from the first experiment session were 

very promising. To validate the games we built a 

move validator that ensures that every move 

generated by the Neurosolver is actually valid 

according to the TicTacToe rules. In the following 

session, we validated every game (i.e., every solution 

path) generated by the Neurosolver. If a game did not 

validate (i.e., if it included at least one invalid move), 

the attempt was marked as a failure. 

The results shown in Figure 6 illustrate the 

problem with applying the Neurosolver in a context 

in which not only the path, and even the path length, 

matter, but also the “quality” of the solution that must 

adhere to some externally-imposted standards. While 

initially the success rate is similar to the previous 

model, increasing the number of training samples 

lowers the success rate dramatically. With 20000 or 

more training samples, the model failed for most 

posed problems. 

3.3 Hebbian Learning with Ties and 
with Move Validation 

The results from the second experiment session were 

not good to say the least. When playing against the 

computer, we noticed that it was better being 

offensive than defensive, so we decided to also use 

the tying games in the training to teach the model 

some defensive strategies; e.g., to block adversarial 

moves. It was quite a surprise to see that including 

ties actually improved the quality of solutions quite 

dramatically. 

As shown in Figure 7, the model built with a data 

set that included the tying games brought the success 

rate close to 80% already for 10000 training samples. 

The rate changed minimally with increased number 

of training samples. That is an important observation, 

since increasing the number of training samples. The 

rate changed minimally with increased number 
 

 

Figure 7: Success rate of the model built using the Hebbian 

learning with ties included and the validation of moves 

turned on. 

of training samples. That is an important observation, 

since increasing the number of training samples 

increases dramatically the time necessary for building 

the model, and also - albeit not dramatically - the time 

for producing a solution. The latter might be a bit 

surprising, but the reason for that is that more samples 

lead to larger search activity trees. 

3.4 Fixed-weight Learning with No 
Ties and No Move Validation 

As we explained earlier, the Neurosolver models with 

fixed connection weights are good optimizers 

producing shortest paths. Since the drive to move to 

a goal might be a good capability for suggesting 

better, more aggressive moves, we also built two 

models to test this hypothesis. 

 

Figure 8. Success rate of the model built using the fixed-

weight learning with ties excluded and the validation of 

moves turned off. 
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The first model was built with games ending in 

tying configurations excluded and with no validation 

of moves. As shown in Figure 8, this model 

performed as well as the model crated using the 

Hebbian learning. With 10000 training the success 

rate approached 100%. We did not compare the 

lengths of the produced games (i.e., the lengths of the 

solution paths), but one could suspect that they would 

tend to be shorter in this model. 

3.5 Fixed-Weight Learning with No 
Ties and with Move Validation 

As with the models built with the Hebbian approach, 

we wanted to evaluate the quality of the solutions, so 

we used exactly same method that validated all moves 

in each produced game. 

As shown in Figure 9, the quality of the games is 

as bad, and it goes down with the increasing number 

of training samples. 

3.6 Fixed-Weight Learning with Ties 
and with Move Validation 

To next question was whether including the tying 

games in training would also improve the ability of 

the fixed-weight model to generate quality games. 

Unfortunately, as shown in Figure 10, the trick 

that was so useful in the Hebbian model did not work 

here. The success rate of the model built with the 

tying games included in training is as bad as of the 

model built without ties included. 

 

Figure 9: Success rate of the model built using the fixed-

weight learning with ties excluded and the validation of 

moves turned on. 

 

Figure 10: Success rate of the model built using the fixed-

weight learning with ties included and the validation of 

moves turned on. 

 

Figure 11: Sample time necessary to construct the model 

using the Hebbian learning. 

3.7 Time to Build Models 

The time necessary to build the models depends on 

the computing platform, of course. Nevertheless, 

looking at the trends might be informative. 

Figure 11, includes a graph that shows how the 

time required to train a Hebbian model (with ties 

excluded, to be precise) increases as a function of the 

training samples. As shown, the dependency is linear. 

It is worth noting, that evidently that is the trend as in 

one session the training time rose to close to 600 

seconds for a training sample of 300000 games. That 

would be an approximate value if the graph from 

Figure 11 was used for extrapolation. 

 

 

Exploring the Neurosolver in Playing Adversarial Games

89



3.8 Qualitative Evaluation 

We played with the Neurosolver-driven computer 

player numerous games. Although the current best 

model (see Figure 7) shows some signs of decent 

playing skills, it is far from satisfactory. The model 

seems to be superior in offensive strategies, but 

evidently does not acquire skills necessary to prevent 

some obvious moves, like blocking placing the third, 

winning, adversarial symbol in a line. 

4 CONCLUSIONS 

In the line of experiments reported in this paper, we 

showed that the Neurosolver can find paths between 

the starting TicTacToe board configuration and any 

winning state with very high success just after 

sampling 10000 out of 9! possible games.  However, 

finding a path is not sufficient in the application of 

the Neurosolver as a controller for driving a computer 

player in an adversarial game. In this application, the 

quality of the game measured by its validity as well 

as an ability to interactively produce “good” moves is 

of paramount importance. The strategies used for 

training the Neurosolver yielded only moderate 

success. The main reason for that is the automated 

process that can validate games, but cannot evaluate 

the quality of individual moves. 

The Neurosolver is a device that learns by being 

told, so employing either a skillful human or 

computer player, or a data set of “good” games, seems 

to be necessary to acquire good playing skills. For 

example, the common heuristic utility function for 

TicTacToe configurations could be used to generate 

more promising moves. The point of our experiments, 

however, was to see if such heuristics can be 

developed automatically. The current answer to that 

question is a sound ‘no’. 

Our next goal is to identify states from the raw 

images of the TicTacToe board and to acquire the 

behavior without explicit representation of the state 

space. We hope to build a model from scratch by 

putting together a deep learning front end (e.g., 

convolution networks (Lawrence at al., 1998)) with 

the Neurosolver back end. 
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