
Microflows: Lightweight Automated Planning and Enactment of
Workflows Comprising Semantically-Annotated Microservices

Roy Oberhauser
Computer Science Department, Aalen University, Aalen, Germany

roy.oberhauser@hs-aalen.de

Keywords: Workflow Management Systems, Microservices, Service Orchestration, Agent Systems, Semantic
Technology.

Abstract: Business processes are facing increasing pressure to quickly and flexibly adapt to changes in the process
context. Moreover, microservices are becoming increasingly popular as an architectural style for
partitioning business logic into small services accessible with lightweight mechanisms, leading to increasing
pressure for a more dynamic integration of information services with processes. Process-aware information
systems must thus increasingly incorporate the ability to react to unforeseen changes during process
enactment, facing difficulties in pre-modelling all the possible process variations and enactment
circumstances for larger process models. This paper presents Microflows, an automatic lightweight
declarative approach for the workflow-centric orchestration of semantically-annotated microservices using
agent-based clients, graph-based methods, and the lightweight semantic vocabularies JSON-LD and Hydra.
The evaluation results show the approach's potential in lightweight resource utilization, investigates its
scalability, and compares its automation to common manual workflow modeling and enactment.

1 INTRODUCTION

In many areas of society today, a trend towards
increased automation can be observed. One area in
particular is that known as business processes or
workflows. As one indicator of its importance to
business, spending on Business Process
Management Systems (BPMS) is forecast at $2.7
billion in 2015 (Gartner, 2015). The automation of a
business process according to a set of procedural
rules is known as a workflow (WfMC, 1999). In
turn, a workflow management system (WfMS)
defines, creates, and manages the execution of
workflows (WfMC, 1999). These workflows are
often rigid, and while adaptive WfMS can handle
certain adaptations, they usually involve manually
intervention to determine the appropriate adaptation.

Moreover, there is an increasing trend toward
applying the microservice architecture style (Fowler,
and Lewis, 2014) for an agile and loosely coupled
partitioning of business logic into small services
accessible with lightweight mechanisms. They can
be deployed independently of each other and
conform to a bounded context. As the dynamicity of
the service world grows, the need for more

automated and dynamic approaches to service
orchestration becomes evident.

Service orchestration represents a single
executable process that uses a flow description (such
as WS-BPEL) to coordinate service interaction
orchestrated from a single endpoint, whereas service
choreography involves a decentralized collaborative
interaction of services (Bouguettaya et al., 2014),
while service composition involves the static or
dynamic aggregation and binding of services into
some abstract composite process.

While automated and dynamic workflow
planning can remove the manual overhead for
workflow modeling, a fully automated semantic
integration process remains challenging, with one
study indicates that it is achieved by only 11% of
Semantic Web applications (Heitmann et al., 2012).
Rather than pursuing the fairly heavyweight service-
oriented architecture (SOA) and semantic web
standards, we chose to investigate the viability of a
lightweight approach. Analogous to microservices
principles, we use the term microflow to mean
lightweight workflow planning and enactment of
microservices, i.e. a lightweight service
orchestration of microservices.

134
Oberhauser R.
Microflows: Lightweight Automated Planning and Enactment of Workflows Comprising Semantically-Annotated Microservices.
DOI: 10.5220/0006223001340143
In Proceedings of the Sixth International Symposium on Business Modeling and Software Design (BMSD 2016), pages 134-143
ISBN: 978-989-758-190-8
Copyright c© 2016 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

This paper explores an approach we call
Microflows for automatically planning and enacting
lightweight dynamic workflows of semantically
annotated microservices. It uses a declarative
paradigm with cognitive agents leveraging current
lightweight semantic and microservice technology
and investigates its viability. Note that this approach
does not intend to address all facets of BPMS
support, but is focused on a narrow area addressing
the automatic orchestration of dynamic workflows
given a multitude of microservices using a pragmatic
lightweight approach rather than a theoretical
treatise.

