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Abstract: We present a novel stereo block-matching algorithm which uses adaptive windows. The shape of the window
is selected to minimize the matching cost. Such a window might be the less distorted by the disparity function
and thus the optimal one for matching. Moreover, we introduce a coarse-to-fine strategy to limit the number
of ambiguous matches and reduce the computational cost. The proposed approach performs as state of the art
local matching methods.

1 INTRODUCTION

The goal of stereovision is to estimate the depth of
the scene from at least two images taken from dif-
ferent viewpoints. The depth estimation is equivalent
to computing the apparent motion of corresponding
points in the two images. For an epipolar rectified im-
age pair, all pixels have horizontal motion (which is
called disparity) and the problem is then reduced into
a 1D correspondence problem.

Over last years, several approaches have been pro-
posed to solve the stereo matching problem. The
strategies can be divided into local and global meth-
ods (Scharstein and Szeliski, 2002). Local methods
compute the disparity d of a point (x,y) by means of
a block-matching (also called area-based) approach in
which a small window or patch around (x,y) in the left
image is compared with windows in the same epipolar
line in the right image. The comparison is done by as-
signing a matching cost c to each candidate window
in the second image. The global methods overcome
the main limitation of block based methods, that is,
the non presence of enough distinctive information in
the block. For global methods, the disparity estima-
tion is formulated by means of an optimization prob-
lem where the solution is constrained to satisfy some
smoothness assumption. These methods, being very
similar to optical flow methods, mainly differ in the
energy minimization method being used, belief prop-
agation (Sun et al., 2003), graph cuts (Kolmogorov
and Zabih, 2001), etc. Global methods depend on ad-
ditional parameters difficult to fix in general, its value
being different for each stereo pair.

In order to reliably match a block, the depth

should vary as less as possible inside the block. Oth-
erwise, the block might be distorted by the effect of
the disparity function and its retrieval in the second
image not be an easy task. Block matching methods
tend to identify depth discontinuities with image color
ones, and adapt the shape of the window to the color
of the image (Patricio et al., 2004; Yoon and Kweon,
2006; Wang et al., 2006; Rhemann et al., 2011). This
solution might be effective for scenes with uniform
color objects being at different depth planes, however
this is not the case for a general scenario with textured
objects and slanted surfaces.

We propose to adapt the shape of the window to
the unknown disparity function instead of the image
color. Windows sharing the same depth for all pixels
will be less distorted by the application of the dis-
parity and therefore will be matched with minimal
cost. Similarly, the authors in (Buades and Facciolo,
2015; Hirschmüller et al., 2002) proposed a similar
approach but limiting the choice of the matching win-
dow to belong to a small pre existing set, containing
mainly directional and corner windows. As we will
see, the choice of a correct window is not straighfor-
ward and some regularity on the shape of the window
might be demanded.

The proposed approach is able to deal with depth
discontinuities and slanted surfaces. Compared to
state-of-the-art, the proposed approach is able to pre-
cisely identify depth discontinuities avoiding the well
known fattening problem (Blanchet et al., 2011). The
algorithm is embedded into a coarse-to-fine strategy
in which the disparity computed at a coarser scale
is used to restrict the search disparity range at finer
scales reducing both the match ambiguity and com-
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putational time.
This paper is organized as follows. In Section 2

we present the state-of-the-art of local methods for
disparity estimation. In Section 3 it is explained
the new block-matching algorithm with adaptive win-
dows. Finally, Section 4 shows the performance of
the proposed method by means of a comparison with
state-of-the-art approaches.

2 STATE OF THE ART

Local methods mainly differ in the choice of the
matching cost and the size and shape of the match-
ing window. The most common costs are the sum
of squared differences, the normalized cross cor-
relation (Hannah, 1974), the summed normalized
cross correlation (Einecke and Eggert, 2010), the mu-
tual information (Viola and Wells III, 1997) and the
census transform (Zabih and Woodfill, 1994), see
(Hirschmüller and Scharstein, 2009) for a review.
While the choice of a different cost might be impor-
tant in order to be robust to local differences in color,
noise, shadows or transparencies, the shape and size
of the window turn to be the most important in order
to overcome the effect of disparity in the image.

