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Abstract: Much ink has been spilled regarding the trials and tribulations of adapting formal methods to the needs of 

software engineering practitioners With the exception of computer scientists with a passion for algorithm 

design and optimization, a plethora of Greek letters and symbols can be an anathema to those whose first 

love is writing code. The advent of graphical modeling languages such as UML, and supporting tools that 

generate production quality code, executable modeling behavioral simulations for bridging the gap between 

formalism and coding. This paper proposes, with illustrative examples, an exploratory learning modality, by 

which the practicing engineer can investigate and empirically learn the semantic mapping of UML syntax to 

the semantic domains of system instantiation and reactive behavior. 

1 INTRODUCTION 

The efficacy of formal methods has always been a 

hard sell to in-the-trenches software engineering 

practitioners whose core responsibility (and first 

love) has been to produce working code. Seminal 

papers on the subject prefixed with the phrase “Ten 

Commandments…” (Bowen and Hinchey, 1995) 

(Bowen and Hinchey, 2005) reinforce the perception 

the suspicion that such methods are to be imposed in 

the same way that a child dutifully attends Sunday 

school, glancing furtively at the clock to see how 

much longer she must endure the ordeal before 

running out to play ball with her friends. 

Champions of formal methods are not oblivious 

to this reluctance, and thus apologize for and/or 

purge Greek symbols and the like from formal 

notations (Harel and Rumpe, 2004), (Bowen and 

Hinchey, 2005). Greek hieroglyphics aside, the 

selected modeling notation and its semantics must be 

appropriate for the intended audience, e. g, users, 

language developers, methodologists, and tool 

vendors (Harel and Rumpe, 2004). Of these 

audiences, (Evermann, 2008) follows the traditional 

dichotomy between conceptualization and 

implementation. UML was “originally developed to 

describe software artifacts… More recently, UML 

has been used for conceptual modeling of 

application domains.”  

This sharp dichotomy between software and 

conceptual approaches deprives software 

practitioners of the excitement generated by Ada 

83’s promise of robust, software mimicking real-

world domain objects (Booch, 1983). All one had to 

do, (as was done in numerous courses based on 

Booch’s seminal work, was to mark the various parts 

of speech of the words of a terse problem statement, 

and robust easily understood software would almost 

jump out of the paper on which this marked up 

problem statement was inscribed. Of course, the 

application of object concepts to systems far more 

complex than those presented in textbooks has been 

a sobering experience. Intuitive solutions, yielded to 

counter-intuitively constructed systems. Dependency 

inversion, canonized in (Gamma et. al, 1995) was 

marshalled to mitigate the repercussions of change. 

Intuitive comprehension was sacrificed to software 

maintainability.  

The author of this paper argues that software 

concretization, and the joy of conceptualization, 

need not remain in the exclusive purview of 

requirements engineers, and other non-software 

stakeholders. For these stakeholders, the concrete 

semantic domain is comprised of application domain 

concepts, taxonomically formalized via stereotypes 

and tagged values. The software practitioner need 

not be deprived of a similar experience. However, 

the software practitioners semantic domain is 

comprised of generic software concepts such as call 
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stacks, event queues, inter-object connections and 

messages, etc.  

Visual modeling languages such as UML, 

accompanied by tools that support production 

quality code and model-level visual simulation offer 

new opportunities for understanding the languages’ 

formal semantics. Given the visual nature of the 

language and the tool’s visual simulations, the “as-

built” semantics of the language can be explored 

visually and concretely. This exploration, when 

performed by the software practitioner, is part of the 

natural process of self-learning that occurs in the 

course of software development. 

2 RELATED WORK 

Bowen and Hinchey (Bowen and Hinchey, 1995), 

(Bowen and Hinchey, 2006) put formal methods on 

the map, by their brilliant use of religious metaphor: 

Ten Commandments, Formal Methodists, guru. 

