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Abstract: Over the last decade the deep neural networks are the powerful tool in the domain of machine learning.  The 
important problem is training of deep neural network,   because learning of such a network is much 
complicated compared to shallow neural networks. This is due to the vanishing gradient problem, poor local 
minima and unstable gradient problem. Therefore a lot of deep learning techniques were developed that 
permit us to overcome some limitations of conventional training approaches. In this paper we investigate the 
unsupervised learning in deep neural networks. We have proved that maximization of the log-likelihood 
input data distribution of restricted Boltzmann machine is equivalent to minimizing the cross-entropy and to 
special case of minimizing the mean squared error. The main contribution of this paper is a novel view and 
new understanding of an unsupervised learning in deep neural networks. 

1 INTRODUCTION 

Deep neural networks (DNN) currently provide the 
best performance to many problems in images, 
video, speech recognition, and natural language 
processing, etc. (Krizhevsky et al., 2012; Hinton et 
al., 2012; Hinton and Salakhutdinov, 2006). In the 
general case a deep neural network consists of 
multiple layers of neural units and can accomplish a 
deep hierarchical representation of their input data. 
This kind of neural network has been investigated in 
many studies (Hinton et al., 2006; Bengio, 2009; 
Bengio et al., 2007.).  

This paper deals with an unsupervised learning 
technique for restricted Boltzmann machine (RBM), 
which can be applied for the training of deep neural 
networks. The conventional approach to unsupervi-
sed training the RBM uses an energy-based model 
and is based on maximization of the log-likelihood 
input data distribution using gradient descent 
approach. In this paper we consider the unsupervised 
deep learning from another point of view, which 
provides a deeper understanding of the nature of 
unsupervised learning in deep neural networks. First 
of all we use two training criteria, namely square 
error and cross-entropy, instead of energy-based 
technique. Next, we present the RBM as PCA or 

auto-encoder neural network, which consist of three 
layers: visible, hidden and visible. Finally, the Gibbs 
sampling in order to define mean square error and 
cross-entropy loss function is used. As a result we 
have proved that maximization of the log-likelihood 
input data distribution of restricted Boltzmann 
machine is equivalent to minimizing the cross-
entropy and to special case of minimizing the mean 
squared error. The rest of the paper is organized as 
follows. Section 2 introduces the conventional 
approach for restricted Boltzmann machine training 
based on an energy model. In Section 3 we propose 
the novel techniques for inference of RBM training 
rules and finally we give our conclusion. 

2 RELATED WORKS  

Let us consider the related works in this domain 
(Hinton, 2002; Hinton et al., 2006; Erhan et al., 
2010; Mikolov et al., 2011; Bengio et al., 2013). 
There are different kinds of deep neural networks: 
deep belief neural networks, deep perceptron, deep 
convolutional neural networks, deep recurrent neural 
networks, deep auto-encoder, deep R-CNN and so 
on. It should be noted that the training rules are 
identical for different kind of deep neural networks. 
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Therefore we will take the many-layered perceptron 
as a deep neural network in order to investigate deep 
learning rules (Fig.1).  

The j-th output unit for k-th layer is given by 
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where F is the activation function, k

jS  is the 

weighted sum of the j-th unit, k

ijω  is the weight from 

the i-th unit of the (k-1)-th layer to the j-th unit of 
the k-th layer, and k

jT  is the threshold of the j-th 

unit. 
For the first layer  
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There exist the two main techniques for learning 
of deep neural networks: learning with pre-training 
using a greedy layer-wise approach and stochastic 
gradient descent approach (SGD) with rectified 
linear unit (ReLU) transfer function (LeCun et al., 
2015). 

The learning with pre-training consists of two 
stages (Hinton et al., 2006). The first stage is the 
pre-training of neural network using greedy layer-
wise approach. This procedure is started from the 
first layer and performed in unsupervised manner.  
The second one is fine-tuning all of parameters of 
neural network using back-propagation algorithm. 

The training with stochastic gradient descent 
approach is the online or mini-batch learning using 
conventional backpropagation algorithm (Glorot et 
al., 2011). The use of ReLU activation function can 
help to avoid of vanishing gradient problem, poor 
local minima and unstable gradient problem due to 

the greater linearity of such kind of activation 
function (LeCun et al., 2015). 

At present the following paradigm for DNN 
learning is used. If training data set is large then 
SGD with ReLU is used for deep neural network 
learning. Otherwise pre-training and fine-tuning is 
applied. So, for instance, for smaller data sets, 
unsupervised pre-training helps to prevent 
overfitting (LeCun et al., 2015).  