Block-matching algorithms typically assume that
the depth is the same for all pixels inside the matching
window. This assumption may not hold for slanted
surfaces or near depth discontinuities unless the shape
of the window is locally adapted. Kanade et al.
(Kanade and Okutomi, 1994) were the first to address
this problem. The authors proposed the use of rectan-
gular adaptive windows whose shape and size is se-
lected locally at each pixel by looking the differences
between gray level values. Approaches with fixed
size and squared windows were presented in (Fusiello
et al., 1997; Kang et al., 2001) where it is performed
the correlation with different windows containing the
reference pixel and then it is taken the disparity giv-
ing the smallest cost, arguing that a window yielding
the smallest error is more likely to correspond to a
constant depth region. There are also methods that
base the shape and size of the correlation window on
an image segmentation (Gerrits and Bekaert, 2006;
Wang and Zheng, 2008). Other approaches, instead of
adapting the window make use of varying weights for
the pixels inside the fixed window (Yoon and Kweon,
2006; Wang et al., 2006; Rhemann et al., 2011). See
(Hosni et al., 2013) for an extensive review. All these
methods identify differences in pixels’ gray level with
differences in pixels’ depth, which is not always the
case.

All the methods mentioned so far are expected to

cope with depth discontinuities but not with slanted
surfaces. However, proposals have arisen with the
aim of handling the presence of slanted surfaces in
the scene. There are approaches trying to estimate
depth by means of planes at each region (Lu et al.,
2013; Bleyer et al., 2011). Other approaches cope
with slanted surfaces by selecting the most appropri-
ate window at each pixel depending on cost, using a
pre existent set of windows. In (Hirschmüller et al.,
2002) the shape of the window was adapted by divid-
ing the correlation window into sub-windows and se-
lecting the ones yielding the minimum matching cost.
The recent method presented in (Buades and Facci-
olo, 2015) consists of a parameter-less approach in
which multiple elongated windows with different ori-
entations are tested in the matching process. At each
point, the one providing minimum matching cost is
selected. The authors also introduce a set of validation
criteria in order to provide a mask of invalid or am-
biguous matches. Furthermore, they use a coarse-to-
fine strategy in which disparity computed at a coarser
scale is used to restrict the search disparity range at
the current scale.

One of the main problems of local methods is the
errors that can be produced in non-textured regions.
The lack of information in this patches lead to ambi-
guities in the matching process. The authors in (Man-
duchi and Tomasi, 1999) target this problem by com-
puting the distinctiveness of a pixel as the dissimi-
larity in color between the pixel and the most similar
other point in the search window. The recent approach
proposed in (Sabater et al., 2012) measures reliabil-
ity from the number of false alarms to each match
and matches whose patches are slightly different are
discarded. Also, they use the distinctiveness measure
presented in (Manduchi and Tomasi, 1999).

Finally, the sampling of the disparity space is also
an important question since it can produce incorrect
matches. In (Birchfield and Tomasi, 1998) the authors
proposed a matching cost based on the SSD that is in-
sensitive to the sampling of the correlation window.
However, in (Buades and Facciolo, 2015) the authors
show that similar results can be obtained with a sub-
pixel SSD cost.

3 BLOCK-MATCHING WITH
ADAPTIVE WINDOWS

Block-matching methods assume that disparity does
not change drastically inside the window. A proper
choice of the window shape is important in order to
satisfy such a condition. This optimum shape has to
be adapted locally for each pixel.
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The optimal window cannot be known a pri-
ori, however the analytical study of correlation in
(Blanchet et al., 2011) permits to characterize the
pixel minimizing such a cost for a fixed window. Fol-
lowing (Blanchet et al., 2011), the optimum match
writes as a weighted average of disparities of pixels in
the window, being this average weighted by the gra-
dient of the image. Such an average would coincide
with the true disparity when the disparity is constant
and the cost be minimal.

We propose to select at each pixel a matching win-
dow sharing the same depth, indirectly by choosing
the one matching with minimal cost. This window
has to be adapted independently for each pixel and
for each possible disparity, then the disparity and win-
dow with minimal cost have to be chosen. In order
to balance the shape of the window around the ref-
erence pixel we penalize the distance of the barycen-
ter of the window to the reference pixel. We do not
penalize the distance of the chosen pixels to the ref-
erence pixel since we allow for elongated windows.
Although marginally, in some cases it may be neces-
sary to take into account the intensity or color of the
pixels belonging to the selected window. Thereby, we
select only pixels having a similar color to the refer-
ence pixel.

The selection of the adapted window Wp for a cer-
tain pixel p and disparity d writes as a minimization

C (p,d) = min
Wp

∑
pi∈Wp

c(pi,d)+β‖p−bWp‖2

+λ ∑
pi∈Wp

(I1(p)− I1(pi))
2 , (1)

being c(pi,d) the cost of assigning disparity d to the
pixel pi, bWp the barycenter of the chosen window
and λ,β > 0.