They acknowledge that the evidence for ROI is 

sketchy and anecdotal at best. They make 

recommendations to bridge the gap between the 

academic believers and the reluctant engineers, 

including restraining esoterica on the part of 

academics, selective application of formal methods, 

and ready access to a guru. In the 2006 paper, they 

acknowledge that these recommendations 

notwithstanding, "religious… Formal Methodists… 

and the rest of the world (and the software 

engineering community, in particular) that has not 

been convinced." 

These papers were not about semantics per se, 

but more generally about formal methods. 

Nonetheless, the viability of formal languages is a 

central issue of both papers. Hence the first 

commandment is "Thou shalt choose an appropriate 

notation." Tradeoff between richness of notation and 

abstraction is noted, suitability of language to types 

of systems being specified, and a clear distinction 

between specification and implementation. For these 

authors, formal languages should address 

specification, rather than implementation. The 

authors bemoan the difficulty  

 (Genova, 2001) demonstrates the need to define 

vaguely descriptive terms used in the early UML 

documentation, in particular, navigability, visibility 

and invertibility, as applied to the UML relation 

association. 

(Harel and Rumpe, 2004) address a very basic 

question, what exactly is (and is not) modeling 

semantics, in particular dispelling confusion 

between syntax, metamodel, semantic domain, 

mathematical, behavior and semantics per se. 

Particular attention is given to mapping to the 

semantic domain. It has become de rigueur to cite 

this paper in all subsequent work, although, whether 

authors say they agree or not, the recommendations 

are more honoured in the breach than the 

observance. 

UML 2 provides a more formal façade, with a 

well-developed epistemology in the UML Meta-

model, but as (Diskin and Jungel, 2006) show, 

refinement of terminology is not a panacea, and a 

laborious multi-component graphical and 

mathematical specification is required to pin down 

the semantics of the UML association as it applies 

multi-class relations. 

The aforementioned Harel and Rumpe paper 

asserts the language and its semantics must 

“accommodate the intended audience.” (Evermann, 

2008) caters to the needs of requirements engineers, 

proposing a cognitive semantics related to the 

application domain. 

In a retrospective paper (Broy and Cengarle, 

2011) offer what seems, prima facie, a pessimistic 

vision of endeavors to “unify” Unified Modeling 

Language semantics, given the preponderance of 

sublanguages and the sliding scale of formality 

needed at various stages of software development. 

Nevertheless, they argue, the endeavour to develop 

these semantics has led and will lead to many 

significant insights, and thus is justified, even if the 

holy grail of a unified semantics is unattainable.  

3 PROPOSED UNDERLYING 

ABSTRACTIONS AND 

REPRESENTATIONS 

This paper paradoxically proposes a set of 

abstractions and multiple concrete representations 

that relevant to the practicing engineers. (The 

representations are those supported by the various 

simulations of the IBM Rational Tool, but could be 

extended and modified according to the resources 

provided by any tool supporting UML-based model-

level execution. Below is an outline of the 

underlying abstractions, and the supporting views. Is 

will immediately become apparent, the views 

themselves are at various levels of abstraction: 

source code, model level concept features windows, 

instance feature windows, call stack visualization, 

animated UML charts (statecharts, sequence 

diagrams).  
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A. Object Initialization. The views include a 

class tree, (in the initialization tab of a Rhapsody 

configuration, e.g., figure 2, left bottom), object 

initialization code (in lower half of initialization tab, 

figure 2) and call stack and instance features 

windows (also in figure 2). In addition, a model 

level textual output simulation (the Rhapsody Tracer 

tool, e.g., as in section 4.2. "OMTracer New 

instance A[0]:A created by main"). 

All of these "Abstractions" may strike the reader 

as very close to the implementation code level. 

However they are indeed abstractions, albeit just 

above the code level. "Initialization" necessarily 

begins with object creation via the class' constructor. 

However, for a reactive class (whose behavior is 

defined by a statechart) it will also include 

initialization of the statechart. Objects may be 

instantiated one after the other via sequential calls to 

constructors in main (as a result of the classes being 

checked off in the configuration initialization tab, or 

by nested calls to constructors of the different 

classes. The "abstraction" in this case would be the 

simulated call stack. For sequential calls, the 

constructors are popped off the stack sequentially. 

