
System for Executing Encrypted Java Programs

Michael Kiperberg1, Amit Resh2, Asaf Algawi2 and Nezer J. Zaidenberg3

1Faculty of Sciences, Holon Institute of Technology, Holon, Israel
2Department of Mathematical IT, University of Jyvaskyla, Jyvaskyla, Finland

3School of Computer Science, The College of Management, Academic Studies, Rishon LeZion, Israel
{mikiperberg, amitr44, asaf.algawi}@gmail.com, nzaidenberg@me.com

Keywords: Java, Trusted Computing, Hypervisor, Virtualization, Remote Attestation.

Abstract: An important aspect of protecting software from attack, theft of algorithms, or illegal software use, is elim-
inating the possibility of performing reverse engineering. One common method to deal with these issues is
code obfuscation. However, it is proven to be ineffective. Code encryption is a much more effective means of
defying reverse engineering, but it requires managing a secret key available to none but the permissible users.
Adequate systems for managing secret keys in a protected trust-zone and supporting execution of encrypted
native code have been proposed in the past. Nevertheless, these systems are not suitable as is for protecting
managed code. In this paper we propose enhancements to these systems so they support execution of en-
crypted Java programs that are resistant to reverse engineering. The main difficulty underlying Java protection
with encryption is the interpretation that is performed by the JVM. The JVM will require the key to decrypt
the encrypted portions of Java code and there is no feasible way of securing the key inside the JVM. To solve
this, the authors propose implementing a Java bytecode interpreter inside a trust-zone, governed by a thin hy-
pervisor. This interpreter will run in parallel to the standard JVM, both cooperating to execute encrypted Java
programs.

1 INTRODUCTION

Digital content such as games, videos, and the like
may be susceptible to unlicensed usage, which has
a significant adverse impact on the profitability and
commercial viability of such products.

One way of preventing circumvention of the soft-
ware licensing program, may be using a method of
”obfuscation”. The term obfuscation refers to mak-
ing software instructions difficult for humans to un-
derstand by deliberately cluttering the code with use-
less, confusing pieces of additional software syntax
or instructions. However, even when changing the
software code and making it obfuscated, the content
is still readable to the skilled hacker (Rolles, 2009;
Bohne, 2008).

Additionally, publishers may protect their digital
content product by encryption, using a unique key to
convert the software code to an unreadable format,
such that only the owner of the unique key may de-
crypt the software code. Such protection may only
be effective when the unique key is kept secured and
unreachable to an adversary. Hardware based meth-
ods for keeping the unique key secured are possi-
ble (Schellekens et al., 2008; Pearson, 2002; Eng-

land et al., 2003; Zaidenberg et al., 2015), but may
have significant deficiencies, mainly due to an invest-
ment required in dedicated hardware on the user side,
making it costly, and, therefore, impractical. Further-
more, such hardware methods have been successfully
attacked by hackers (Tarnovsky, 2012).

We would like to stress the key difference between
native and managed execution environments. While
it is possible to guarantee that a sequence of native
instructions cannot be intercepted (read or modified)
during its execution by a CPU (Averbuch et al., 2011;
Averbuch et al., 2013), such a guarantee cannot be
made for a managed execution environment, since an
unexpected behavior can be introduced into the soft-
ware that implements the managed execution environ-
ment. There is, therefore, a need for a technique for
executing safely encrypted managed programs on the
available managed execution environments. In addi-
tion to protection of native code, we previously re-
searched the protecting of video streaming (Zaiden-
berg and David, 2013; Zaidenberg and David, 2014).

In this paper, we present a system that allows en-
crypting and executing programs written for the Java
Virtual Machine (JVM) (Lindholm et al., 2013). The
system execution engine is based on a thin hypervi-

Kiperberg, M., Resh, A., Algawi, A. and Zaidenberg, N.
System for Executing Encrypted Java Programs.
DOI: 10.5220/0006078902450252
In Proceedings of the 3rd International Conference on Information Systems Security and Privacy (ICISSP 2017), pages 245-252
ISBN: 978-989-758-209-7
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

245

sor and works in cooperation with the JVM through
the standardized JVM Tool Interface (JVM TI) and
the Java Native Interface (JNI). The hypervisor ac-
quires the decryption key during the initialization of
the JVM and is responsible for decrypting and execut-
ing the encrypted parts of the Java program.