This paper is organized as follows: the next
section discusses related work. Section 3 and 4
describe the solution approach and its realization
respectively. Section 5 describes the evaluation,
followed by the conclusion.

2 RELATED WORK

While the term microflow has been used in IBM
business process manager documentation to mean a
transient non-interruptible BPEL process (IBM,
2015), in our terminology a microflow is
independent of any specific BPMS or any
choreography or orchestration language.

Work related to the orchestration of
microservices includes (Rajasekar et al., 2012), who
describe the integrated Rule Oriented Data System
(iRODS) for large-scale data management, which
uses a distributed event-condition-action rule engine
to orchestrate micro-services into conditional chain-
oriented workflows, maintaining transactional
properties through recovery micro-services. (Alpers
et al., 2015) describe a microservice architecture for
BPM tools, highlighting a Petri Net editor to support
humans with BPM.

As to web service composition, (Sheng et al.,
2014) provides a survey of current research
prototypes and standards in the area of web service
composition. While the web service composition
using the workflow technique (Rao and Su, 2004)
can be viewed having similarity to ours, our
approach does not explicitly create an abstract
composite service but rather can be viewed as
automated dynamic web service orchestration using
the workflow technique.

Concerning the combination of multi-agent
systems and microservices, (Florio, 2015) proposes
a multi-agent system for decentralized self-
adaptation of autonomous distributed components
(Docker-based microservices) to address scalability,

fault tolerance, and resource consumption. These
agents known as selfLets mediate service decisions
using partial knowledge and exchanging messages.
(Toffetti et al., 2015) provide a position paper
focusing on microservice monitoring and proposing
an architecture for scalable and resilient self-
management of microservices by integrating
management functions into the microservices,
wherein service orchestration is cited to be an
abstraction of deployment automation (Karagiannis
et al., 2014), microservice composition or
orchestration are not addressed.

Related standards include OWL-S (Semantic
Markup for Web Services), an ontology of services
for automatic web service discovery, invocation, and
composition (Martin et al., 2004). Combining
semantic technology with microservices, (Anderson
et al., 2015) present an OWL-centric framework to
create context-aware applications, integrating
microservices to aggregate and process context
information. For a more lightweight semantic
description of microservices, JSON-LD (Lanthaler
and Gütl, 2012) and Hydra (Lanthaler, 2013)
(Lanthaler and Gütl, 2013) provide a lightweight
vocabulary for hypermedia-driven Web APIs and
enable the creation of generic API clients.

In contrast to the above work, our contribution
specifically focuses on microservices, proposing and
investigating an automatic lightweight declarative
approach for the workflow-centric orchestration of
microservices using agent-based clients, graph-based
methods, and lightweight semantic vocabularies like
JSON-LD and Hydra.

3 SOLUTION APPROACH

The principles and process constituting the solution
approach described below reference the solution
architecture of Figure 1.

Figure 1: Solution concept.

3.1 Microflow Solution Principles

The solution approach consists of the following

Client

Discovery
Service

Abstract
Services

Semantic
Microservices

Data Repository

Graph
Database

Client Agent
Framework

A
d
d
it
io
n
al
 S
e
rv
ic
es

Goal & Constraints

Microflows: Lightweight Automated Planning and Enactment of Workflows Comprising Semantically-Annotated
Microservices

