
Fast and Reliable Software Translation of Programming Languages

to Natural Language

Iaakov Exman and Olesya Shapira
Software Engineering Dept., The Jerusalem College of Engineering – JCE - Azrieli, POB 3566, Jerusalem, Israel

Keywords: Software Translation, Source Code, Natural Language, Programming Languages, Software Tool, Fast

Translation, Generality, Relevance and Reliability.

Abstract: An experienced software professional with several years of programming in some languages is usually

expected to read or write with proficiency in a new programming language. However, if severe time

constraints are involved, and given the current availability of internet sources, there is no reason to avoid

shortcuts supporting fast translation of source code keywords into Natural Language. This work describes

our tool coined PL-to-NL Translator, the main ideas behind it, and its extensions. One basic assumption that

was clear from the beginning of this work is the need to keep as far as possible a clear separation between

generic infra-structure and the specifics of particular programming languages. Moreover, the tool keeps its

generality relative to programming languages, enabling through its contributor engine, addition of any

desired current or future programming language. The ideas and the software tool characteristics are

illustrated by some case studies involving a few sufficiently different programming languages.

1 INTRODUCTION

There a few different motivations to translate source

code in a given programming language to natural

language, as an explanation of a poorly understood

code:

 Experienced programmer with new

language – a programmer with several

years of programming in some languages,

needs to read or write a program in a new

language;

 Novice learning – a student or a newly

hired recent graduate, needs to learn his

first or second programming language;

 Legacy program lacking documentation –

say someone needs to substitute a previous

worker that moved to another company.

In all the above cases time may be a critical

resource and one cannot learn the new/old

programming language in a linear leisurely way.

One needs to find shortcuts to comprehend in a short

time, not the whole language, but the specific

limited task one was assigned.

This work describes a software tool PL-to-NL

(standing for “Programming Language to Natural

Language) Translator which is able to translate fast

and reliably code fragments in a programming

language, say C++, to plain explanations in a natural

language, say English.

Software professionals are familiar with

programming languages as formal means of

expressing programs to be run by computers.

Programming languages are strictly restricted by

their syntax.

Program documentation and any explanations of

usage of programming languages are expected and

given in natural language. This is one of the many

roles of natural language related to software, which

is the topic of the next paragraphs.

1.1 The Roles of Natural Language

Concerning Software

We are not looking at this issue in its most general

sense, as space limitations prevent us to deal with it.

It suffices here to list some possible roles, and point

out the relevant role in this work.

There are at least three possibilities regarding this

issue, concisely formulated as follows:

1. Highest level of software abstraction – we

have claimed elsewhere (Exman and Plebe,

2015), (Exman and Iskusnov, 2014, 2015)

that natural language concepts are the highest

Exman, I. and Shapira, O.
Fast and Reliable Software Translation of Programming Languages to Natural Language.
DOI: 10.5220/0006081200570064
In Proceedings of the 7th International Workshop on Software Knowledge (SKY 2016), pages 57-64
ISBN: 978-989-758-202-8
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

57

level of software abstraction, viz. one can

obtain UML class diagrams from application

ontologies;

2. Software Assets Explicitly in Natural

Language – there are software assets, besides

programs, say Software Requirements, that

explicitly start from Natural Language

sentences, that may be later refined into more

formal and precise formulations with a

specialized restricted syntax;

3. Documentation as Explanations –

documentation on software may exist as

separate files or as inline comments within

programs.

The current work focusses on the third role.

1.2 Related Work

The literature relevant to this work is naturally

divided by the different motivations, mentioned in

the beginning of this Introduction.

Novice programmer learning is dealt with in a

few recent papers, e.g. by Corney and collaborators

(Corney et al., 2014). They claim that there is a clear

correlation of the ability to read and explain

programs, with writing programs’ capabilities.

Another paper (Teague and Lister, 2014) has an

interesting proposal of testing programming ability

by means of reversibility: providing the students

with a small code fragment and asking them to write

code that undoes the effect of that code. They also

conducted think aloud studies during the reversing

task.

