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Abstract: Recently, developing computational methods to explore drug-pathway interaction relationships has attracted 
attention for their potentiality in discovering unknown targets and mechanisms of drug actions. However, 
mining suitable features of drugs and pathways is challenging for available prediction methods. This paper 
performed an ensemble learning-based method to predict potential drug-pathway interactions by integrating 
different drug-based and pathway-based features. The main characteristic of our method lies in using the 
Relief algorithm for feature selection and regarding three ensemble methods (AdaBoost, Bagging and 
Random Subspace) for classifiers. Cross validation results showed the AdaBoost algorithm that based on the 
Decision Tree classifier can obtain a higher prediction accuracy, which indicated the effectiveness of 
ensemble learning. Moreover, some new predicted interactions were validated by database searching, which 
demonstrated its potentiality for further biological experiment investigation. 

1 INTRODUCTION 

Traditional drug discovery primarily tries to seek the 
specific drug molecule to act on individual target 
(Hopkins, 2008). However, it is well recognized that 
many drugs are far beyond targeting individual 
proteins, but rather influencing the complex 
interactions among the relevant biological pathways. 
Therefore, the inferences of drug-pathway 
associations are critical for identifying unknown 
targeted pathways and drug action mechanisms (Ma 
and Zhao, 2012). 

Increasing effort has been devoted to detecting 
these potential associations and several drug-
pathway interactions prediction methods have been 
proposed from different aspects (Subramanian et al., 
2005; Ma and Zhao, 2012). Generally, most of the 
methods attempted to analyze the drug-pathway 
interactions mainly based on gene expression data. 
For instance, ‘iFad’ mainly combined the gene 
expression and drug sensitivity datasets to analyze 
the drug-pathway interactions (Ma and Zhao, 2012), 
but it is always difficult to obtain adequate drug-
pathway information merely on the gene expression 
data. To tackle the problem, some methods attempt 

to utilize different machine learning algorithms by 
integrating more chemical and biological 
information (Silberberg et al., 2012; Pratanwanich 
and Lio, 2014; Song et al., 2014). For instance, 
protein-protein interaction networks (PPI) 
(Silberberg et al., 2012), other target structure 
information have been utilized effectively recently. 
However, the extraction and fusion of the drug-
pathway association information is still challenging 
for drug-pathway interactions prediction (Song et 
al., 2014). 

Inspired by the challenges, we attempted to use 
the ensemble learning methods to predict potential 
drug-pathway associations. As similar drugs often 
act similar target proteins, we assume that similar 
drugs also act on similar pathways. Based on the fact 
that the drug mode of actions (MoA) is a central 
concept linking drug structures to a set of biological 
activities, we used drug structure and MoA 
similarity to represent drug feature information. 
Further, we used the ‘RNA: AffyHG-U133 (A, B)’ 
gene expression data of NCI-60 cell lines (Reinhold 
et al., 2012) to obtain related genes which covered 
by these pathways, then these genes ontology 
semantic similarity and sequence similarity are 
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calculated to represent pathway information. 
Further, the drug-pathway network topology 
information was merged into the drug and pathway 
feature profiles, respectively. 

It is known that ensemble learning methods 
usually exhibits better generalization performance 
than a single classifier. In this study, we used three 
well-established methods: AdaBoost (Freund and 
Schapire, 1997), Bagging (Breiman, 1996) and 
Random SubSpace (Ho, 1998) to achieve a good 
ensemble result. Meanwhile, three widely used 
learning methods: Support Vector Machine (SVM) 
(Cortes and Vapnik, 1995), Navie Bayesian (NB) 
(Rish, 2001) and Decision Tree (DT) (Friedl and 
Brodley, 1997) are chosen as the base classifier. 
Compared of these method combinations, the 
AdaBoost algorithm that based on the DT classifier 
is selected as the final model to predict the drug-
pathway interactions. 

2 MATERIAL AND METHOD 

2.1 Dataset 

This study focus on 58 pathways that have been 
proved to be related to cancers (Ahmed et al., 2011) 
and 362 drugs obtained from KEGG database 
(Kanehisa et al., 2012), which contains most of 
pathways and molecular information in genomics, 
transcriptomics, proteomics and metabolomics. In 
addition, these drugs have complete drug 
information and most of them are proved to be 
related to these pathways. 

2.1.1 Features Construction 

(1) Drug features 

Drug structure-based feature dS : Drug structure 

similarity is calculated based on their molecular 
fingerprints which include 881 chemical 
substructures defined by the PubChem database 
(Chen et al., 2009). PaDel-Descriptor (Yap, 2011) 
was used to convert each drug Mol file into 881 
dimensional binary vectors. Then the corresponding 
fingerprints are used to compute the similarity scores 
between two drugs by Tanimoto scores (Lipkus, 
1999). 