135

principles:
Semantic Self-description Principle: microservices
provide sufficient semantic metadata to support
autonomous client invocation. For example, in our
realization this was done using by using JSON-LD
with Hydra.
Client Agent Principle: Intelligent agents exhibit
reactivity, proactiveness, and social ability,
managing a model of their environment and can plan
their actions and undertake goal-oriented behavior
(Wooldridge, 2009). Nominal WfMS are typically
passive, executing a workflow according to a
manually determined plan (workflow schema).
Because of the expected scale in the number of
possible microservices, the required goal-oriented
choices in workflow modeling and planning, and the
autonomous goal-directed action required during
enactment, agent technology seems appropriate.
Specifically, we chose Belief-Desire-Intention (BDI)
agents (Bratman et al., 1988) for the client
realization, providing belief (knowledge), desire via
goals, and intention utilizing generated plans that are
the workflow.
Graph of Microservices Principle: microservices are
mapped to nodes in a graph and can be stored in a
graph database. Nodes in the graph are used to
represent any workflow activity, such as a
microservice. Nodes are annotated with properties.
Directed edges depict the directed connections
(flows) between activities annotated via properties.
To reduce redundant resource usage via multiple
database instances, the graph database could be
shared by the clients as an additional microservice.
Microflow as Graph Path Principle: A directed
graph of nodes corresponds to a workflow, a
sequence of operations on those microservices, and
is determined by an algorithm applied to the graph,
such as shortest path. The enactment of the
workflow involves the invocation of microservices,
with inputs and outputs retained in the client and
corresponding to the client state.
Declarative Principle: any workflow requirement
specifications take the form of declarative
statements, such as the starting microservice type,
end microservice type, and constraints such as
sequencing constraints.
Microservice Discovery Service Principle
(Optional): awe assume a microservice landscape to
be much more dynamic in microservices coming and
going than heavyweight services, and therefore
utilize a microservice registry and discovery service.
This could be deployed in different ways, including
centralized, distributed, or having it embedded

within each client, and utilize voluntary
microservice-triggered registration or multicast
mechanisms. For security purposes, there may be a
wish to avoid discovery (of undocumented
microservices) and thus maintain a whitelist. Clients
may or may not have a priori knowledge of a
particular microservice. Various broadcast services
could be used.
Abstract Microservices Principle (Optional):
microservices with similar functionality (search,
hotel booking, flight booking, etc.) can be grouped
behind an abstract microservice. This provides an
optional level of hierarchy to allow concrete
microservices to only provide a client with link to
the next abstract microservice(s), since the actual
concrete microservices can be numerous and rapidly
change, while determining exactly which one is
appropriate can best be done by the client in
conjunction with the abstract microservice.

Note that the Data Repository and Graph
Database could readily be shared as a common
service, and need not be confined to the Client

3.2 Microflow Lifecycle

The microflow lifecycle involves three stages as
shown in Figure.

Figure 2: Microflow lifecycle.

The Microservice Discovery stage involves
utilizing a microservice discovery service to build a
graph of nodes containing the properties of the
microservices and links to other microservices. This
is analogous to mapping the landscape.

In the Microflow Planning stage, an agent takes
the goal and other constraints and creates a plan
known as a microflow, finding an appropriate start
and end node and using an algorithm such as
shortest path to determine a directed path.

In our opinion, a completely dynamic enactment
without any planning (no schema) could readily lead
to dead-end paths causing a waste of unnecessary
invocations that do not lead to the desired goal and
can potentially not be undone. This is analogous to
following hyperlinks without a plan, which do not
lead to the goal and require backtracking.
Alternatively, replanning after each microservice
invocation involves planning resource overhead
(CPU, memory, network), and since this is unlikely
to dynamically change between the start and end of
this lifecycle, we chose the pragmatic and hopefully

Sixth International Symposium on Business Modeling and Software Design

136

more lightweight approach from the resource
utilization perspective: plan once and then enact
until an exception occurs, at which point a necessary
replanning is triggered. Further advantages of our
approach in contrast to a thoroughly adhoc approach
is that the client is assured that there is at least one
path to the goal, and validation of various structural,
semantic, and syntactic aspects can be readily
performed.

In the Microflow Enactment stage, the microflow
is executed by invoking each microservice in the
order of the plan, typically sequentially but it could
involve parallel invocations. A replanning of the
remaining microflow can be performed if an
exception occurs or if notified by the discovery
service of changes to the set of microservices. A
client should retain the microflow model (plan) and
be able to utilize the service interfaces and thus have
sufficient semantic knowledge for enactment.

The Microflow Analysis stage involves the
monitoring, analysis, and mining of execution logs
in order to improve future planning. This could be
local, in a trusted environment, or this could be
distributed. Thus, if invocation of a microservice has
often resulted in exceptions, future planning for this
client or other clients could avoid this troublesome
microservice. Furthermore, the actual latency
incurred for usage of a microservice could be
tracked and shared between agents and taken into
account as a type of cost in the graph algorithm.