Then, for each pixel p we compute the disparity
D(p) as

D(p) = argmin
d

C (p,d). (2)

3.1 Adaptive Window Selection

Since not all possible window configurations can be
tested, we perform a greedy algorithm making use
of a cost volume structure, similarly to (Rhemann
et al., 2011). First, in order to be robust we use
3× 3 squared windows for building the cost volume
c(p,d) as the three dimensional array which stores
the zero-mean sum of squared differences (ZSSD)
cost (Hirschmüller and Scharstein, 2009) for choos-
ing disparity d at pixel p = (x,y). The ZSSD cost re-
moves the average intensity of the window rendering

the comparison independent of the mean intensity:

ZSSD(p,q) :=
1
|Br| ∑

t∈Br

∣∣∣I1(p+ t)− I2(q+ t)− I1|p+Br + I2|q+Br

∣∣∣
2
,

(3)

where q = p+(d,0)>, Br denotes the matching win-
dow and I1|p+Br is the mean of pixel intensities in im-
age I1 inside the window with reference pixel p.

Then, we select at each pixel p the window Wp that
minimizes (1). This window is composed by neigh-
boring 3× 3 patches of p. For a given n, we select
the n− 1 neighboring patches that minimize such an
energy. These patches are selected with an iterative
process, selecting at each step the patch yielding min-
inum cost and being connected to the already selected
patches. That is, by construction the window is con-
nected. Moreover, in order to control the elongation
of the optimal window, we introduce a parameter M
to limit the distance between the reference pixel p and
the center pixel of the joined patch.

Let b1,...,k be the barycenter of points p,p1, . . . ,pk.
At iteration k we add the neighboring patch centered
at pk such that

pk = argmin
pk′

pk′ ∈N1,...,k−1
‖p−pk′ ‖≤M

c(pk′ ,d)+β‖p−b1,...,k′‖2

+λ
(

I1|p+B3 − I1|pk′+B3

)2
(4)

where b1,...,k′ is the updated barycenter taking into ac-
count pk′ and N1,...,k−1 the set of connected neighbor-
ing patches to the already selected ones. We repeat
this process until we add n− 1 patches centered at
p1, . . . ,pn−1.

The difference between the average color of the
3×3 candidate patches and the reference one is used
to penalize windows across image edges. The use of
the average value is more robust than comparing only
the value of pixel p.

Now, the cost of assigning disparity d to the pixel
p with the selected window is given by

A({p,p1, . . . ,pn−1},d) =
n−1

∑
i=0

c(pi,d)

+β‖p−b1,...,n−1‖2 +λ
n−1

∑
i=1

(
I1|p+B3 − I1|pi+B3

)2
,

(5)

being b1,...,n−1 the barycenter of the chosen window.
For notation purposes, notice that we have denoted p
as p0 to introduce it into the sum. The shape resulting
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Aloe Wood Fountain

Book Village1 Village2
Figure 1: Images used in the experiments section to evaluate the performance of our method. We show the left image of the
stereo pair and the ground truth disparity with the true occlusion mask overimposed.

from accumulating the smallest matching costs coin-
cides with the one having the disparity function most
uniform.

The volume of costs A({p,p1, . . . ,pn−1},d) turns
to be an approximation of the cost C (p,d). Then, for
each pixel p we finally compute the disparity D(p) as

D(p) = argmin
d

A({p,p1, . . . ,pn−1},d). (6)

3.2 Multi-scale Approach

As in (Buades and Facciolo, 2015), our approach is
embedded into a coarse-to-fine strategy. This permits
to reduce computational cost and match ambiguity.
A large search range may lead to mismatches as in-
creases the possibility of matching with a repetitive
pattern. For this reason, at each scale we adapt the
search range locally at each pixel by looking at the
minimum and maximum disparity values of a neigh-
borhood obtained at the previous coarser scale. With
this step we compute the images Dmin and Dmax
which determine respectively the minimum and maxi-
mum values of the disparity range at each pixel. Each
level of the pyramid is obtained by a convolution with
a Gaussian kernel with standard deviation σ= 1.2 and
subsampling by a factor of two from the initial stereo
pair. The disparity computed at coarser scales is up-
sampled by bicubic spline interpolation.

3.3 Detection of Invalid Matches

In order to reject possible incorrect matches we use
the common left-right consistency check. Let DL and
DR be the left-based and right-based disparities. This
is,

I1(p) = I2(p+DL(p)) and I1(p+DR(p)) = I2(p).
(7)

Then, a match is rejected if DR does not coincide with
the inverse mapping of DL, i. e. when

|DR(p+DL(p))+DL(p)|> ε (8)
with ε > 0. In practice it is set to ε = 1.