2 JAVA BYTECODE

Java bytecode is the instruction set of the JVM (Lind-
holm et al., 2013). Programs written in Java are com-
piled to the Java bytecode and stored, together with
additional information, in class files.

JVM is a stack machine: the arguments of an in-
struction are pushed onto a stack, the instruction is
executed, which pops the arguments off the stack and
the result is pushed back onto the stack.

Each method has its own stack and its own area of
local variables (which also includes method’s parame-
ters). Any constants used in a method, e.g. numerical
constants, type names, or method names, are stored
in a constant pool belonging to the class in which the
method is defined. The method references these con-
stants via their indices.

Many languages, Java among them, have intro-
duced a notion of exceptions. An exception is an
abnormal condition detected by the program, which
cannot be handled locally, i.e. in the method which
detected this condition. Most exceptions occur syn-
chronously as a result of an action by the thread in
which they occur. An asynchronous exception, by
contrast, can potentially occur at any point in the ex-
ecution of a program. Asynchronous exceptions are
not covered in our work. Synchronous exceptions can
occur as a result of execution of the athrow instruction
or any other instruction that specifies an exception as
a possible result. For example, the idiv instruction,
which divides two integers, throws an ArithmeticEx-
ception if the value of the divisor is 0.

Each method may be associated with zero or more
exception handlers. An exception handler specifies
the range of instructions for which the exception han-
dler is active, and describes the type of exception that
the exception handler is able to handle. When an ex-
ception is thrown, the JVM searches for a matching
exception handler in the current method. If a match-
ing exception handler is found, the system branches to
the exception handling code specified by the matched
handler.

3 JAVA FILE STRUCTURE

Java is an object-oriented programming language. All
code in a Java program is written in classes. The
source code is compiled into intermediate bytecode
that is stored in class files (Lindholm et al., 2013).
Each class file contains the compiled bytecode of a
class along with descriptions of its fields, interfaces
and methods.

Similarly to other instrumentation tools (Chander
et al., 2001; Lee and Zorn, 1997; Harkema et al.,
2002), our encryption tool (Algawi et al., 2014) an-
alyzes and modifies each class file that was defined to
be protected.

4 JNI/JVM TI

JVM TI is an application programming interface
(API) provided by the JVM that allows the inspec-
tion and the controlling of the state of the JVM and
the program it executes. This API is usually used by
performance profilers and debuggers (Binder and Hu-
laas, 2006; Luedde, 2012). JVM TI is a two-way in-
terface. A client of JVM TI, an agent, can be notified
of interesting occurrences through events. An agent
can query the JVM through many functions, either in
response to events or independent of them. An agent
is realized in a dynamic library, a dynamic link library
on Windows or a shared object on Linux.

In addition to events interception, JVM TI allows
an agent to inspect and manipulate the state of the
JVM and the state of the program it executes. For ex-
ample, it allows to retrieve the methods of a particular
class, obtain the method’s name and bytecode. An-
other family of JVM TI functions allows inspection
of dynamic aspects of the execution. For example,
the GetLocalVariable functions retrieves the value of
method’s local variable (in Java parameters are also
variables). Finally, another family of JVM TI func-
tions allows modifying the state of the program. This
family includes functions such as SetLocalVariable,
which assigns a value to method’s local variable, Set-
BreakPoint, which sets a breakpoint at a specified lo-
cation of a specified method.

JNI is an API provided by the JVM that enables
Java programs to call and be called by native pro-
grams. JNI provides functions that can inspect and
manipulate Java objects. These functions can be sub-
divided to the following families: class operations,
exceptions, accessing fields, calling methods, etc.