Reading other people’s code is hard; there is

probably a widely agreed consensus about this

statement. For instance, this is the message of the

personal blog by Alan Skorkin (Skorkin, 2010). But

reading code is important both as a way to acquire

proficiency from experienced programmers and as

part of the software system development task of

“code review”. Hansen et al. (Hansen et al., 2013) in

their paper “What Makes Code Hard to

Understand?” state that programs coherent with

expectations take less time to understand and the

code human interpretation is closer to correct.

We now mention a few works concerning the

processing of programming languages. An

influential early paper – originally lectures given in

1967 – is the paper by Strachey on Fundamental

Concepts in Programming Languages (Strachey,

2000). Nilson et al. (Nilsson et al., 2009) claim that

data-driven parsing approaches developed for

natural languages are robust and have quite high

accuracy when applied to parsing of software.

An approach to documentation, different from

the work in this paper, can be described under the

“Living Documentation” rubric. This is exemplified

by the works of (Brown, 2011) which takes

executable specs to be applied also to

documentation, and (Martraire, 2016) which

understands living documentation as being always

up-to-date.

In particular, living documentation can be

implemented by means of Wikipedia, e.g. by

(Krotzsch et al., 2007) with their Semantic

Wikipedia and by (Yagel, 2015) which bases living

documentation on Wiki with domain knowledge.

There have been efforts to build a similar

interactive tool, such as (cdecl, 2016) which

translates “C” code fragments to English. Another

related commercial information source of potential

interest is displayed in “programmers stack

exchange” (stackExchange, 2016) where one finds a

discussion on “how to better in explaining the code

to other developers”.

1.3 Paper Organization

The remaining of the paper is organized as follows.

In section 2 we introduce the software architecture

of the PL-to-NL Translator tool; in section 3 we

describe the Relevance & Reliability ideas of the

Translator; in section 4 a concise pseudo-code of the

Translator algorithm is given; in section 5 case

studies illustrate the Translator usage; in section 6

there is a very short description of implementation;

in section 7 the paper is concluded with a discussion.

2 THE PL-TO-NL

TRANSLATOR’S SOFTWARE

ARCHITECTURE

Here we shortly describe the PL-to-NL Translator

software architecture. First, some principles are

provided, the types of users are described, the main

Translator modules are presented and finally the

server’s class diagram is shown.

2.1 Software Architecture Principles

The central principles behind the Translator software

architecture are:

1. Long Term Information is stored in a DB –

the Translator tool is conceived as a

multiple use, long term tool, which is

SKY 2016 - 7th International Workshop on Software Knowledge

58

gradually improved by its usage and

contributions from endorsed users;

2. Generality and Flexibility in terms of

Programming Languages – we assume that

programming languages will continue to be

invented and combined for diverse

purposes. Thus the Translator is built taking

into account a clear separation of the

generic infra-structure from the specifics of

any given language.

2.2 Types of Users

The PL-to-NL Translator assumes two types of

users:

1. Guest Users – these are the users interested

in the basic purpose of the tool: to obtain

translations to Natural Language of code

fragments or even a single keyword from a

given Programming Language;

2. Contributors – these are more experienced

users, which should be endorsed by the tool

administrators, and wish from time to time

to contribute a new or better specific

translation in a given language, or add a

whole new language to the tool.

2.3 Main Translator Modules

The Translator architecture is seen in Fig. 1.

Figure 1: PL-to-NL Translator Software Architecture – Its

modules are: a- GUI input/output in the right hand side; b-

Translation Modules; c- Contribution Modules; d- DB, a

database. Arrows point to receiver of data transmitted. The

GUI is the client and all other modules constitute the

server of the Translator.