4 REALIZATION

A realization of the solution concept as a prototype
involved mapping technology choices onto the
solution concept (Figure) and explained below.

Figure 3: Microflow solution realization technologies.

The prototype integrates the following,
especially for REST (REpresentational State
Transfer) and HATEOAS support (Fielding, 2000):
Spring-boot-starter-web v. 1.2.4, which includes
Spring boot 1.2.4, Spring-core and Spring-web v.

4.1.6, Embedded Tomcat v. 8.0.23; Hydra-spring v.
0.2.0-beta3; and Spring-hateoas v. 0.16. For JSON
(de)serialization Gson v. 2.6.1 is used. Unirest v.
1.3.0 is used to send HTTP requests.

4.1 Microservices

A code snippet of the Spring-based controller for the
microservices is shown in Figure 4. Followers was
explicitly provided to avoid having to know how to
invoke domain-specific microservice operations
when only the potential followers are of interest.

Figure 4: Example microservice Spring controller.

An example microservice description using
JSON-LD and Hydra is shown in Figure 5.

Figure 5: Example microservice description with Hydra.

Client Discovery
Service

Abstract
Services

Semantic
Microservices

Neo4J

A
d
d
it
io
n
al
 S
e
rv
ic
es

Eureka JSON‐LD
Hydra

Spring

Jadex Agents

Data
Repository

Data
Execution

Planning

Microflows: Lightweight Automated Planning and Enactment of Workflows Comprising Semantically-Annotated
Microservices

137

To support a larger-scale evaluation of the
prototype, we created virtual microservices that
differentiate themselves semantically but provide no
real functionality. As a REST-based discovery
service, Netflix’s open source Eureka (Eureka,
2016) v. 1.1.147 is used.

4.2 Microservice Client

For the client, Jadex v. 3.0-SNAPSHOT is used as a
BDI agent framework (Pokahr, Braubach, &
Lamersdorf, 2005). Jadex's BDI nomenclature
consists of Goals (Desires), Plans (Intentions), and
Beliefs. Beliefs can be represented by attributes like
lists and maps. Three agents were created: the
DataAgent is responsible for providing for and
maintaining data repository, the PlanningAgent
generates a path through the graph as a microflow,
while the ExecutionAgent communicates directly
with microservices to invoke them according to the
microflow. For the client's Data Repository, Neo4j
and Neo4j-Server v. 2.3.2 is used.

4.3 Microflow Lifecycle

The goals and constraints are referred to as
PathParameters and consist of the startServiceType
(e.g., preferences), endServiceType (e.g., payment),
and constraint tuples in JSON as shown in Figure 6.
Each constraint tuple consists of the target of the
constraint (the service type affected), the constraint,
and a constraint type (required, beforeNode,
afterNode). For instance, target = "Book Hotel",
constraint = "Search Hotel", and constraint type =
"afterNode" would be read as: "BookHotel" after
"Search Hotel", implying the microflow sequencing
must ensure that "Search Hotel" precedes "Book
Hotel" (but must not be directly before it).

Figure 6: Goal and constraints inputs in JSON.

These set of constraint tuples are analyzed,
whereby any AfterNode is converted to a
BeforeNode by swapping target and constraint, then
ordered, and then checked if any constraint is
redundant. Then RequiredNode constraints are also
converted to BeforeNode constraints.

We used a PathWrapper because of occasional
issues incurred when passing Path objects in the
Neo4J format between agents.

4.3.1 Microservice Discovery Stage

The Microservice Discovery stage involves the
interactions shown in Figure 7, where Microservices
first register themselves with the DiscoveryService.
On client initialization, the DataAgent has the
DataRepository fetch (via its DatabaseController)
the registered services from the DiscoveryService
and retrieve the service description from each
microservice rather than a central repository. This
avoids the issues of the discovery service retaining
duplicate or incorrect (stale) semantic data.