The class operations family includes functions
such as FindClass, which loads a class by its name,
and IsAssignableFrom, which determines whether an

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

246

object of one class can be safely cast to another
class. The exceptions family includes functions such
as Throw and ThrowNew, that request to handle the
specified exception, and ExceptionOccurred, which
determines whether an exception is being handled.
The accessing fields family includes functions such
as GetObjectField, which retrieves the value of the
specified field in the specified object, and SetObject-
Field, which assigns a value to the specified field
in the specified object. The calling methods fam-
ily includes functions such as CallVoidMethod, which
calls the specified method of the specified object, and
CallNonvirtualVoidMethod, which calls the specified
method of the specified class (not necessarily object’s
class).

5 THIN HYPERVISOR

A hypervisor, also referred to as a Virtual Ma-
chine Monitor (VMM), is software, which may be
hardware-assisted, to manage multiple virtual ma-
chines on a single system (Popek and Goldberg,
1974). The hypervisor virtualizes the hardware envi-
ronment in a way that allows several virtual machines,
running under its supervision, to operate in parallel
over the same physical hardware platform, without
obstructing or impeding each other.

The authors propose the use of a type-1 hypervisor
environment for securing a single guest stack. Rather
than wholly virtualizing the hardware platform, a spe-
cial breed of hypervisor, called a thin-hypervisor, is
used (Chubachi et al., 2010). The thin-hypervisor is
configured to intercept only a small portion of the sys-
tem’s privileged events. All other privileged instruc-
tions are executed without interception, directly, by
the OS.

A thin-hypervisor is less susceptible to being
hacked as a result of vulnerabilities, since its code
and complexity are greatly reduced when compared
to a full-blown hypervisor.

In the proposed system, to execute encrypted
Java bytecode, the thin-hypervisor capabilities are ex-
ploited to decrypt the encrypted Java bytecode (us-
ing the secret key) into protected memory regions and
following up with interpretation and execution of the
decrypted instructions while in host mode. The hy-
pervisor obtains the secret key through a process of
remote attestation (Seshadri et al., 2004; Kiperberg
and Zaidenberg, 2013; Kiperberg et al., 2015) Fol-
lowing Attestation our hypervisor protects the keys.
(Resh and Zaidenberg, 2013).

6 SYSTEM DESIGN

The system we present comprises four main compo-
nents: (1) encryption tool, (2) JVM TI agent, (3) thin
hypervisor, (4) attestation server. Figure 1 depicts the
relationship between these components.

The encryption tool processes each class file by
first de-serializing it into memory based structures.
The code bytes of each method are located and ze-
roed out to create a sequence of nop instructions ex-
cept for the very first code byte and the last three
bytes. In the first code-byte (offset 0) it always in-
serts an aconst null opcode (a single-byte instruction
that pushes a NULL on the operand stack). In the last
3 bytes it inserts a jump instruction that loops back to
the 1st nop instruction (offset 1). The reason for this
pattern is to allow a means to synchronize the JVM
processing of the decrypted bytecode, as will be de-
tailed later. The aconst null opcode at the beginning
of the method’s code is required to appease the Java
verifier. Without the aconst null, the verifier contem-
plates that in the event of exception handling, the loop
back to the method’s start may have a stack depth of
1, while during other loops, stack depth is 0. This
discrepancy is not allowed. With the aconst null op-
code, the stack depth is always 1 regardless, and thus
allowed by the verifier. Methods that are smaller than
5 bytes and cannot accommodate this pattern are sim-
ply not encrypted.

The encryption tool extends the existing constant
pool to make room for encrypted versions of protected
methods’ bytecode. The original bytecodes of each
method are encrypted and inserted in a new record
appended at the end of the constant pool table.

After adding all the new encrypted entries, the en-
cryption tool adds a trailer record at the very end,
detailing the number of preceding encrypted entries.
When the Java class is loaded for execution, the run-
time decryption and execution engine can find this in-
formation by looking up the trailer-record at the end
of the constant pool.