The most important stage of deep neural network 
training is the pre-training of each layer of the DNN 
in unsupervised manner.  There exist two main 
techniques for DNN pre-training. As a rule the DNN 
pre-training is based on either the restricted 
Boltzmann machine (RBM) or auto-encoder 
approach (Larochelle et al., 2009). In accordance 
with the greedy layer-wise training procedure, in the 
beginning the first layer of the DNN is trained using 
RBM or auto-encoder training rule and its 
parameters are fixed.  After this the next layer is 
trained, and so on. As a result a good initialization of 
the neural network is achieved and we can then use 
back-propagation algorithm for fine tuning the 
parameters of the whole neural network. 

Further we will consider the DNN pre-training 
technique based on the restricted Boltzmann 
machine. In this case the deep neural network can be 
represented as a set of restricted Boltzmann 
machines. The traditional approach to RBM training 
was proposed by G. Hinton and is based on an 
energy model. Let's consider the conventional 
restricted Boltzmann machine, which consists of two 
layers of units: visible and hidden (Fig. 2).  

The restricted Boltzmann machine can represent 
any discrete distribution if enough hidden units are 
used (Bengio, 2009). Often the binary units are used 
(Hinton, 2010). The RBM is a stochastic neural 
network and the states of visible and hidden units are 
defined using a probabilistic version of the sigmoid 
activation function. 

 

Figure 1: Deep perceptron. 

NCTA 2016 - 8th International Conference on Neural Computation Theory and Applications

92



 

Figure: 2. Restricted Boltzmann machine. 

The key idea of RBM training is to reproduce as 
closely as possible the distribution of the input data 
using the states of the hidden units. This is 
equivalent to maximizing the likelihood of the input 
data distribution P(x) by the modification of synaptic 
weights using the gradient of the log probability of 
the input data. As a result we can obtain the RBM 
training rules. In case of CD-k 
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Here α is the learning rate.  
Training an RBM is based on presenting a 

training sample to the visible units, then using the 
CD-k procedure to compute the binary states of the 
hidden units p(y|x), sampling the visible units 
(reconstructed states) p(x|y), and so on. After 
performing these iterations the weights and biases of 
the restricted Boltzmann machine are updated. Then 
we stack on another hidden layer to train a new 
RBM. This approach is applied to all layers of the 
deep neural network (greedy layer-wise training). 
Finally, supervised fine-tuning of the whole neural 
network is performed.  

3 A NEW INSIGHT INTO 
UNSUPERVISED LEARNING 
OF RBM 

In this section we will consider the restricted 
Boltzmann machine from another point of view, 
namely as auto-encoder or the PCA neural network. 
We will use two training criteria in order to obtain 
RBM learning rule. As a result we have proposed a 
new unsupervised learning rule and the novel 
techniques to infer the RBM training rules. It is 
based on minimization of the reconstruction mean 
square error and cross-entropy error function, which 
we can obtain using simple iterations of Gibbs 
sampling. In contrast to the traditional energy-based 
method, which is based on a linear representation of 
neural units, the proposed approach permits us to 
take into account the nonlinear nature of neural 
units. 

Let's examine the restricted Boltzmann machine. 
We will represent the RBM using three layers 
(visible, hidden and visible) (Golovko et al., 2014) 
as shown in Fig. 3. As can be seen such a 
representation of RBM is equivalent to PCA neural 
network, where the hidden and last visible layer is 
respectively compression and reconstruction 
(inverse) layer. 

Let’s consider the Gibbs sampling using 
unfolded representation of RBM.  

Then Gibbs sampling will consist of the 
following procedure. Let x(0) be the input data, 
which arrives at the visible layer at time 0. Then the 
output of the hidden layer is defined as follows: 
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Figure 3: Unfolded representation of RBM. 
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The inverse layer reconstructs the data from the 
hidden layer. As a result we can obtain x(1) at time 
1:  
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After this, x(1) enters the visible layer and we 
can obtain the output of the hidden layer the 
following way:  
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Continuing the given process we can obtain on a 
step k, that 
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There exist the different ways for RBM training. 
It is based on the use of the different learning 
criteria. As mentioned before G. Hinton proposed an 
energy-based model, which is based on 
maximization of the log-likelihood input data 
distribution P(x). We suggest using the two loss 
functions for RBM learning. The first training 
criterion is based on minimization of mean square 
error (MSE).  The second one involves the 
minimization of cross entropy error function. Both 
training criteria have the attractive properties and 
have been studied in many papers (Golik, 2013; 
Glorot and Bengio, 2010). Our main goal here is to 
show, that the use of different training criteria leads 
to the same learning rules. In the next subsections 
we will study these criteria in more detail. 