For nested calls, the constructors are pushed down, 

and then popped off in reverse order.  

Due to space limitations, the paper does not 

discuss the composition/composite relationships, in 

which the life and death cycles of the contained 

objects are tied to those of the containing object. For 

these relationships, the “abstractions” are less 

perfunctory, both in the tracer (textual) and 

animation (graphical) representations give 

expression to the creational scenario, in which the 

contained objects are created as free-standing 

instances, (e.g., A[0]) and at the point at which the 

containing object is created, the contained are 

“renamed” (the term used in the tracer) relative to 

the containing object (e.g., C[0]->itsA). This 

transformation is experienced in various views: 

tracer output, animated sequence diagram, instance 

features. 

B. Constructional Scenarios. Various scenarios 

of construction are driven by main code, as per the 

aforementioned configuration specification. Model 

level views of scenario execution are expressed in 

the tracer, and in animated sequence diagrams as 

captured in the various figures starting with figure 2.  

C. Inter-object Relations. These have textual 

and graphical representations. The tracer output 

expresses the formation of relations, e.g., “A[0] 

Relation itsB set to B[0]”. Whether a 

given object is connected to another object, and if so 

to which object is expressed in the relation section of 

the instance features window (e.g., Features of A[0] 

in figure 4). Where the interaction between objects 

during relation connection is complex, a 

combination of graphical views (e.g., the animated 

sequence diagram of figure 10) and framework code 

(figure 9) provides a higher and lower level of 

abstraction. Mandatory initializations, such as the 

assignment of NULL to an association end whose 

relation has yet to be connected, are best expressed 

by examining the automatic code generated for 

constructors, as in section 4.1. 

D. Object State. The state of an object at any 

given moment is comprised of the value of its 

instance variables shown in the upper half of the 

instance features window (, and for reactive objects, 

by the its present state as expressed in a color-coded 

instance statechart. The examples herein show the 

instance variable area of instance features windows, 

although none of the examples actually have 

instance variables. Instance statecharts are not 

addressed at all herein.  

As can be seen from the above, the abstractions 

and their various representations are somewhat 

eclectic. Nonetheless, their overall utility can be 

captured heuristically as follows: 

(1) Create a UML Class Diagram depicting the 

relationship. (2) Define one or more constructional 

scenarios via a configuration initialization tab. (3) 

Execute the scenario at the model level via the tracer 

and animation simulations. (4) Contemplate the 

underlying abstractions via the various textual and 

graphical views. In the two examples that follow 

(directional and bi-directional associations) we 

denote the aforementioned abstractions in bold. 

4 UML STRUCTURAL 

SEMANTICS 

As Harel and Rumpe observe, it is commonly, and 

incorrectly, believed that precise semantics is 

required for behavioral aspects of UML, such as for 

statecharts, but not for structural aspects, such as 

class diagrams (Harel and Rumpe, 2004) . Whereas 

the semantics of class diagrams may seem like 

laborious formalism to the in-the-trenches 

practitioner, system construction is very much 

“alive” and relevant to the practitioner. It is this 

aspect of structural model semantics that is 

exemplified in the following sub-sections, which 

addresses directional associations, and bi-directional 

associations, respectively, using multiple model-

level views of software artifacts.  
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4.1 Directionality Associations 

The UML association relationship allows instances 

of one class to access public operations of instances 

of another class (or for that matter, other instances of 

the same class). Associations may be directed or bi-

directional. A directed association from class A to 

Class B allows instances of A to access B, but not 

vice versa. A bi-directional association allows access 

in both directions. Consider the directed association 

in figure 1. 

 

Figure 1: Directional Association. 

