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Abstract: In order to improve convergence speed and reconstruction precision of IRLS shrinkage algorithm (SIRLS), 
an improved iteratively reweighted least squares shrinkage algorithm (I-SIRLS) is proposed in this paper. A 
Shrinkage factor is brought in each iteration process of SIRLS to adjust the weight coefficient to 
approximate the optimal Lagrange Multiplier gradually. Put simply, the convergence speed is accelerated. 
The proposed algorithm needs less measurements. It can also get rid of falling into local optimal solution 
easily and the dependence on sparsity level. Simulations show that the I-SIRLS algorithm has faster 
convergence speed and higher reconstruction precision compared to the SIRLS.

1 INTRODUCTION 

Nyquist sampling theorem requires that signal could 
be fully reconstructed only when the sampling rate is 
2 times or more than 2 times the bandwidth. 
However, with the rapid increase of information 
demand, the bandwidth of the signal gets much 
wider, which has brought great pressure to signal 
processing. Compressed Sensing(CS) 
theory(Donoho D.L,2006) proposed by Donoho 
makes the sampling rate of signals exceed the 
Nyquist limit, which presents a new method to 
reconstruct the original signal from much fewer 
measurements using the prior knowledge, and 
compression and sampling are performed at the same 
time. How to use the limited sampling value to 
reconstruct the sparse signal with high accuracy, in 
recent years, makes more scholars pay attention to 
the sparse signal reconstruction(LC Jiao, SY Yang, F 
Liu, 2011). Until now, researchers have proposed a 
lot of algorithms to solve optimization problem(JH 
Wang, ZT Huang, YY Zhou, 2012) in signal 
reconstruction, including minimizing the norm(Van 
Den etc 2008, Needell D, 2009, Cai T T, 2009 ), 
minimizing the original signal norm(Chartrand R, 
2007, Rodriguez P, 2006), matching pursuit 
algorithm and other algorithms of CS. 

Minimizing the norm can be regard as one of 
convex optimization problems, thus making the 

NP-hard simplified into linear programming. But the 
norm-based signal reconstruction algorithm is still 
not able to effectively remove great redundancy 
between data. Chartrand R et.al(Chartrand R, 2007) 
put forward a method minimizing the non-convex 
norm of the original signal, which overcame the 
shortcomings of minimizing the norm by changing 
the nature of signal reconstruction. Not onlycan it 
better approximate to the original signal 
reconstruction andreduce data redundancy to a large 
extent, but also greatly reduce the number of 
observations which is needed to reconstruct the 
original signal accurately. 

The IRLS(Chartrand R, 2008) is a typical 
non-convex of relaxation CS under RIP constraints, 
transforming norm minimization into  norm with 
weights minimization(Daubechies I, 2010, Miosso C 
J, 2009,  Ramani S, 2010, Daubechies I, 2010), it 
needs less measurements and it’s convergence speed 
is often slow, and it is easy to fall into local optimal 
solution.To solve the above drawbacks of IRLS, this 
paper proposes an improved IRLS-based shrinkage 
algorithm, the feasibility and effectiveness of the 
improved algorithm is verified by experiments. 
Compared with IRLS-based shrinkage algorithm, the 
proposed method has a better reconstruction 
accuracy and convergence speed. 
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2 IMPROVED ITERATIVELY 
REWEIGHTED LEAST 
SQUARES SHRINKAGE 
ALGORITHM 

2.1 Compressed Sensing 

In compressive sensing: the dimension measurement 
vector can be obtained from the original real-valued 
signal with the length: 
  y x s s=Φ =ΦΨ =Θ   (1) 

Where Θ is a N N× basis matrix, and Φ is a
N N× measurement matrix. Here exists two 
problems: (1) how to determine a stable basisΘ and 
measurement; (2) how to recover the N dimension 
vector x when the sparsity is K . The first problem 
can be solved when M K≥ . 

That is, the matrixΦmust preserve the lengths of 
these particular K-sparse vectors. A related condition 
requires that the rows { }jψ of Φ cannot sparsely 

represent the columns { }jψ ofΨ and vice versa. 