4 EXPERIMENTS

For evaluating the proposed multi-scale adaptive win-
dow (MSAW) approach we use two databases: the
set of images presented in Figure 1 and the new Mid-
dlebury stereo benchmark version 3 (Scharstein and
Hirschmüller, 2014).

In this section we compare the proposed algorithm
with several state-of-the-art methods. The Adaptive
Support Weights (ASW) approach (Yoon and Kweon,
2006) uses bilateral weights with the aim of assigning
large weights to close pixels having a similar color to
the reference one, expecting to use pixels only from
the same physical object. A window size of 35× 35
is used. This method provides only pixel precision.

The Cost-Volume Filtering (CVF) method (Rhe-
mann et al., 2011) builds a volume c′(p,d) measuring
the cost for selecting the disparity d at pixel p. Then,
the guided filter (He et al., 2010) is used to filter the
volume using the left image as a guidance. The patch
size used in this approach is 19× 19 and the method
provides pixel precision.

Finally, the Multi-Scale and Multi-Window
(MSMW) method (Buades and Facciolo, 2015) con-
sists of a multi-scale approach which uses multiple
elongated windows with different orientations in or-
der to cope with slanted surfaces. We run the algo-
rithm with three scales, a window size of 5× 5 and
1/4 of disparity precision. For this algorithm we
only apply the matching strategy and not the poste-
rior validation criteria defined in the method. We do
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Simple ASW CVF MSMW MSAW
Figure 2: Disparity estimation and error, both with ground truth mask and left-right mask overimposed, for Aloe, Wood,
Fountain and Village2 images of the proposed method (MSAW) compared with a classic block matching with 5×5 squared
windows (Simple), Adaptive Support Weights (ASW) (Yoon and Kweon, 2006), Cost-Volume Filtering (CVF) (Rhemann
et al., 2011) and Multi-Scale and Multi-Window algorithm (MSMW) (Buades and Facciolo, 2015). Image error between
computed disparities and ground truth is displayed in range [0, 2.5].

this in order to fairly compare all algorithms, since
all block-matching algorithms could benefit of such
criteria. For completeness in the comparison, we in-
clude a matching algorithm with a fixed squared 5×5
window with 1/4 of precision. We will refer to this
algorithm as Simple.

Regarding our method, we use a fixed set of pa-
rameters in all the experiments. We take n = 25 as
the number of patches to be joined. The maximum
allowed distance when joining a new pixel is M = 4,
the penalization parameters are λ = 0.05 and β = 0.5,

we use 1/4 of precision in the disparity map and
we perform a total of three scales in the pyramidal
scheme. For all methods we use only the left-right
consistency check as validation. Figure 1 displays the
image pairs used for testing in this section. For each
pair we dispose of a different initial disparity range:
[−150.50,−21.50] for the Aloe pair, [−108,−28] for
Wood, [−84,200] for Fountain, [−60,−21] for Book,
[−22,23] for Village1 and the range [−9,10] for the
Village2 stereo pair.

Figure 2 visually compares the described methods
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ASW CVF MSAW
Figure 3: Comparison of the proposed method (MSAW) with Adaptive Support Weights (ASW) (Yoon and Kweon, 2006)
and Cost-Volume Filtering (CVF) (Rhemann et al., 2011). It is shown the error with the ground truth mask and left-right mask
overimposed for Fountain and Village2 pairs, displayed in range [0, 2.5].

Table 1: Comparison of our method (MSAW) with a classic block matching with 5×5 squared windows (Simple), Adaptive
Support Weights (ASW) (Yoon and Kweon, 2006), Cost-Volume Filtering (CVF) (Rhemann et al., 2011) and the Multi-Scale
and Multi-Window algorithm (MSMW) (Buades and Facciolo, 2015). We show the density (D), the percentage of pixels with
an error above one pixel (E1) and above three pixels (E3), being all values computed for all the pixels.