Once encryption is completed, the encryption tool
serializes the class structures back into a modified
class file, which replaces the original one in the jar
file.

During the initialization of the JVM TI agent, it
deploys the hypervisor and installs interception func-
tions for the following events (1) class loading, (2)
breakpoint, (3) exception catch. The class loading
event occurs whenever the JVM loads a class and be-
fore any of the class code is executed. Upon this event
the agent inspects the class and determines whether
it is encrypted. If so, the agent installs a breakpoint
at the first instruction of each method. These break-

System for Executing Encrypted Java Programs

247

JVM

Agent (2)Hypervisor
(3)

Attestation
Server (4)

Class B

Encrypted
Class A

Encryption
Tool (1)

Class A

JNI
JVMTI

Hypercall
Frame

TCP/IP

Remote
Server

Figure 1: Relationship between the different components of
the described system. The encryption tool (1) transforms
regular Java classes into encrypted ones. Regular and en-
crypted Java classes are then loaded by the JVM. The JVM
loads a JVM TI agent (2) through a JVM TI interface. The
agent links the hypervisor to the JVM and assists in the
interpretation process. The agent communicates with the
JVM through JVM TI and JNI. The communication be-
tween the agent and the hypervisor is based on hypercalls
and execution frames. The hypervisor receives the decryp-
tion key from a remote server, which attests the validity of
the hypervisor and the hardware on which it executes.

No

Create
frame

Decrypt
instructions

Interpret next
instruction

Erase other
instructions

Interpret next
instruction

Yes

No

Agent HypervisorJVM

Is terminal
instruction?

Can interpret
next instr.?

Yes

Figure 2: A simplified control flow during encrypted
method execution. The JVM reaches the breakpoint in-
stalled by the agent, and transfers the control to the JVM TI
agent. The agent creates a frame and transfers the control
to the hypervisor. The hypervisor decrypts the instructions,
and interprets them until an uninterpretable instruction is
reached. Then the hypervisor erases all the other instruc-
tions and returns control to the JVM TI agent, which inter-
prets the instruction and either transfers the control to the
hypervisor or returns control back to the JVM.

points induce a breakpoint event on each entry to the
encrypted methods. The agent intercepts the break-
point event, resolves the method that hosts the hit
breakpoint, and begins the interpretation process.

The interpreter constructs a frame, a data structure
which constitutes the execution environment of the
current method invocation (including the encrypted
bytecodes of the current method), and transfers con-
trol to the hypervisor. The hypervisor decrypts the

Stack
Top

Stack Locals Consts PC Encrypted
Code

Decrypted
Code

Exception
Name

Exit
Reason

Figure 3: Frame’s structure. The frame contains the compu-
tation stack and a pointer to its top element. The frame in-
cludes copies of all the local variables and the constant pool.
The program counter contains the location of the next in-
struction to be executed. The ”encrypted code” buffer con-
tains the encrypted bytecode of the current method, which
is then decrypted and interpreted by the hypervisor. The
”decrypted code” buffer contains the last instruction that
could not be interpreted by the hypervisor. If the hypervi-
sor encountered an abnormal condition, it reports its nature
through the exception name buffer and sets the ”exit reason”
field accordingly.

bytecodes and starts interpreting them one-by-one un-
til it reaches an opcode which requires cooperation
with the JVM. At this point, the hypervisor returns
control to the agent and provides it with the instruc-
tion, which it could not interpret, in decrypted form.
The agent proceeds by interpreting the instruction us-
ing JVM TI and JNI and then transfers control back
to the hypervisor. Figure 2 presents the control flow
diagram of the system operation.

7 CO-INTERPRETATION

The interpretation is performed by two interpreters:
one is embedded in the JVM TI agent and the other is
embedded in the hypervisor (further reference to the
thin-hypervisor will be simply: ”hypervisor”). Each
opcode is interpreted by only one of the two inter-
preters. When one interpreter cannot continue inter-
pretation, it transfers the control to the other inter-
preter. The interpreters share a data structure, which
we call a frame, and in which they store the intermedi-
ate results of the interpretation as well as some addi-
tional information. The Frame’s structure is depicted
in Figure 3 and explained below.