At the most detailed level, the inter-object 

relation abstraction semantics are articulated by 

framework code as follows: The association end is 

implemented, in C++, by a pointer A *itsB, declared 

in the header file of A. To provide controlled 

interaction with itsB from objects other than the 

instance of A, public accessor and mutator functions 

(getItsB, setItsB) are automatically generated in 

class A “Responsible” UML requires that this 

pointer be assigned the value NULL, until explicitly 

assigned the address of an instance of B. Thus it is 

mandatory that a NULL assignment appear at the 

beginning of all constructors of A : 

A::A() { 

    itsB = NULL; 

} 

 

B* A::getItsB() const { 

    return itsB; 

} 

 

void A::setItsB(B* p_B) { 

    itsB = p_B; 

} 

The above code succinctly captures the 

initialization requirements and semantics of a 

directional association. We next simulate, at the 

model level, a behavioral scenario in which an 

instance of A connects to an instance of B: The 

instance of B is then deleted. 

The input to the constructional scenaro 

abstraction is articulated in the configuration 

initialization features, and at a lower leve in the code 

in main: 

 

A * p_A; 

B * p_B; 

p_A = new A; 

p_B = new B; 

p_A->setItsB(p_B); 

delete p_B; 

Below is a model-level textual simulation of this 

scenario, output from the Rhapsody tracer tool, 

articulating object initialization and inter-object 

relational abstractions as follows: 

Please enter OMTracer Command>> 

go idle 

OMTracer New instance A[0]:A 

created by main() 

OMTracer New instance B[0]:B 

created by main() 

OMTracer A[0] Relation itsB set 

to B[0] 

OMTracer main()Invoked B[0]->~B() 

OMTracer B[0]->~B() Returned 

OMTracer Instance B[0] of class B 

deleted by main() 

Executable is Idle 

Please enter OMTracer Command>> 

In the above, we see the creation of the 

connection (relation) from instance of A to instance 

of B, and the subsequent deletion of the instance of 

B, but where does that leave the instance of A, 

which because, of the directionality of the 

association, is “unaware” of the deletion. 

This dangling pointer problem may be visualized 

using Rhapsody’s graphical simulator, the animation 

tool. 

Figure 2 shows the animation output, up until 

including the creation of the instance of A. On the 

left is the Rhapsody Browser, which organizes and 

enables navigation among the various model 

elements. In animation mode, the browser displays 

instance folders for each of the classes. As expected, 

the instance folder of class A is populated by an 

instance of A, denoted as A[0]. On the right is an 

animated sequence diagram, whose output, up to this 

point shows the creation of the instance of A. The 

features of this instance, shows that its relation itsB 

is NULL, as indicated by the lack of content in the 

right column of the relations area of the features 

window. 

Next the animation is advanced to the point 

where B[0] is created and the relation itsB in A[0] is 

assigned to B[0]. Although setItsB has already 

output to the animated sequence diagram, it has not 

yet returned, as indicated in the simulated call stack, 

below the brower. Hence the relation itsB of A[0] 

A B1

itsB
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Figure 2: Creation of A[0] with various views: configuration initialization, animated sequence diagram, call stack, instance 

features window. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: B[0] created, A[0] not yet connected to it. Note connection command in call stack. 

remains NULL. Due to the directionality of the 

association, the features window of B[0] has no 

relations (figure 3). 

After an additional step in the animation, setItsB 

returns, is popped off the call stack, and the relation 

itsB is assigned to B[0] (figure 4). 

Figure 5, captures the state of the system after 

destruction of B[0]. As expected, the Instances 

folder of B is now empty. However, due to the 

directionality of the association, the relation itsB of 

A[0] remains as before, where non-existent denotes 

a dangling pointer, due to destruction of B[0] 

4.2 UML Bi-directional Relationships 

Consider the two alternatives for achieving bi-

directional relations shown in figure 6. A and B may 

be connected by two directional associations (left) or 
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Figure 4: A[0] relation its B connected to B[0]. 

 
 

 

 

 

 

 

 

 

Figure 5: A[0] dangling pointer. 

  

Figure 6: A and B related by separate directional associations. (left), related by a single bi-directional association (right). 

by a single bi-directional association (right). As 

before the semantics of each can be explored at the 

code and simulation levels. 

For the first case, the implementation of the 

directional associations is as above in section 4.1. 