The main PL-to-NL Translator modules –

schematically shown in Fig. 1 – are:

1. GUI – the Graphical User Interface, a Web

Application, is the place for input/output;

2. Translation Modules – whose Translation

Engine receives code in a Programming

Language, passes it to the Parser, and in

turn to the identifier of Language Specific

Features; the outcome is to check whether

the translation is already in the DB;

3. DB – the Database stores previously known

keywords etc.; these stored “translations”

are sent to the Translation engine when

needed and provided to the GUI;

4. API Access – if an identifier is not found in

the DB, the relevant API is accessed and

the result is saved in the DB;

5. Contribution Engine – if an endorsed user

decides that a translation is lacking or not

satisfactory, he may contribute a new

translation through the contribution engine,

which saves the contribution in the DB.

Further details about the classes within the

modules are provided in the next subsection.

2.4 Server Class Diagram

The PL-to-NL Translator Server class diagram is

seen in Fig. 2.

Figure 2: PL-to-NL Translator Server Class Diagram –

The Server interface communicates with the Client GUI.

The contribution classes are in the right-hand-side (green

color). The Translation modules’ classes are in the left-

hand-side (pink color). The DAL class accesses the DB. In

the middle one finds the API access classes.

Some interesting points about the classes in Fig.

2 are as follows:

 check_keyword_approved – this is a

method in the Contribution Engine class;

there exists for each keyword a Boolean

variable, whose default value is “FALSE”,

until a contributor approves it, turning it

into “TRUE;

Fast and Reliable Software Translation of Programming Languages to Natural Language

59

 custom_google_search – this method in the

Translation Engine class, is part of the

mechanism of finding acceptable

translations in the internet, as explained in

the next section;

 prepare_for_lexicon – this method in the

Language Specific Features class, prepares

new added languages from “parsing DB” to

the format that the parser gets as input – the

lexicon.

3 THE PL-TO-NL TRANSLATOR

ESSENTIAL IDEAS

Once we decide that the main source of information

to translate keywords or code fragments in a given

programming language to natural language is the

Internet, there are two consequences:

a) use of commercial search engine – there is

no reason to develop from scratch a new

search engine specific for translation

purposes;

b) efficiently filtering of information – the

information obtained from the commercial

search engine may be either useless because

it is irrelevant or unreliable. Thus, efficient

filtering of information quality is essential.

3.1 Main Idea: Relevance & Reliability

The main idea is to have a means to assure both

Relevance and Reliability. This is the justification

for the approach taken and the respective algorithm.

Figure 3: Relevance And Reliability – our approach to

search in the Internet for sources of translation from a

programming language to natural language.

Relevance implies that the web site found by the

commercial search engine indeed contains the

necessary information. Reliability means that one

has somehow checked the quality and veracity of the

information: it is true and accurate.

3.2 Approach Overview

A graphical scheme of the approach is seen in Fig. 3.

It assumes that we should have a solution that

combines generic search from a commercial search

engine providing relevance, with some (partial)

assurance of reliability from a different and

independent source of chosen web-sites.

4 PL-TO-NL TRANSLATOR

ALGORITHM

4.1 PL-to-NL Translator Algorithm
Ideas

The Translator algorithm works in two phases:

1. Prepare two groups of web sites – one

group is obtained by search for a specific

language, a chosen keyword among those

with a given keyword type; the other group

is chosen by humans – the translator

administrators and their advisors;

2. Loop mutually checking the two groups of

web site – if a certain url is found in the

intersection of the two groups (as in Fig. 3),

this is a candidate url; otherwise choose the

higher ranked url among the relevant ones.

What is the essential meaning of this algorithm?
The important point is that the best solution is

the intersection of Relevance and Reliability (as
shown in Fig. 3). However, if for some reason no
overlap is found between Relevance and Reliability,
preference is given to the relevant in detriment to the
reliable ones, eventually (but not necessarily) paying
a reliability price.

4.2 The Relevance & Reliability
Algorithm

A pseudo-code of the Relevance & Reliability

algorithm is shown in the next text-box.