The sparsest x is chosen when it meets the least 
nonzero. Zero norm of x is, 
 : 0arg min || ||x Ax bx x==  (2) 

Obviously, it is a NP-hard problem. It costs so 
much and is impractical. So least square solution is 
considered. Based on the above consideration, 

(0 1)pl p< < norm is chosen, 

  :arg min x Ax b p
x x==%   (3) 

2.2 Iteratively Reweighted Least 
Squares Shrinkage Algorithm 

The basic idea of the improved algorithm is that the 
non-convex pl norm is replaced by 2l norm, then 
using the Lagrange multiplier method to seek the 
iteration algorithm of optimal solution for formula 
(3).In an iterative algorithm, given a current optimal 
solution 1kx − , set | |qk kX diag x− −=1 1 , if kX −1 is 
reversible, then it satisfies the condition: 
  q

k k q
X x diag x −

− − −
=

2 2 2

1 12 2 2
  (4) 

If /q p= −1 2 is chosen, approximation 

optimization problem is converted to solving the pl

norm, meaning solving || ||p
px . The equation is still 

valid if kX −1 in formula (4) is converted to its pseudo 
inverse matrix kX +

−1 . Following optimization problem 
is obtained: 

  min k
x

X x+

−

2

1 2
. .s t b Ax=   (5) 

To improve the sparseness, if there is a zero 
element in kX −1 , following formula can be obtained: 

  . ( ) T

k bλ
−

=A X A2

10 5 ⇒ ( )T

k bλ −

−
= AX A2 1

12   (6) 

The formula must solve the inverse matrix, so in 
the practical application, selecting the pseudo 
inverse matrix to instead the inverse matrix to 
decrease the computational complexity: 

  ( )T T

k k kx +

− −
= X A AX A b2 2

1 1
  (7) 

The SIRLS is in each iteration of IRLS, A and
TA is used as the intermediate amount, while 

shrinkage scalar is introduced minimize the objective 
function. The algorithm is very effective in solving 
the minimum problem of ( )f x in the formula (8): 

  ( ) p

p
f x xλ= + −x b A 2

2

1

2
  (8) 

It is obvious that, choose the right P , we can 
obtain the global optimal solution. Replace || ||p

px
with, . ( )TW x x−x 10 5 , ( )W x is a diagonal matrix, the 
diagonal value is ( , ) . [ ] / ( [ ])W k k x k p x k= 20 5 , This 
replacement is redundant for solving IRLS directly, 
but when it is introduced into the iterative shrinkage 
algorithm(like formula (13)), the result is desired: 

( ) ( )
p T

p
f x b x x b x W xλ λ

−

= − + = − +A A x x
2 2 1

2 2

1 1

2 2
 (9) 

Come to solve: 

  ( ) ( ) ( )Tf x b x W x xλ −∇ = − − + =A A 1 0  (10) 

3 IMPROVED ITERATIVELY 
REWEIGHTED LEAST 
SQUARES SHRINKAGE 
ALGORITHM 

By solving the inverse matrix to obtain a new update 
results. When W is fixed, updating x , the 
approximation effect of the approximation solution 
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in this process is relatively poor, especially in the 
treatment of high-dimensional signal. In order to 
make the algorithm deal with high-dimensional data, 
plus or minus to cx it. This is the shrinkage iterative 
algorithm based on the IRLS algorithm.In order to 
improve the convergence efficiency of the algorithm, 
a shrinkage factor c is brought in each iteration 
process of IRLS algorithm to minimize the objective 
function. Meanwhile, the iteration speed is improved 
and higher reconstruction precision is obtained.

( )c c ≥ 1 is a relaxation constant, put it into equation 
(10) 
  ( ) ( ( ) )

T T

b c x W x c xλ
−

− + − + + =A A A I I
1

0   (11) 

Rebuilding the iterative algorithm with 
fixed-point iteration method, the result is:  

  ( ) ( ( ) )T T

k k kb c x W x c xλ −

+
− − = +A A A I I1

1   (12) 

Obtaining a new iterative equation: 

( ( ) ) ( ( ) )T T

k k kx x b c x
c c c

λ − −

+
= + − −W I A A A I1 1

1

1 1

( ( ) )T

k kS x
c

= ⋅ − +A b A x
1

                                  (13) 

Defining the diagonal matrix: 

  ( ( ) ) ( ( )) ( )k k kS x x x
c c

λ λ− − −= + = +W I I W W1 1 1   (14) 

Applying the matrix to formula (17): 

  . [ ] / ( [ ]) [ ]

. [ ] / ( [ ]) [ ] [ ]

k k k

k k k k

x i x i x i

x i x i x i x i
c c

ρ
λ λ

ρ
=

+

2 2

2 2 2

0 5
2

0 5

  (15) 

It can be seen from the above equation, when
[ ]kx i is very large, the equation (15) is close to 1, 

when [ ]kx i is very small, the above equation is close 
to 0, thus achieve the shrinkage effect. This is the 
most important improvement relative to the previous 
IRLS iteration shrinkage algorithm, this 
improvement speeds up the convergence speed, 
saves a lot of computation time, and gets higher 
re-construction precision. Similarly, this algorithm 
also requires the initial solution not be empty when 
initialize. 