Figure 7: Microservice Discovery stage interactions.

Figure 8: Microservice description collection interactions.

In Figure 8, the semantic description of the
microservice is retrieved and, if a node does not yet
exist, a node is inserted in the graph along with its
properties. All followers are also inserted (if not
already) and their association with this microservice
is annotated as a directed edge. If any microservices
are detected that were not (yet) registered with the
discovery service, these are also tracked in a list.

Sixth International Symposium on Business Modeling and Software Design

138

4.3.2 Microservice Planning Stage

During the Microservice Planning stage, the
PlanningAgent plans a microflow. It has two
Beliefs: PathParameters (the input) and the Path.
The annotations show that anytime PathParameters
changes, Jadex triggers a planning.

Figure 9: Microflow planning triggering.

Although Neo4J offered native graph algorithms,
they did not completely fulfill our requirements.
While we utilize them, we generate microflows with
our own algorithm as shown in Figure 10. After
converting the constraints (Line 1-3) as described
above, the set of possible starting microservices
matching the starting type are determined (Line 4).
Then this set is iterated over using the shortestPath
algorithm, trying to find a path to the start of the
next pathPart, which is either the target of the next
constraint or the endServiceType, which is iterated
(Line 7) since multiple nodes are possible. Then a
recursive calculation of pathParts is initiated (Line
10), which either ends due to a deadend (Line 17) or
the path to a valid endServiceType being found
(Line 15).

Figure 10: Microflow generation algorithm (pseudocode).

The microflow schema is currently only
applicable for the current enactment, so that future
enactments involve a replanning. However, the
microflow schema (sequence plans) could be
retained and reused if desired - for instance, if
nothing changed in the environment. If multiple
clients and thus agents coexisted in a trusted
environment, then they could utilize their social
communication ability to request and share

microflows.
Although support for gateways (forking and

merging) and intermediate events are feasible in this
approach, are prototype did not yet realize this
functionality at this time. Support for using costs
with graph paths is implemented but not utilized in
our evaluation, since with virtual microservices it
appeared artificial for the focus of our investigation.

In focusing on a lightweight approach, and not
requiring interoperability, we chose to avoid the
XML-centric BPEL and BPMN, which would only
have added extra overhead in our case study without
any benefit.

4.3.3 Microservice Enactment Stage

For the Microflow Enactment stage, the
ExecutionAgent is primarily responsible. It has three
beliefs: pathWrapper, currentNode (points to which
node is either active or about to be executed), and
path (the planned microflow), and similar to Figure
9, the ExecutionAgent's plan is triggered by a
change to the path variable (by the PlanningAgent),
as shown in Figure 11.

Figure 11: ExecutionAgent (snippet).

The microflow enactment algorithm is shown in
Figure 12. Line 8 shows that abstract nodes are
skipped. Line 14 is a loop for the case when a
microservice takes more than one input. In Line 17
the output of this invocation is retained for possible
input as client state during further microflow
processing. Because the microservice invocations
are asynchronous, a Java CountDownLatch is used
for synchronization purposes. Line 19 shows that a
new microflow planning starting with the current
node is triggered when an error occurs with
avoidance of the problematic microservice if
possible (e.g., if other identical microservice types
are available) - otherwise a retry can be attempted.
In addition, the initial constraints are readjusted
since certain constraints may no longer be applicable
(e.g., if they were already fulfilled in the partial
microflow already executed).

Microflows: Lightweight Automated Planning and Enactment of Workflows Comprising Semantically-Annotated
Microservices

139

Figure 12: Microflow enactment algorithm (pseudocode).

Figure 13 shows the interactions when a
microflow is enacted. Within a loop, a PUT is used
to invoke each virtual microservice for testing
purposes, but this would be adjusted for real
microservices.

Figure 13: Microflow enactment interactions.

While the service description could be retrieved
directly from the microservice, we currently use the
internal copy stored during the discovery stage to
avoid the additional network and microservice
overhead of retrieving this information again. If the
description is expected to be highly dynamic, the
current description could be retrieved from the
microservice during enactment.