This implies that if an instance of A is related to an 

instance of B, that instance of B can be related to 

any instance of A, that is the relation is not 

reciprocal. On the other hand , the semantics of the 

bi-directional association supports a reciprocal 

relationship. If an instance of A is related to an 

instance of B, that instance of B is related to that 

very instance of A. If the relation of itsB of an 

instance of A is then set to a new instance of B, this 

new relationship is reciprocal, and therefore the 

relationship its A of the first instance of B must be 

set to NULL. 
As before we explore the semantics of the two 

cases via a scenario defined in main. For the first 
case, code in main creates two instances of A, and 

A B1 1

itsBitsA

A B1

itsB
1

itsA
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an instance of B, relates A[0] to B[0] and B[0] to 
A[1], rather than A[0]. 

The input to constructional scenario is the 
following code in main: 

A * p_A; 

B * p_B; 

p_A = new A; 

p_B = new B; 

p_A->setItsB(p_B); 

A* p_A1= new A; 

p_B->setItsA(p_A1); 

The tracer output demonstrates the independence of 

the two directional relations: 

Please enter OMTracer Command>> go 

idle 

OMTracer New instance A[0]:A 

created by main() 

OMTracer New instance B[0]:B 

created by main() 

OMTracer A[0] Relation itsB set to 

B[0] 

OMTracer New instance A[1]:A 

created by main() 

OMTracer B[0] Relation itsA set to 

A[1] 

Executable is Idle 

The corresponding graphical demonstration via 

animation is shown in figure 7. 

For the bi-directional association case, the input 

to the scenario, is the following main code, which 

provides the most precise specification of the 

constructional scenario:  

A * p_A; 

B * p_B; 

p_A = new A; 

p_B = new B; 

p_A->setItsB(p_B); 

delete p_B;  

B* p_B1= new B;   

B * p_B2 = new B; 

p_A->setItsB(p_B1); 

p_A->setItsB(p_B2); 
 

In this scenario an instance of A and B are 

created and their reciprocal relationship set to each 

other. The instance of B is then deleted, and, 

because of the reciprocity requirement, the instance 

of A is not left with a dangling pointer, but rather 

itsB is set to NULL. Next, two new instances of B 

are created. The instance of A is connected to one of 

the instances of B. 

The intricate semantics of reciprocity, inter-

object relation, requires the detail that only 

framework code can provide. (figure 8). A 

connection is initiated by calling the function setIts 

(B or A).  

This function calls the helper function _setIts 

(single underscore prefix) which calls the 

corresponding helper function on the other side (i.e., 

if the connection is initiated from class A via a call 

to setItsB; _setItsB in class A calls _setItsA in class 

B, resulting in a recipricol process in which there is 

a check as to whether either of the objects to be 

connected is currently connected to another object. 

If so, the currently connected object is disconnected 

by setting its association end pointer to NULL. 

The animated sequence simulation of the 

aforementioned scenario is shown in figure 9. 

Figures 10-11 show the objects and their 

connections in the various stages of this scenario. 
The animated sequence simulation of the 
aforementioned scenario is shown in figure 9. 
Figures 10-11 show the objects and their 
connections in the various stages of this scenario. 

5 DISCUSSION 

5.1 Present Status of Research 

The examples presented were selected from a 
repository including all of the UML structural 
relationships and object-oriented statecharts of 
varying complexity. The model-level simulations 
motivate the practitioner to interactively explore the 
software at a model-level of abstraction and gain 
insight into the model semantics in a very concrete 
manner that speaks to the in-the-trenches 
practitioner and encourages buy-in to the enterprise 
of model-level semantics. 

What is proposed herein is an unconventional 

semantic domain to which UML syntax can be 

mapped. The mapping is to multiple model-level 

views. Ultimately, the as-built semantics is 

determined by the implementation code, not of the 

application, but rather of the framework 

implementing UML. Hence, the inclusion of 

framework code in the examples. We emphasize 

“as-built” because exploration of the framework 

code will reveal widely accepted good practices, 

that, although not canonized in OMG UML 

documentation, are interpretations that enhance the 

state of the art. Two examples presented above: (1) 

for well-formed associations of multiplicity 1, object 

instantiation should initialize the association end to
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Figure 7: Non-reciprocity: A[0] related to B[0], B[0] related to A[1]. (sequence and instance views). 