We want to enable the interpreter, which is em-
bedded in the hypervisor, to interpret as many in-
structions as possible. Many instructions operate only
on the stack and the program counter (PC). These
instructions include the following groups of instruc-
tions: arithmetic/logic, type conversion, stack man-
agement, control transfer. These instructions require
the following information to be included in the stack:
(a) PC, (b) stack. The load and store group of instruc-

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

248

tions allow the pushing of the value of local variables
and constants onto the stack. In order to enable the
hypervisor to interpret instructions in these groups,
we include the (c) constant pool and the (d) local vari-
ables in the frame.

Instructions that belong to the following groups
are interpreted by the JVM TI agent: object creation
and manipulation, method invocation and return, and
others. These instructions require cooperation with
the JVM. For example, the getfield instruction, which
pushes onto the stack the value of the specified field
in the specified object, must inspect the internal rep-
resentation of the object as defined by the JVM. An-
other example is the return instruction, which termi-
nates execution of the current method. This instruc-
tion must modify the internal representation of the
stack trace, which is managed by the JVM. There-
fore, all these instructions are interpreted by the JVM
TI agent via JNI and JVM TI functions.

In addition to the data structures which are used
during interpretation, the frame includes three data
structures which are used for communication between
the two interpreters: (a) encrypted code, (b) decrypted
code, (c) exit reason. Before transferring the control
to the hypervisor, the encrypted code buffer is filled
with the encrypted bytecodes of the current method
by the JVM TI agent. The hypervisor decrypts the
buffer and begins interpretation until it reaches an in-
struction, which cannot be interpreted (inside the hy-
pervisor). This instruction is written to the decrypted
code buffer and the exit reason is set to signify that
the interpretation was suspended due to an uninter-
pretable instruction. The JVM TI agent interprets this
single instruction and the process continues.

Exceptions are an essential part of Java; they
are embedded into the low level bytecode instruc-
tions. Our interpreter supports exceptions (actually
the support for asynchronous exceptions is partial)
both in instructions that are interpreted by the JVM TI
agent and those that are interpreted by the hypervisor.
Clearly, our interpreter must cooperate with the JVM
since it is possible that an encrypted method throws
an exception which is handled by a non-encrypted
method and vice-versa.

The implementation of exceptions in our inter-
preter can be divided into two parts: exception gen-
eration and exception handling. We begin our dis-
cussion with exception generation. The interpreter
should generate an exception when it executes an in-
struction which generates an exception either explic-
itly (by executing the athrow instruction) or implicitly
(e.g. by executing the idiv instruction with invalid ar-
guments). The JVM TI agent delivers an exception
to the JVM by calling the Throw or ThrowNew func-

tions of JNI.
Unfortunately, the hypervisor cannot call JNI

functions directly. Therefore, whenever the hypervi-
sor detects an abnormal condition, it transfers the con-
trol to the JVM TI agent. The nature of the exception
is delivered through the exception field of the current
frame. The JVM TI agent then delivers the exception
on the hypervisor’s behalf.

In order to locate the correct exception handler,
the JVM traverses the call stack of the currently exe-
cuting methods. For each method, the JVM inspects
the location in which the execution of the method was
suspended and transferred to another method. These
locations are part of the internal state of the JVM. The
JVM updates these locations during program execu-
tion.

Our interpreters, however, cannot modify these
locations directly, leaving the locations at 0 in all
the encrypted methods. Whenever our interpreters
need to modify the location of the currently execut-
ing method, they install a breakpoint at a desired lo-
cation and return control to the JVM. The JVM exe-
cutes the instrumented bytecode of the method (gen-
erally NOPS and a jump to the beginning at the end),
as described in section 6, until it reaches the installed
breakpoint, and transfers the control back to the JVM
TI agent, which continues the interpretation process.
Since our interpreter can affect only the location of
the currently executing method, it must update the lo-
cation before calling other methods.