Simple ASW CVF MSMW
image D E1 E3 D E1 E3 D E1 E3 D E1 E3
Aloe 82.16 4.08 2.26 86.33 3.59 1.85 84.34 3.08 1.61 83.33 2.98 1.70
Wood 79.41 4.34 1.98 84.74 3.63 1.10 82.91 2.71 0.87 83.15 2.63 0.90

Fountain 81.99 12.26 4.66 87.14 13.03 4.9 85.19 10.49 3.21 84.98 10.26 3.24
Book 87.03 6.02 1.79 89.38 3.59 0.15 87.57 3.41 0.14 87.60 5.13 1.25

Village1 92.71 2.62 1.46 94.36 2.92 0.72 93.81 2.22 0.56 93.01 2.07 1.10
Village2 97.16 0.61 0.42 97.57 0.65 0.61 97.48 0.61 0.61 97.31 0.47 0.35
average 86.74 4.99 2.10 89.92 4.57 1.56 88.55 3.75 1.17 88.23 3.92 1.42

MSAW
image D E1 E3
Aloe 84.49 2.58 1.29
Wood 84.29 2.17 0.44

Fountain 85.25 9.73 2.52
Book 84.79 4.85 0.88

Village1 93.65 1.24 0.53
Village2 97.82 0.26 0.24
average 88.38 3.47 0.98

for images Aloe, Wood, Fountain and Village2. In
the figure we show the estimated disparity map and
its error with the ground truth displayed in the range
[0,2.5]. We over-impose the true occlusion mask

and the one resulting from the left-right consistency
check. Near the contour of the leaves of the Aloe and
in the contours of the buildings in Village2 we can
appreciate how our method is the one that yields low-
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Table 2: Evaluation on Middlebury online benchmark version 3. Comparison between our method and SGM (Hirschmüller,
2008), SNCC (Einecke and Eggert, 2010), IDR (Kowalczuk et al., 2013), Cens5 (Hirschmüller et al., 2002), TMAP (Psota
et al., 2015), CVF (Rhemann et al., 2011), ASW (Yoon and Kweon, 2006) and MSMW (Buades and Facciolo, 2015). The
numbers represent the proposed weighted average for the training dataset over non occluded pixels.

method resolution density (%) bad 0.5 (%) bad 1.0 (%) bad 2.0 (%)
SGM H 84.04 38.5 17.7 7.66
SNCC H 71.29 29.8 13.4 6.14
IDR H 76.10 31.9 12.8 4.67

Cens5 H 76.38 35.3 17.5 8.37
TMAP H 69.80 37.3 15.4 5.97
CVF H 62.62 34.13 17.13 12.03
ASW H 66.05 42.19 26.78 21.73

MSMW H 66.90 28.37 14.52 9.08
MSAW Q 80.50 19.48 11.10 7.12

est errors near depth discontinuities. Larger errors of
AWS and CVF are due to the different sampling of
the disparity space. In general AWS and CVF behave
similar, in Figure 3 we can see the comparison of our
method and these two methods with cropped regions
of Fountain and Village2 images. The regions of large
error that we see in both images for AWS and CVF
disappear in our result. At the top-left part of the Vil-
lage2 image there is a slanted roof in which disparity
is well estimated by our method while the two others
fail.

In Table 1 we show a quantitative comparison with
the mentioned methods. In both tables we show the
density (D) of each method obtained from the left-
right consistency check, the percentage of pixels with
an error above one pixel (E1) and with an error above
three pixels (E3). We use all the pixels (occluded and
non occluded) in the evaluation. The proposed algo-
rithm is the one achieving in general lower errors, ob-
taining the lowest average in both cases, all and non
occluded pixels.

Finally, we apply our method MSAW to
the new Middlebudy benchmark version 3
(http://vision.middlebury.edu/stereo/eval3/). In
Table 2 we show the results provided by other pub-
lished approaches that are in the highest positions of
the ranking (September 2016): SGM (Hirschmüller,
2008), SNCC (Einecke and Eggert, 2010), IDR
(Kowalczuk et al., 2013), Cens5 (Hirschmüller et al.,
2002) and TMAP (Psota et al., 2015). Additionally,
we also include the results given by the methods used
in the previous comparison: CVF (Rhemann et al.,
2011), AWS (Yoon and Kweon, 2006) and MSMW
(Buades and Facciolo, 2015). Our method gives
a considerable number of estimated pixels while
yielding low errors.

5 CONCLUSIONS

We proposed a new local matching algorithm to com-
pute the disparity from a stereo rectified image pair.
Our method adapts for each pixel the shape of the
window in order to select the one with minimal
matching cost. This window being the less distorted
by the disparity coincides with the one for which the
depth varies the least and then the optimal one for lo-
cal matching.

The proposed algorithm makes use of a cost vol-
ume for selecting the minimal cost window. Addi-
tional criteria is used to balance the shape of the win-
dow and avoid windows containing more than one
physical object. Moreover, we use a pyramidal strat-
egy in which the search disparity range is restricted
at each scale reducing the match ambiguity and the
computational time.

The experiments show how the proposed method
outperforms state-of-the-art local matching methods
being able to deal with depth discontinuities and
slanted surfaces.
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