The outcome RELEVANT_URLS[0] refers to

the 1st member of the Relevant urls, i.e. that with the

higher search rank, which is assumed to be that with

the higher relevance.

SKY 2016 - 7th International Workshop on Software Knowledge

60

5 CASE STUDIES

The case studies in this section illustrate the

application of the Relevance & Reliability

algorithm, as opposed to a simplistic approach.

5.1 Searching “Package” in Java

Suppose that we google search for:

“java package keyword site: docs.oracle.com”.

The first result of the search is:

https://docs.oracle.com/javase/tutorial/java/java

OO/accesscontrol.html

which describes “Controlling access to members of a

class”, which has nothing to do with “package”.

On the other hand, using the Relevance &

Reliability algorithm, one searches for:

“java package keyword”

The first site from the RELIABLE_URLS that

appears is:

http://www.tutorialspoint.com/java/java_package

s.htm

which describes exactly what we wanted.

5.2 Searching Keywords in a Python
Code Fragment

Now suppose that we choose the language Python

and insert a code fragment containing various types

of keywords. One such example is in the partial

screen-print of the PL-to-NL Translator system seen

in Fig. 4. A few different types of possible keywords

to be translated to natural language are:

 Errors and Exceptions – say “try” and

“except”;

 Simple Statements – say “return”;

 Built-in functions – say “info”.

Figure 4: Translation Of Code Fragment – One sees

a PL-to-NL Translator system guest user partial

screen-print, for the chosen Python language. The

system marks different keyword types with different

colors: language keywords such as try and return (in

red), functions either built-in such as info, or user

functions such as save_data_in_db (in yellow), and

ignoring strings within double quotations (in green).

Translation is offered only for marked language

keywords and built-in functions.

This case study shows that the system is able to

concurrently deal with a set of keywords in a code

fragment. In this code fragment, the Translator

system ignores strings (within double quotations)

and function arguments. More generally, it also

ignores comments.

6 IMPLEMENTATION

The PL-to-NL Translator system has been developed

and actually implemented using the GAE (Google

App Engine) platform.

This platform provides tools for the Server side

such as a datastore, and support for the Python

language. The tools provided for the client side

include support for AJAX, JQuery and JS above

HTML.

Relevance & Reliability Algorithm

//Initialize two groups of web sites
RELEVANT_URLS = google search by
 “<language> <keyword> <keyword type>”;
RELIABLE_URLS = independent list of
approved web sites;

//Loop to obtain Relevance & Best Reliability
For ulr in RELEVANT_URLS{
 For def_url in RELIABLE_URLS{
 If (url == def_url)
 Return url;

}}

//No Relevance & Reliability overlap
If (no url returned yet)

Return RELEVANT_URLS[0]

Fast and Reliable Software Translation of Programming Languages to Natural Language

61

6.1 Parser Implementation

The parser is implemented under the following

assumptions:

• Find the most common programming

languages

• Find the biggest common part for most of

the languages

• Build the parser based on the assumption

that all languages have common features

• Find existing fundamental module; PLEX

has been used, where PLEX is a Python

module for constructing lexical analyzers.

The common desired features include: keywords,

literals, operators, function calls and libraries.

The parser is generic. It was implemented for 3

programming languages (Java, Python, Ruby) to

prove generality. The choice of these languages was

dictated by their popularity among users – see e.g.

(Cass, 2015).

The PL-to-NL Translator system allows the

contributor to add a new language. This contributor

functionality was successfully tested by the addition

of the “C” language – also found in the ranking of

(Cass, 2015).

7 DISCUSSION

This discussion refers to fundamental issues,

comparison with other approaches and future work.

It is concluded with a short statement of the main

contribution.