8 MEASUREMENTS

According to (Collberg et al., 2007), invokevirtual
is the second most popular instruction (appears with
8.9% frequency) and getfield is the fourth most pop-
ular instruction (5.4%). Unfortunately, these instruc-
tion cannot be interpreted inside the hypervisor, and,
therefore, they are delivered in a decrypted form to
the JVM TI agent, which is not considered secure.
The hypervisor delivers about 38% of the instruc-
tions in a decrypted form back to the JVM TI. There-
fore, in practice, only about 60% of the instructions
in an encrypted class are actually hidden from an ad-
versary. To compare performance of protected-Java
vs. non-protected-Java, two empirical measurements
were conducted.

The purpose of the first measurement was to com-
pare code interpretation of decrypted Java bytecode
in the hypervisor to regular, non-protected, JVM code
interpretation. Algorithm 1 presents the pseudo code
of a method that was run in protected and unprotected
mode.

System for Executing Encrypted Java Programs

249

Algorithm 1: Algorithm measuring the correlation between
instruction sequence length and its execution time.

for i = 1,10000 do
t = System.nanoTime()
baseTime += System.nanoTime() - t

end for
for all k ∈ {10,20, ...,190,200,400, ...,10000} do

for i = 1,10000 do
t = System.nanoTime()
for i = 1,k do

nothing
end for
sumTime += System.nanoTime() - t

end for
end for
Output: baseTime/10000, sumTime/10000

The first repeat block measures the overhead as-
sociated with system time measurement during 10000
iterations. The second repeat block performs the ac-
tual timed measurement. The number of interpreted
instructions measured are a function of parameter k.
The Java bytecodes measured are an empty for loop
and include the instructions to manipulate the control
variable and to cycle the loop. The value of k governs
the number of instructions processed during each it-
eration. Measurements are performed for k assuming
values 10 to 200 at increments of 10 and then 200
to 1000 — at increments of 200. To cancel out ran-
dom measurement errors as a result of asynchronous
events, 10000 iterations are performed for each value
of k and the average value is output. The difference
between sumTime and baseTime, the overhead mea-
surement, is the net time duration of the instruction in-
terpretation process. When measuring protected Java
interpretation the baseTime of the non-protected java
is subtracted from the measured result, in order to in-
clude in the time measurement a hypervisor exit and a
hypervisor entry from/to the agent which is performed
in order to call the System.nanoTime() method.

We observed that baseTime is 55ns in a non-
protected program, and 28726 — when executed in
a protected program. Since the System.nanoTime()
method call is always executed by the JVM (it is
not protected), the overhead time difference (28671
nanoseconds) is attributed to the transitions between
the hypervisor and the agent.

The measurement result for the span of k values is
plotted in Figure 4 on a logarithmic scale. Note that
the transition overhead is significant (as compared to
code interpretation) up until k = 1000. Since the size
of the empty for loop in bytecode is about 10 bytes,
it can be determined that the transition overhead is

0 0.2 0.4 0.6 0.8 1
·104

101

102

103

k

na
no

se
co

nd
s

Protected
Non-protected

Figure 4: Execution time of Algorithm 1 in nanoseconds.
The figure presents two graphs that correspond to two ex-
ecution modes: (1) protected mode, in which the algo-
rithm is realized by an encrypted method, (2) non-protected
mode, in which the algorithm is realized by a regular, non-
encrypted method.

significant for bytecode sizes of up to 10000 bytes.
For larger bytecodes the performance comparison is
stable at about a 1:10 factor.

While interpretation performance in the hypervi-
sor can be optimized to achieve a result better than
1:10, this measurement shows that for all practical
purposes the transition time will overshadow this.
Therefore, optimization efforts should be concen-
trated there.

The purpose of our second study was to measure
the overhead of calling a protected method as a func-
tion of the number of its parameters. When a pro-
tected method is called, the agent needs to construct
the frame context and transfer control to the hypervi-
sor (via a hypercall). The hypervisor needs to locate
the encrypted bytecode, decrypt it and perform the lo-
cal interpretation. When complete, it needs to return
control to the agent, which will adjust the JVM frame
context.