5 EVALUATION

To evaluate the solution approach, we investigated if
the resource usage of prototype was relatively
lightweight, if it could execute the equivalent
workflow of a BPMS, and determine if it shows any
potential advantage in labor overhead.

The configuration used for the evaluation
consisted of a PC with Windows 10 Pro x64, Intel
Core i5-4460@3.2 GHz, 8 GB RAM, Java JRE
1.8.0_66-b18. Unless noted, the average of 10
consecutive measurements is given.

5.1 Resource Utilization

To determine the resources utilized by Neo4J, the
number of microservices was scaled using 29
different configurations ranging from 100 to 6400
microservices, an extract of which is shown in Table
1. Only one outgoing edge for each microservice
was used to keep that variable constant. The drop in
RAM usage after 1600 microservices may be a
result of garbage collection, and we intend to repeat
these measurements with more control over that
factor. These measurements show that a very large
number of microservices can be supported with
relatively little additional RAM or disk impact.

Table 1: Neo4j resource usage.

Number of Microservices Diskspace (MB) RAM (MB)
100 0.211 115
400 0.315 120
800 0.716 150
1600 0.741 175
3200 1.28 110
6400 2.39 115

Figure 14: RAM profiling showing agent starting points.

To determine if the Jadex agents have a
significant impact on RAM usage, profiling with the
VisualVM was performed as shown in Figure 14.
The DataAgent was started first (RAM use was in

Sixth International Symposium on Business Modeling and Software Design

140

accordance with Table 1), while the PlanningAgent
and ExecutionAgent had no major RAM impacts.

To investigate the performance and scalability of
the microflow planning stage, a small program was
written that generates z layers of microservices, each
layer of which contains m microservices, and each
microservice of a layer z has an edge to every
microservice of the layer z+1.

Neo4j does not explicitly name the algorithm
implemented for shortest path, but let us assume it is
at least as good as the Dijkstra algorithm, which it
also offers and appears to use Fibonacci Heaps
(Makrai, 2015), yielding a complexity:

O(v log v + e) (1)

where v are the vertices and e the edges. If n is the
number of constraints, then n+1 segments have to be
computed between the start and end vertex. Let xi be
the possible number of start vertices and yi the
possible number of end vertices for a segment i
where 0 i n, then in every segment there are a
maximum of xi yi shortest paths, resulting in:

ܱሺሺݔ		ݕሻ ∙ ሺ

ୀ

ݒ ∙ 	ݒ	݈݃ 	݁ሻሻ (2)

Thus increasing the number of possible starting or
ending nodes has a greater influence on
performance.

We performed an experiment comparing the
shortest path and Dijkstra algorithm performance,
and the shortest path was faster in all cases, so we
continued with shortest path.

As expected, when we increased the possible
number of starting or ending nodes while keeping
the total number of microservices constant, we
observed a much larger impact on performance than
any increase to the number of segments.

Figure 15: Microflow planning performance of planning
duration vs. number of microservices.

Figure 15 shows the planning performance

impact as the total number of microservices increase
with a best-fit equation shown. While this may not
be ideal, it may suffice for pragmatic usage in non-
time critical situations where sufficient CPU
resources are available and when the total number of
microservices to be considered is limited.

5.2 Microflow Vs. Workflow

To attempt to provide insight into a pragmatic
comparison of microflows to standard workflows, a
user familiar with our microflow concept and
somewhat fairly familiar with BPM, using the
microflow described in Section 4.3 and shown in
Figure 16 as a basis, and modeled its equivalent as a
workflow in AristaFlow BPM Suite (representing a
BPMS). The workflow consisted of 12 nodes and 13
edges: Start, Flight Search, Hotel Search, Book
Flight, Book Hotel, Booking Error Check (which
loops back to start on an error), followed by a
conditional Branch to either Pay by CreditCard or
Pay by Bank, than a Merge and then an End node.