MoA based feature dF : Since drugs which share a 

similar MoA are likely to target same pathways, thus 
the drug MoA similarity can be utilized to predict 
associations between drugs and pathways. Here we 
retrieved MoA information from DrugBank database 

(Wishart et al., 2006) and calculate the similarities 
based on 341 MoAs. We consider drugs as samples 
and each MoA as a label and take known drug-MoA 
association matrix M as local correlations. 
According to the local correlations between labels of 
samples in drug-MoA interaction network, we 
calculate the cosine similarity of each two drug 
vectors in M: 

( , ) cos( , )
|| |||| ||
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i j

d i j
i j

m m
S i j m m

m m
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(2)Pathway features 
This study mainly concentrated on 1863 genes 
covered by the 58 pathways for the pathway features 
construction. 

Gene ontology Semantic feature pF : The Gene 

Ontology terms of 1863 genes were retrieved from 
Quick GO database (Binns et al., 2009), and 
semantic similarity scores between these pathway-
related genes were calculated by the csbl.go R 
package (Ovaska et al., 2008). What’s more, the 
similarity scores between the pathways from gene 
semantic similarity scores were computed in 
accordance with the reference (Song et al., 2014). 
Gene sequence similarity pS : Sequence similarity 

between the corresponding pathway-related genes 
was calculated based on a Smith-Waterman 
sequence alignment score (Smith et al., 1985), and 
the similarity between two pathways can be 
calculated as the sum of similarity between all the 
gene sequences related to the two pathways. 
(3)Drug-pathway network topology feature 
The drug-pathway network topology information 
was calculated based on the literature (Van et al., 
2013). In the drug-pathway network, the average 
shortest path of each node and the number of shared 
drugs or pathways are denoted as , , ,d p d pD D K K , 

respectively. 
As showed in Table 1, the drug features dSim  

include drug structure information dS , drug mode of 

actions dM , network topology information ,d dD K , 

and the pathway features pSim  are combined by 

gene ontology semantic similarity pG , gene 

sequence similarity pS and ,p pD K . Construction of 

the drug-pathway feature is followed the theory: for 
drug i and pathway j, their features can be 
constructed by combining row i in dSim  and row j 

in pSim , namely. 

Fea<drug(i),pathway(j)>= dSim (i)+ pSim (j).  (2) 
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Table 1: The construction of drug-pathway features. 

Drug-Pathway Features 
 
 

Drug 
Features 

dSim  

Drug structure similarity 
dS

Drug mode of actions 
similarity 

dM  

Drug-pathway interaction 
topology information 

,d dD K  

 
 

Pathway 
Features 

pSim
 

Pathway-related gene 
ontology semantic feature 

pG  

Pathway-related gene 
sequence similarity 

pS  

Drug-pathway interaction 
topology information 

,p pD K  

2.1.2 Features Selection 

Existing facts demonstrate that irrelevant and 
redundant features can lead the model to overfit. 
Here we perform the Relief method (Sun et al., 
2011) to avoid redundancy of feature variables. At 
each iteration, the algorithm picks randomly a 
sample K, then picks at random the feature sample 
of the instance closest to K from each class, the 
same class instance is called ‘near-hit’ and the 
different class instance is called ‘near-miss’. Then 
the weight vector is updated as: 

2 2( ) ( )i i i i i iW W x nearHit x nearMiss      (3)

Thus, the weight of any given feature increases if 
the distance between K and near-hit is shorter than 
the distance between K and near-miss for the feature, 
and decreases otherwise. After n iterations, the 
relevance vector is updated by dividing each element 
of the weight vector by n, then feature are selected if 
their relevance is greater than a threshold k. In this 
study, we set the threshold as zero and finally 
selected 551 features with positive weight from 764 
features. 

2.2 Ensemble Learning Method 

Ensemble learning is a machine learning paradigm 
which constructs a set of classifiers and then 
combines them for classifying data by taking a vote 
of their predictions (Schwenker, 2013). Here we take 
three well-established methods in practice to achieve 
a good ensemble. AdaBoost and Bagging are two 
instance partitioning methods and Random Subspace 
is a feature partitioning method (Van et al., 2013).  