 

Figure 8: Automatic code supporting association reciprocity. 
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Figure 9: Multiple Object Connections and Reconnections. 

 

Figure 10: (From Left to Right) 1. Connection of A[0] and B[0]; 2. A[0] after destruction of B[0]; 3. A[0] reconnected to 

new object B[1]. 

 

Figure 11: A[0] connects to B[2] thereby disconnecting B[1]. 

NULL in a mandatory assignment in the constructor. 
(2) A bi-directional association should support a 

reciprocal managomous protocol, such that at any 
given instant, two objects are linked to each other 
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(or to no object), replacing previously linked objects, 
whose association ends should be assigned NULL. 
Visual insight into the as-built semantics is 
supported by the various model-level simulation 
artifacts, and the practitioner acquires insight by 
interrogating the simulated model and examining 
these artifacts. 

5.2 Underlying Abstractions and 
Semantics 

The semantic issues herein are illustrated with the 

mediation of a specific tool, and with reference with 

a specific implemtation language. Nonetheless, 

modelling artifacts such as call stacks, instance 

feature windows, animated sequence diagrams and 

statecharts provide a level of abstraction that the in-

the-trenches engineer can relate to. Furthermore, the 

generated code should not be distained as mere 

implementation, but rather gives expression to 

constructural semantics, and some cases is 

interpretive of UML.  

The holy grail of a standard and thorough UML 

semantics may not be achievable and perhaps should 

not be achieved, as different interpretations are 

inevitable and viable, provided that within a given 

development environment, such as Rhapsody, there 

is consistency and closure.  

The articulation of these abstractions are 

necessarily tool-dependent, and, indeed, other tools 

may lend themselves to different abstractions than 

those presented herein. In particular, tools that have 

been disseminated in industry and have a substantial 

user base, tend to absorb by “osmosis” abstractions 

that have been effective in practice. 

Aside from the issue of standardization, the 

author acknowledges that to say that executable 

modelling artifacts comprise rigorous model-level 

semantics is pushing the envelope of semantics. A 

simulation, including model simulation, is an 

approximation. Nevertheless, it gives the practicing 

engineer a lexicon of visual and textual abstractions 

that is close enough to the code (in some cases the 

best abstraction is the code itself) but develops a 

mind set of abstraction, imparting understanding of 

overall system behavior.  

5.3 Desideratum  

Herein a small subset of UML has been addressed. 

To address all the UML “sublanguages” would be 

overly ambitious. Nonetheless, extension of the 

present work to cover the remaining UML structural 

relationships, as well as reactive systems with 

statecharts of various topologies may result in 

extension and/or modification of the proposed 

abstractions/ 

In a similar vein, comparable work with other 

executable modeling tools would be an important 

test of the viability of the proposed abstractions: to 

what extent are they “universal” abstractions and to 

what extent tool-specific. 

Executable modeling tools may not be widely 

deployed, but nonetheless occupy a significant 

market niche. Interviews with practitioner, 

unfettered by the pre-conceived notions of this 

author, would be an important source of “practical” 

abstractions  

Another product of such interviews, would be to 

explore to what extent model level abstractions 

impart understanding of system behavior and instill 

enough confidence to rely on production-quality 

code generated by a given tool. In this vein, I close 

with an anecdote: 
I colleague of mine, responsible for development 

of an air-borne mission computer, used a modeling 
tool for conceptual modeling only, although it 
produced reliable production-quality code. I asked 
him whether he had ever considered letting the tool 
produce his code. At that time, his response was that 
he personally wanted to make sure that the code that 
had to work at 20000 feet in the air would do what it 
is supposed to do. Several years later, he was in fact 
letting the tool produce his code, and the difference 
was the degree to which he and his staff understood 
the model semantics. 
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