Figure 16: Microflow shown in Neo4j.

For the microflow, manually preparing the
microflow constraints and starting the Jadex and
DataAgent involved 4:24 minutes; the automatic
planning took 3.9 seconds; and the enactment of the
virtual microservices 4.7 seconds. For the equivalent
workflow using empty activities that do not actually
invoke services, manual creating the process schema
took 19:39 minutes while the enactment of the
workflow took 8 seconds.

This was not necessarily a "fair" comparison -
since a BPMS supports many more capabilities such
as correctness checks and the user was not
independent. Nevertheless, the point of this exercise
was to show that the input constraints needed for
microflows (cp. Figure 6) can be more lightweight,

Microflows: Lightweight Automated Planning and Enactment of Workflows Comprising Semantically-Annotated
Microservices

141

and that the utilization of the dynamic planning
capability can reduce the labor overhead of manual
planning of workflows in the microservice space,
especially if these are expected to vary often.
Analogous to the more heavyweight EJB containers
vs. more lightweight containers, perhaps the more
lightweight form of microflows could be beneficial
when the more complete BPMS functionality is not
needed.

To validate its exception handling and replanning
capability, we manually created situations where
certain microservice returned an error, and observed
that the agent triggered a replanning consisting of
the error segment plus the remaining segments,
providing some resilience.

Note that performance was intentionally not
optimized in order to provide an indicator of the
default viability and investigate how lightweight the
approach is. In future work, we plan optimizations.

6 CONCLUSIONS

We described Microflows, an automatic lightweight
declarative approach for the workflow-centric
orchestration of semantically-annotated
microservices using agent-based clients, graph-based
methods, and lightweight semantic vocabularies.
Microflow principles and its lifecycle were
described. Based on a realization, the evaluation
showed that the approach is lightweight, while still
offering optimization potential. Although its
scalability is impeded, depending on the
environmental performance constraints and
deployment configuration, the automatic planning
may be viable for typical workflow scenarios using a
limited set of microservices. Further, the evaluation
showed that its automated planning offers efficiency
benefits vs. manual modelling, and that its
enactment performance can be on par with that of
commercial BPMS systems.

One advantage we see in the Microflow
approach is that the workflow (or plan) is not
thoroughly adhoc and dynamic, so that validation
and verification checks can be performed before
execution and one is assured that an the workflow is
executable as planned. For instance, if all
microservices were there, but a payment service is
missing, then a client without this knowledge would
work its way through and realize at the very end that
it has no way to pay. However, enhanced support for
verification and validation of the correctness of the
microflow is still needed for users to entrust the
automatic planning.

Future work includes integrating advanced
verification and validation techniques, optimizing
resource usage, integrating semantic support in the
discovery service, transactional workflow support,
support for gateways, supporting compensation and
long-running processes, and enhancing the
declarative and semantic support and capabilities.

ACKNOWLEDGEMENTS

The author thanks Florian Sorg for his assistance
with the design, implementation, evaluation, and
diagrams.

REFERENCES

Alpers, S., Becker, C., Oberweis, A. and Schuster, T.
(2015). Microservice based tool support for business
process modelling. In Enterprise Distributed Object
Computing Workshop (EDOCW), 2015 IEEE 19th
International (pp. 71-78). IEEE.

Anderson, C., Suarez, I., Xu, Y., & David, K. (2015). An
Ontology-Based Reasoning Framework for Context-
Aware Applications. In Modeling and Using Context
(pp. 471-476). Springer International Publishing.

Bouguettaya, A., Sheng, Q.Z. and Daniel, F. (2014). Web
services foundations. Springer.

Bratman, M.E., Israel, D.J. and Pollack, M.E. (1988).
Plans and resource�bounded practical reasoning.
Computational intelligence, 4(3), pp.349-355.

Eureka (2016). Retrieved April 20, 2016 from:
https://github.com/Netflix/eureka/wiki

Fielding, R. T. (2000). Architectural Styles and the Design
of Network-based Software Architectures. Doctoral
dissertation, University of California, Irvine.