2.2.1 AdaBoost 

AdaBoost is an iterative algorithm where the 

conjuncture of many weak classifiers is employed to 
construct a ‘strong’ classifier (Ho, 1998). It works 
by choosing a base algorithm and iteratively 
improving it by accounting for the incorrectly 
classified examples in the training set. The final 
predictions are retrieved from a weighted vote. The 
AdaBoost algorithm’s pseudo code is shown as 
followed: 

 

2.2.2 Bagging 

Bagging is an ensemble meta-estimator where each 
base classifier is trained on random subsets of the 
original dataset and then aggregated their individual 
predictions to form a final prediction (Breiman, 
1996). It improves the stability and reduces variance, 
and avoids overfitting of learning algorithms. The 
base classifiers’ combination strategy for Bagging is 
majority vote. The Bagging algorithm pseudo code 
is shown as followed: 

 

2.2.3 Random Subspace 

Random Subspace is a combination model that 
consists of several classifiers and each are trained on 
randomly chosen subspaces of the original feature 
space (Ho, 1998). The outputs of the models are 
usually combined by majority vote. The Random 
Subspace algorithm’s pseudo codes are shown as 
followed: 
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2.3 Procedure 

In this model, we choose four widely used base 
classifier for implementing the three ensemble 
methods: SVM, NB and DT. SVM algorithm has 
been used for a variety of application and it performs 
structural risk minimization on a nested set structure 
of separating hyperplanes (Cortes and Vapnik, 1995). 
Navie Bayesian algorithm is a simple classification 
based on the Bayes theory for conditional 
probability. Decision Tree algorithm is an easily 
understandable and transparent sequential model but 
it has relatively low prediction accuracy compared to 
other methods. In this study, we chose the widely 
used method C4.5. Here we use the toolkit WEKA, 
which includes a collection of machine learning 
algorithms for solving data mining problems (Hall et 
al., 2009). The AdaBoost, Bagging and Random 
SubSpace are selected to implement the ensemble 
algorithms. The drug-pathway associations we used 
include 643 positive samples and 17390 negative 
samples, and the positive sample density of the 
dataset is 0.036. 

In order to evaluate the performances of different 
models, 10-fold cross validation tests are executed 
on the models. For the datasets, all of the drug-
pathway samples are randomly spilt into ten subsets 
with equal size, and nine subsets are combined as 
the training set and the remaining one subset is taken 
as the testing set each time. The overview procedure 
of the model is shown in the Fig.1. 

 

Figure 1: Figure summarizes the overview of this model. 
The model is mainly composed of three sections: (a) the 
process of feature construction. (b) ensemble methods 
operation. (c) the comparison of these methods. 

3 RESULTS 

3.1 Performance Evaluation 

Here several metrics, i.e., precision, recall, accuracy 
(ACC), area under ROC curve (AUC) and the area 
under the precision-recall curve (AUPR), F-measure 
(F), are used to evaluate the performances of the 
models. Among the metrics, accuracy represents the 
overall accuracy of the classification, precision 
represents the measure of the reliability of positive 
instances prediction and recall represents the 
probability of correct prediction. F-measure is a 
score from 0 to 1 as a measure of test accuracy. The 
metrics were calculated in a 10-fold cross-validation 
procedure by using the equations as followed: 

( )
2

TP
precision

TP FP
TP

recall
TP FN

TP TN
ACC

TP TN FP FN
precision recall

F
precision recall










  


 


 
(4)

where TP, FP, TN and FN represent the number 
of true positive, false positive, true negative and 
false negative samples, respectively. 
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3.2 Performance of Features 
Integration 

To quantitatively assess the efficiency of all the 
features and each single feature in predicting the 
drug-pathway interactions, we performed a 10-fold 
cross validation with the AdaBoost algorithm based 
on DT classifier, respectively. As a result, the model 
that integrated features exhibits a better performance 
than those with single feature (See in Fig. 2). 

Further, the Relief method is performed to avoid 
the redundancy of feature variables. In our study, we 
get 551 features with positive weight from 764 
features after feature selection. By comparison, the 
selected features have better classification 
performances than the original features (See in 
Fig.3). 

3.3 Performance of Ensemble Methods 

In this model, we compared the performance of 12 
methods, including SVM, NB and DT, and their 
corresponding ensemble methods of AdaBoost, 
Bagging and Random Subspace. The performance of 
base classifiers and ensemble methods based on 
three base classifiers is shown in Table 2. As 
demonstrated in Table 2, we find all the three base 
classifiers have a poorer performance than the 
ensemble methods, and AdaBoost method has the 
best performance in every base classifier. The 
possible reason for this situation is that AdaBoost 
more fully account the weight of each classifier 
relative to other algorithms. 

Next, we compared the three base classifiers in 
the case of AdaBoost ensemble models. The ROC 
and PR curves of the three approaches are shown in 
the Fig. 4, we can see that the AdaBoost ensemble 

algorithm based on the DT classifier can achieve the 
best performance. 

3.4 New Predictions 

Here we used the Comparative Toxicogenomics 
Database (CTD) (Davis et al., 2015) as reference to 
validate the predicted interactions. The CTD 
database integrates chemical, gene, disease and their 
interactions from curated literatures. There are 502 
new predicted interactions and 241 associations have 
been proved existence by searching the CTD 
database. For instance, the interaction between the 
drug ‘Theophylline’ and the pathway ‘Neuroactive 
ligand-receptor interaction’ can be found in both 
KEGG database and CTD database. Some predicted 
samples that have been confirmed in CTD database 
are listed in Table 3. 