To measure this entire process, functions of a

Algorithm 2: Algorithm measuring the correlation between
function’s number of arguments and its invocation time.

baseTime = System.nanoTime()
for i = 1,40000 do

nothing
end for
baseTime = System.nanoTime() – baseTime
for all k=0,15 do

Tk = System.nanoTime()
for i = 1,40000 do

Call fk(0,1, ...,k)
end for
Tk = (System.nanoTime() – Tk) / 40000

end for
Output: baseTime, T0,T1, ...,T15

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

250

0 5 10 15

102

104

106

k

na
no

se
co

nd
s

Callee Caller Non-encrypted

Figure 5: Execution time of Algorithm 2 in nanoseconds.
The figure presents three graphs that correspond to three
execution modes: (1) the callee, i.e. the function fk, is en-
crypted (2) the caller is encrypted (3) neither the caller nor
the callee are encrypted.

varying number of parameters were called and the
call procedure was timed. The function contents were
identical: fk(int p0, ..., int pk) {p0∗ = p0;} As in the
previous study, each measurement was carried out
multiple times (400000) to reduce error, and a base-
Time was calculated to reflect the overhead associated
with managing the loop process, as shown in Algo-
rithm 2.

The baseTime was subtracted from the function
call measurements results. Three types of measure-
ments were conducted, each for all values of k: (a)
non-protected program, (b) protected caller which
calls an non-protected callee, (c) non-protected caller
which calls a protected callee. Figure 5 plots these
measurements on a logarithmic scale.

The largest overhead was acquired when the
callees were encrypted, since this operation is the
most involved: requiring preparation of the environ-
ment, transferring to the hypervisor, decrypting, inter-
preting in hypervisor and restoring the environment.
It is roughly 1.5 to 2 orders of magnitude greater as
compared to the case where only the caller was pro-
tected, since this has moderate overhead, only requir-
ing the hypervisor to prepare the environment and
transfer control to the agent.

The number of parameters generally increase the
timing linearly, as can be expected. However, when
comparing the two protected cases, it can be seen that
the gap between the results increases with the num-
ber of parameters. This indicates that the overhead of
preparing and restoring the environment is more sig-
nificant when the callee function is protected.

9 CONCLUSIONS

As has been shown, Java programs can be, at least par-
tially, protected from an adversary. We believe that
this degree of protection is sufficient in cases where

traditionally obfuscation was used. In other cases,
which require a higher degree of protection, we sug-
gest either avoiding using uninterpretable (by the hy-
pervisor) instructions or use a tool which can reduce
the frequency of uninterpretable instruction (by inlin-
ing methods, for instance).

While the performance penalty can be significant
(2-2.5 orders of magnitude) on frequent transitions
between the hypervisor and the JVM TI agent, the
performance improves when longer sequences of in-
structions can be interpreted in the hypervisor at once.
Obviously, sporadic execution of the protected parts
of a Java program has little effect on the overall per-
formance of the program.

REFERENCES

Algawi, A., Neittaanmaki, P., Zaidenberg, N. J., and Parisi-
nos, T. (2014). In kernel implementation of rsa rou-
tines. In ICCSM, pages 149–153.

Averbuch, A., Kiperberg, M., and Zaidenberg, N. J. (2011).
An efficient vm-based software protection. In Net-
work and System Security (NSS), 2011 5th Interna-
tional Conference on, pages 121–128.

Averbuch, A., Kiperberg, M., and Zaidenberg, N. J. (2013).
Truly-Protect: An Efficient VM-Based Software Pro-
tection. Systems Journal, IEEE, 7(3):455–466.

Binder, W. and Hulaas, J. (2006). Exact and portable pro-
filing for the jvm using bytecode instruction count-
ing. Electronic Notes in Theoretical Computer Sci-
ence, 164(3):45–64.