 

4 EXPERIMENTAL RESULTS 
AND DISCUSSION 

4.1 Reconstruction of one-dimensional 
random signal  

The experiment is carried out in MATLAB R2010a 
and it uses discrete-time signal with different 
lengths, the sparsity data is set to 5. Figure 2 and 
Figure 3 are results of signal with length 16 or 64; 
Average values of 1000 times experimental results 
with each length under the same conditions are 
shown in Table.3. 

The I-SIRLS algorithm has better performance 
compared with the low measurement while 
reconstructing discrete signal, as shown in Figure 1 
and Table 2. When the reconstruction probability is 
1, the I-SIRLS algorithm requires less measurements 
than SIRLS algorithm. Meanwhile the reconstruction 
probability of the I-SIRLS algorithm can achieve 
0.8, even though the number of samples is low, but 
the SIRLS algorithm probability can only get 0.6 or 
lower. When the two algorithms reach the maximum 
reconstruction probability, the I-SIRLS algorithm 
maintains a maximum reconstruction probability, but 
there is shocks in the performance of the SIRLS 
algorithm, it illustrates that the I-SIRLS algorithm 
has better shrinkage efficiency and stability. The 
target of the improved IRLS is to find the optimal 

solution x , making ( ) p

p
f x xλ= + −x b A 2

2

1

2
 be 

the minimum. Algorithm realization after initializing 
( k = 0 , x =0 1, kr b Ax= −0 ) can be generalized in 
following steps: 
(1) Back Projection: Calculate the residual

T

ke A r
−

= 1  
(2) Update shrinkage factor: Calculation of the 

value of the diagonal matrix 

( , ) ( ) / ( ( [ ]) [ ] )k k kS i i x i x i x i
c

λ
ρ= + 22

 

(3) Shrinkage computing: Calculate
( / )s ke S x e c

−
= +1  

(4) Linear search: Select the appropriate μ to 

minimize the function ( ( ))k s kf x e xμ
− −
+ −1 1  

(5) Atomic map updater: Calculate
( )k k s kx x e xμ

− −
= + −1 1  
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(6) Iteration stop condition: If 
k k −−x x 2

1 2
Less 

than a given threshold value, Stop iteration; 
Otherwise, jump to the iterative process step (1) 

(7) Output kx  

Table 1. Comparison of minimum number of 
measurements in I-SIRLS and SIRLS. 

Signal length Proposed method SIRLS 
16 8 12 
64 15 18 
256 21 25 

1024 30 33 

 

 
Figure 1. Contrast of reconstruction probability: (a) Signal 
length N=16; (b) Signal length N=64 

4.2 Image Reconstruction 

To further verify the reliability and effectiveness of 
the proposed algorithm, we select a test image: Lena. 
The original image is firstly transformed into DCT 
coefficients using DCT. The measurement matrix 
and the original im-age are shown in figure 2. Based 
on combination of CS theory, reconstructed images 

using the proposed algorithm with compression ratio 
is 0.3, 0.4 and 0.5, respectively. In the following, the 
results of evaluating the proposed algorithm 
compared with SIRLS algorithm are presented. 

 
Figure 2. Measurement matrix and original Lena 

According to results in Figure 3, Figure 4 and 
Table 3: the image reconstruction quality is worse 
with reducing sampling ratio, and the image even 
cannot be recognized. From the above table it can be 
seen that, the I-SIRLS algorithm has higher PSNR, it 
shows that the effect of reconstruction is better; the 
I-SIRLS algorithm has a smaller fluctuation range of 
PSNR, it shows that the stability of the proposed 
algorithm is superior to the SIRLS algorithm. 

 

Figure 3.Reconstructed images of Lena: (a) SIRLS; (b) 
I-SIRLS in thecase of compression ratio respectively 0.4 

 

Figure 4.Reconstructed images of Lena: (a) SIRLS (b) 
I-SIRLS in thecase of compression ratio respectively 0.5 
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Table 2. Comparison of PSNR values in proposed 
reconstructed method and other methods. 

Sampling rate SIRLS Proposed method 
0.5 27.46 30.33 
0.4 24.52 26.22 
0.3 21.94 23.56 

5 CONCLUSION 

This article discusses the signal reconstruction based 
on compressed sensing theory, solving the problem 
that the convergence speed is not fast enough and the 
reconstruction accuracy is not high enough in IRLS- 
based shrinkage algorithm. Then the article presents 
an improved IRLS shrinkage algorithm. Each 
iteration process of SIRLS algorithm introduced a 
shrinkage factor, which makes the convergence rate 
and the reconstruction accuracy both better than the 
previous algorithm. The simulation results show that 
the improved algorithm has faster convergence rate 
and higher reconstruction precision compared to the 
previous algorithm. 
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