7.1 Fundamental Issues

The following fundamental issues deserve further

investigation:

a. Generic Programming Language

Infrastructure – Can one define in a formal

way, what is the generic common

infrastructure for all the programming

languages? If not, is this possible for at

least certain defined families of

programming languages, such as imperative

or functional?

b. Minimal Number of Programming

Languages – What is the minimal (or

optimal) number of programming

languages that a serious professional should

formally learn? This issue is related to the

previous question. One would be tempted

to state that just one language would

suffice, and such a professional would

easily be able to learn by oneself a 2nd or a

3rd language, and so forth. But a

demonstration of such a statement would

involve complex cognitive functions, which

are certainly beyond the scope of this paper.

c. Understanding Languages – Why is it

easier to understand a freely evolving and

unrestricted natural language than

programming languages that have restricted

syntax? This issue is raised since one

usually expects program documentation

and explanations to be given in natural

language, despite the complexities of

natural languages, such as ambiguity,

metaphors, etc.

d. Diversity of Natural Languages – all this

work was performed with regards the

natural language “English”. How easy is to

reproduce the results of the Translator for

other languages? Can we find a “Generic

Base” common to families of natural

languages, such as Indo-European,

Germanic or Slavic languages, with regard

to software explanations?

e. Learning system – in principle we could

insert learning capabilities into the

Translator system, at least with two

respects: 1- recognition of the programming

language of a code fragment; 2- analysis of

the natural language explanation in order to

shorten it or focus it according to the

perceived user interests.

7.2 Comparison with other Approaches

The main characterization of our approach to the

PL-to-NL Translator is its generality and flexibility.

In other words, we refer to its applicability to any

programming language, provided that the chosen

language has a well-defined syntax and semantics,

which were published and available through the

web.

The intended generality implies that we do not

start with a complete and closed set of programming

languages. We actually start with a small set of

languages, chosen by their ranking in some

popularity scale among users – e.g. (Cass, 2015).

The contributor engine enables eventual adding of

any future language – even not currently existing

ones. This is the most stringent challenge to our

approach.

SKY 2016 - 7th International Workshop on Software Knowledge

62

The referred generality also explains why we do

not just apply existing tools – e.g. parsers and their

components – for existing specific languages, even

if they are of the highest possible quality.

An important infra-structure feature needed for

generality is to keep well-separated generic features

common to various programming languages of a

given family, from those features specific to a given

language.
An example of an alternative approach to

documentation and translation is the specific use of
Wiki tools – see e.g. (Krotzsch et al., 2007), (Yagel,
2015). Despite the fact that Wiki tools have a broad
enough usage, they still represent a kind of
restriction to our proposed generality.

7.3 Future Work

In order to increase confidence in the PL-to-NL

Translator it would be necessary to perform more

extensive tests, including additional programming

languages, perhaps from different families.

In principle this approach could be extended to

operating systems – such as scripting languages

found in UNIX or LINUX versions – and effectively

to any kind of software tools with languages that

may justify the investment in a Translator tool.

The system described in this paper was primarily

motivated by its usefulness for an experienced

programmer that has some local difficulties with a

new language. It was neither intended to systematic

comprehensive learning of a whole new language,

nor to deal with whole long programs. This is not to

say that the approach cannot be extended to these

other goals. Specifically referring to whole

programs, at least the GUI (Graphical User

Interface) of the PL-to-NL Translator should be

adapted to facilitate dealing with long inputs, instead

of just small code fragments.

Finally, an investigation from the point of view

of users’ satisfaction should probably be performed.

7.4 Main Contribution

The main contribution of this work is the Relevance

& Reliability algorithm to find in the Internet the

sources to translate Programming Languages to

Natural Languages. Relevance & Reliability is the

basis for the generality and flexibility of our PL-to-

NL Translator approach.

ACKNOWLEDGEMENT

Olesia Shapira wishes to thank Itamar Sharify for his

help in originating the idea of the Programming

Language to Natural Language Translator.