3.1 MSE Training Criterion 

Let’s consider the use of mean square error function 
for RBM learning. Then the primary goal of training 
RBM is to minimize the reconstruction mean 
squared error (MSE) in the hidden and visible layers. 
The MSE in the hidden layer is proportional to the 
difference between the states of the hidden units at 
the various time steps. Then in case of CD-k 
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Similarly, the MSE in the inverse layer is 
proportional to the difference between the states of 
the inverse units at the various time steps: 
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where L is the number of training patterns.  
In case of CD-k the common reconstruction 

mean squared error is defined as the sum of errors: 

)()()( kEkEkE vhs +=  (15)

Тheorem 1. Maximization of the log-likelihood 
input data distribution P(x) in the space of synaptic 
weights of the restricted Boltzmann machine is 
equivalent to special case of minimizing the 
reconstruction mean squared error in the same space, 
if we use linear transfer function for neurons. 

This theorem states that if we use identity 
activation function for RBM units, then the CD-k 
training rule for RBM in order to minimizing 
reconstruction mean squared error (15) will be  
identical to the conventional RBM training rules 
Thus the conventional RBM training rules are linear 
in terms of MSE minimization. Therefore we shall 
call such a machine linear RBM. 

Corollary 1. The training rule for a nonlinear 
restricted Boltzmann machine in the case of CD-k is 
defined as 
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In this section we have obtained the novel 
unsupervised learning rules for restricted Boltzmann 
machines, using MSE training criterion. The 
traditional energy-based method is based on 
maximization of the log-likelihood input data 
distribution and leads to the linear representation of 
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neural units in terms of minimizing the MSE. The 
proposed approach, which can be obtained using 
simple iterations of Gibbs sampling is based on 
minimization of reconstruction mean square error 
and leads to nonlinear and linear representation of 
neurons. We will call the proposed approach the 
reconstruction error-based approach (REBA). For 
the first time, the approach described above has been 
proposed in (Golovko et al., 2014) for the CD-1 and 
in (Golovko et al., 2015; Golovko, 2015) for CD-k. 

3.2 Cross-Entropy Training Criterion 

The cross-entropy measure (CE) can be used as an 
alternative to mean squared error. Let’s consider a 
sigmoid neural network and the cross entropy error 
function instead of mean square error. The goal of 
training RBM is to minimize the cross-entropy in the 
hidden and visible layers. In the case of CD-k the 
cross-entropy error function in the inverse layer is 
defined as  
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Similarly, the cross-entropy error function in the 
hidden layer 
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The common cross entropy error function in case 
of CD-k is defined as the sum of errors: 

)()()( kCEkCEkСE vhs +=  (21)

Тheorem 2. Maximization of the log-likelihood 
input data distribution P(x) in the space of synaptic 
weights restricted Boltzmann machine is equivalent 
to minimizing the cross-entropy error function. 

Proof. Let’s consider the cross entropy for CD-k. 
In this case the cross entropy error function for a 
single example is 
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The theorem is proved. As follows from theorem 
the RBM learning rules can be obtained in a simpler 
way compared to the conventional energy-based 
approach. Thus using minimization of the cross-
entropy error function and simple iterations of Gibbs 
sampling we have received the conventional linear 
RBM learning rules. 

The obtained results can be summarized in the 
following general theorem. 

Theorem 3.  Maximization of the log-likelihood 
input data distribution P(x) in the space of synaptic 
weights restricted Boltzmann machine is equivalent 
to minimizing the cross-entropy and to special case 
of minimizing the mean squared error: 

)min()min())(max(ln ss ECExP ==  (25)

Theorem 3 represents a generalization of the 
previous results in this paper. It follows from the 
theorem that the use of various training criteria leads 
to the same learning rules. Therefore the nature of 
unsupervised learning of RBM is the same, even if 
we use different objective function. The 
maximization of the log-likelihood input data 
distribution and minimization cross-entropy error 
function leads to the linear representation of neural 
units in terms of minimizing the MSE. It should be 
noted, that applying of training criterion, which is 
based on minimization of MSE, we can take into 
account also nonlinear representation of neurons.  

4 CONCLUSIONS 

In this paper we have addressed the key aspects of 
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unsupervised learning in deep neural networks. We 
described both the traditional energy-based method, 
which is based on a linear representation of neural 
units, and the proposed approach, which is based on 
nonlinear representation of neurons. We have proved 
that maximization of the log-likelihood input data 
distribution of restricted Boltzmann machine is 
equivalent to minimizing the cross-entropy and to 
special case of minimizing the mean squared error.  
Thus using MSE training criterion we can get both 
conventional and novel learning rules.  
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