In addition, we focused on the pathway: 
Kegg05223 and associated predicted drugs. We 
found there are 15 predicted drugs related with the 
pathway ‘Non-small cell lung cancer’. Meanwhile, 
we confirmed that eleven drugs have associations 
with the pathway in CTD database. Among the other 
four drugs, we cannot find the interactions between 
the drug and the pathway ‘Non-small cell lung 
cancer’, but from the aspect of disease we find that 
the three drug ‘Aminoglutethimide’, ‘Sunitinib 
malate’ and ‘sunitinib’ have been tested in clinical 
trials for lung cancer in the literatures (Xiao et al., 
2010; Chen et al., 2011; Shin et al., 2013; Xue et al., 
2014), which have been laterally validated that the 
drugs have associations with this pathway. 

 
 
 
 
 

 

Figure 2: The comparison between the integrated features and each single feature. 
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Figure 3: The comparison between selected features and original features. 

Table 2: Performance comparisons of different learning methods. 

Method AUC AUPR Recall Precision ACC F 

SVM 0.827 0.770 0.827 0.827 0.653 0.827 

AdaBoost SVM 0.922 0.925 0.834 0.835 0.669 0.834 

Bagging SVM 0.856 0.811 0.826 0.826 0.652 0.826 

RS SVM 0.859 0.821 0.804 0.804 0.608 0.804 

NB 0.772 0.732 0.715 0.715 0.429 0.715 

AdaBoost NB 0.851 0.845 0.779 0.779 0.558 0.778 

Bagging NB 0.813 0.792 0.725 0.726 0.451 0.725 

RS NB 0.804 0.790 0.708 0.709 0.418 0.708 

DT 0.891 0.857 0.882 0.883 0.765 0.882 

AdaBoost DT 0.975 0.976 0.925 0.925 0.850 0.925 

Bagging DT 0.965 0.966 0.901 0.902 0.803 0.900 

RS DT 0.974 0.972 0.916 0.916 0.833 0.916 

 

 

Figure 4: The evaluation of the four methods: DT, AdaBoost DT, Bagging DT and Random SubSpace DT. 
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Table 3: The top 20 confirmed drug-pathway interactions. 

DrugID (Kegg) Drug Name Pathway Name Validated Database

D00371 Theophylline Neuroactive ligand-receptor interaction Kegg; CTD 

D04197 Floxuridine Natural killer cell mediated cytotoxicity CTD 

D04023 Erlotinib hydrochloride Chronic myeloid leukemia CTD 

D03881 Dobutamine tartrate Vascular smooth muscle contraction CTD 

D03879 Dobutamine Vascular smooth muscle contraction CTD 

D00371 Theophylline Vascular smooth muscle contraction Kegg; CTD 

D00632 Dobutamine hydrochloride Vascular smooth muscle contraction CTD 

D08111 Lercanidipine Vascular smooth muscle contraction Kegg; CTD 

D01849 Lercanidipine hydrochloride Vascular smooth muscle contraction Kegg; CTD 

D00126 Ibuprofen Insulin signaling pathway CTD 

D01366 Bezafibrate Insulin signaling pathway CTD 

D00341 Hydroxycarbamide Natural killer cell mediated cytotoxicity CTD 

D00330 Flurbiprofen Insulin signaling pathway CTD 

D00565 Fenofibrate Insulin signaling pathway CTD 

D00586 Flutamide Non-small cell lung cancer CTD 

D04023 Erlotinib hydrochloride Pancreatic cancer CTD 

D00562 Propylthiouracil Natural killer cell mediated cytotoxicity CTD 

D02368 Gemcitabine Cytokine-cytokine receptor interaction CTD 

D01441 Imatinib mesilate Non-small cell lung cancer CTD 

D01155 Gemcitabine hydrochloride Jak-STAT signaling pathway CTD 

 
4 CONCLUSIONS 

In this article, we evaluated the ensemble 
algorithms: AdaBoost, Bagging and Random 
SubSpace, for predicting drug-pathway interactions 
based on three base classifiers: SVM, NB and DT. 
Our results show that ensemble methods have the 
advantage over the individual classifier on drug-
pathway interactions prediction. The merit of this 
study lied in selecting the effective features obtained 
from drug chemical structure information, drug 
mode of actions and pathway-related gene 
information. Some validated results to some extent 
demonstrated the reliability of the models. 

Although our method has utilized different types 
of drug-based and pathway-based information, more 
useful drug-pathway information can be further 
mined. Therefore, our future study will focus on 
fusing more biological prior information to improve 
the prediction reliability. 
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