REFERENCES

Brown, K., 2011. “Taking executable specs to the next

level: Executable Documentation”, Available from:

http://keithps.wordpress.com/2011/06/26/takingexecut

able-specs-to-the-next-level-executabledocumentation/

Cass, S., 2015. “The 2015 Top Ten Programming

Languages”, IEEE Spectrum, available from site:

http://www.csee.umbc.edu/courses/undergraduate/202/fall

15_marron/lectures/l01/the_2015_top_ten_programmi

ng_languages.pdf

cdecl, 2016. An interactive tool to translate “C” to

English. Web site: http://cdecl.org/

Corney, M., Fitzgerald, S., Hanks, B., Lister, R.,

McCauley, R. and Murphy, L., 2014. “‘Explain in

Plain English’ Questions Revisited: Data Structures

Problems”, in SICCSE’14 Proc. of 45th ACM

Technical Symposium on Computer Science

Education, pp. 591-596, ACM. Web site:

http://eprints.qut.edu.au/68093/. DOI:

http://doi.acm.org/10.1145/2538862.2538911

Exman, I. and Iskusnov, D., 2014. “Apogee: Application

Ontology Generation from Domain Ontologies”, in

SKY’2014, Proc. 5th International Workshop on

Software Knowledge, pp. 31-42. DOI:

10.5220/0005181000310042.

Exman, I. and Iskusnov, D., 2015. “Apogee: Application

Ontology Generation with Size Optimization”, in

Knowledge Discovery, Knowledge Engineering and

Knowledge Management, Vol. 553, CCIS, pp. 477-

492, Springer-Verlag, . DOI: 10.1007/978-3-319-

25840-9_29.

Exman, I. and Plebe, A., 2015. “Software, Is it Poetry or

Prose? Conceptual Content at the Higher Abstraction

Levels”, in SKY’2015 Proc. 6th International

Workshop on Software Knowledge, pp. 9-17. DOI:

10.5220/0005625500050013.

Hansen, M., Goldstone, R.L. and Lumsdaine, A., 2013.

“What Makes Code Hard to Understand?”, Web site:

http://arxiv.org/pdf/1304.5257.pdf

Krotzsch M., Vrandecic D., Volkel M., Haller H., Studer

R., 2007. Semantic Wikipedia. In Journal of Web

Semantics 5/2007, pp. 251–261. Elsevier.

Martraire C., 2016. Living Documentation - A low-effort

approach of Documentation that is always up-to-

date,inspired by Domain-Driven Design. Leanpub

(expected). http://leanpub.com/livingdocumentation.

Nilsson, J., Lowe, W., Hall, J. and Nivre, J., 2009.

“Parsing Formal Languages using Natural Language

Parsing Techniques”, in IWPT Proc. 11th Int. Conf. on

Fast and Reliable Software Translation of Programming Languages to Natural Language

63

Parsing Technologies, pp. 49-60. ACM. Web site:

http://www.aclweb.org/anthology/W09-38#page=65

Skorkin, A., 2010. “Why I Love Reading other People’s

Code and you should too”, Personal Blog, Web site:

http://www.skorks.com/2010/05/why-i-love-reading-

other-peoples-code-and-you-should-too/

StackExchange, 2016. A discussion about: “improving

explanations of code to other developers”. Web site:

http://programmers.stackexchange.com/questions/187

882/how-can-i-become-better-on-explaining-the-code-

to-other-developers

 Strachey, C., 2000. “Fundamental Concepts in

Programming Languages”, Higher-Order and

Symbolic Computation, Vol. 13, pp. 11-49, DOI:

10.1023/A:1010000313106

Teague, D. and Lister, R., 2014. “Programming: Reading,

Writing and Reversing, in ITICSE’14 Proc. of 2014

conf. on Innovation & Technology in Computer

Science Education, pp. 285-290, ACM. DOI:

http://dx.doi.org/10.1145/2591708.2591712

Yagel, R., 2015. “LIDO – Wiki based Living

Documentation with Domain Knowledge”, Proc.

SKY’2015 6th International Workshop on Software

Knowledge, pp. 26-30, DOI: http://dx.doi.org/

10.5220/0005643700220026

SKY 2016 - 7th International Workshop on Software Knowledge

64