Bohne, L. (2008). Pandora’s Bochs: Automated Unpacking
of Malware. In Pandora’s Bochs: Automated Unpack-
ing of Malware.

Chander, A., Mitchell, J. C., and Shin, I. (2001). Mobile
code security by Java bytecode instrumentation. In
DARPA Information Survivability Conference &
Exposition II, 2001. DISCEX’01. Proceedings, vol-
ume 2, pages 27–40. IEEE.

Chubachi, Y., Shinagawa, T., and Kato, K. (2010).
Hypervisor-based Prevention of Persistent Rootkits.
In Proceedings of the 2010 ACM Symposium on Ap-
plied Computing, SAC ’10, pages 214–220, New
York, NY, USA. ACM.

Collberg, C., Myles, G., and Stepp, M. (2007). An Empir-
ical Study of Java Bytecode Programs. Softw. Pract.
Exper., 37(6):581–641.

England, P., Lampson, B., Manferdelli, J., Peinado, M., and
Willman, B. (2003). A Trusted Open Platform. Com-
puter, 36(7):55–62.

Harkema, M., Quartel, D., Gijsen, B., and van der Mei,
R. D. (2002). Performance monitoring of Java appli-
cations. In Proceedings of the 3rd international work-
shop on Software and performance, pages 114–127.
ACM.

System for Executing Encrypted Java Programs

251

Kiperberg, M., Resh, A., and Zaidenberg, N. J. (2015).
Remote Attestation of Software and Execution-
Environment in Modern Machines. In CSCloud.

Kiperberg, M. and Zaidenberg, N. J. (2013). Efficient Re-
mote Authentication. In The Journal of Information
Warfare, volume 12.

Lee, H. B. and Zorn, B. G. (1997). BIT: A Tool for Instru-
menting Java Bytecodes. In USENIX Symposium on
Internet technologies and Systems, pages 73–82.

Lindholm, T., Yellin, F., Bracha, G., and Buckley, A.
(2013). The Java Virtual Machine Specification. Ora-
cle Corporation.

Luedde, M. (2012). Low impact debugging protocol. US
Patent 8,312,438.

Pearson, S. (2002). Trusted Computing Platforms: TCPA
Technology in Context. Prentice Hall PTR, Upper Sad-
dle River, NJ, USA.

Popek, G. J. and Goldberg, R. P. (1974). Formal Require-
ments for Virtualizable Third Generation Architec-
tures. Commun. ACM, 17(7):412–421.

Resh, A. and Zaidenberg, N. (2013). Can keys be hidden
inside the cpu on modern windows host. In European
Conference on Information Warfare, pages 231–235.

Rolles, R. (2009). Unpacking Virtualization Obfuscators.
In Proceedings of the 3rd USENIX Conference on Of-
fensive Technologies, WOOT’09, pages 1–1, Berke-
ley, CA, USA. USENIX Association.

Schellekens, D., Wyseur, B., and Preneel, B. (2008). Re-
mote Attestation on Legacy Operating Systems with
Trusted Platform Modules. Sci. Comput. Program.,
74(1-2):13–22.

Seshadri, A., Perrig, A., van Doorn, L., and Khosla, P.
(2004). SWATT: softWare-based attestation for em-
bedded devices. In Security and Privacy, 2004. Pro-
ceedings. 2004 IEEE Symposium on, pages 272–282.

Tarnovsky, C. (2012). Attacking TPM part two. In Defcon.
Zaidenberg, N. and David, A. (2013). Truly protect video

delivery. In European Conference on Information
Warfare, pages 405–407.

Zaidenberg, N. and David, A. (2014). Maintaining stream-
ing video drm. In ICCSM, pages 149–153.

Zaidenberg, N. J., Neittanmaki, P., Kiperberg, M., and
Resh, A. (2015). Trusted computing and drm. In
Martti Lehto, P. N., editor, Cyber Security: Analytics,
Technology and Automation, chapter 13, pages 205–
214. Springer, Springe.

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

252