Florio, L. (2015). Decentralized self-adaptation in large-
scale distributed systems. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software
Engineering (pp. 1022-1025). ACM.

Fowler, M. & Lewis, J. (2014). Microservices a
definition of this new architectural term.
Retrieved April 15, 2016 from:
http://martinfowler.com/articles/microservices.htm

Gartner (2015). Gartner Says Spending on Business
Process Management Suites to Reach $2.7 Billion in
2015 as Organizations Digitalize Processes. Press
release. Retrieved April 15, 2016 from:
https://www.gartner.com/newsroom/id/3064717

Heitmann, B., Cyganiak, R., Hayes, C. & Decker, S.
(2012). An empirically grounded conceptual
architecture for applications on the web of data.
Systems, Man, and Cybernetics, Part C: Applications
and Reviews, IEEE Transactions on, 42(1), 51-60.

IBM (2015). IBM Business Process Manager V8.5.6
documentation. Retrieved May 2, 2016 from:

Sixth International Symposium on Business Modeling and Software Design

142

http://www.ibm.com/support/knowledgecenter/SSFPJ
S_8.5.6/com.ibm.wbpm.wid.bpel.doc/topics/cprocess_
transaction_micro.html

Karagiannis, G., Jamakovic, A., Edmonds, A., Parada, C.,
Metsch, T., Pichon, D., ... & Bohnert, T. M. (2014).
Mobile cloud networking: Virtualisation of cellular
networks. In Telecommunications (ICT), 2014 21st
International Conference on (pp. 410-415). IEEE.

Lanthaler, M. (2013). Creating 3rd generation web APIs
with hydra. In Proceedings of the 22nd international
conference on World Wide Web companion.
International World Wide Web Conferences Steering
Committee, pp. 35-38.

Lanthaler, M., & Gütl, C. (2012). On using JSON-LD to
create evolvable RESTful services. In Proceedings of
the Third International Workshop on RESTful Design
(pp. 25-32). ACM.

Lanthaler, M. and Gütl, C. (2013). Hydra: A Vocabulary
for Hypermedia-Driven Web APIs. In Proceedings of
the 6th Workshop on Linked Data on the Web
(LDOW2013) at the 22nd International World Wide
Web Conference (WWW2013), vol. 996.

Makrai, G. (2015). Experimenting with Dijkstra’s
algorithm. Retrieved May 2, 2016 from:
https://gabormakrai.wordpress.com/2015/02/11/experi
menting-with-dijkstras-algorithm/

Martin, D. et al. (2004). OWL-S: Semantic markup for
web services. W3C member submission, 22, pp.2007-
04.

Pokahr, A., Braubach, L., & Lamersdorf, W. (2005).
Jadex: A BDI reasoning engine. In Multi-agent
programming (pp. 149-174). Springer US.

Rajasekar, A., Wan, M., Moore, R., & Schroeder, W.
(2012). Micro-Services: A Service-Oriented Paradigm
for. Data Intensive Distributed Computing. In:
Challenges and Solutions for Large-scale Information
Management (pp. 74-93). IGI Global.

Rao, J. and Su, X. (2004). A survey of automated web
service composition methods. In Semantic Web
Services and Web Process Composition (pp. 43-54).
Springer Berlin Heidelberg.

Sheng, Q. Z. et al. (2014). Web services composition: A
decade’s overview. Information Sciences, 280, 218-
238.

Toffetti, G., Brunner, S., Blöchlinger, M., Dudouet, F., &
Edmonds, A. (2015). An architecture for self-
managing microservices. In Proceedings of the 1st
International Workshop on Automated Incident
Management in Cloud (pp. 19-24). ACM.

WfMC (1999). Workflow Management Coalition:
Terminology & Glossary. WFMC-TC-1011, Issue 3.0.

Wooldridge, M. (2009). An introduction to multiagent
systems. John Wiley & Sons.

Microflows: Lightweight Automated Planning and Enactment of Workflows Comprising Semantically-Annotated
Microservices

143

