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Abstract: This study focuses on the resting state network analysis of the brain, as well as how these networks change 
both in topology and location throughout life. The magnetoencephalogram (MEG) background activity from 
220 healthy volunteers (age 7-84 years), was analysed combining complex network analysis principles of 
graph theory with both linear and non-linear methods to evaluate the changes in the brain. Granger Causality 
(GC) (linear method) and Phase Slope Index (PSI) (non-linear method) were used to observe the connectivity 
in the brain during rest, and as a function of age by analysing the degree, clustering coefficient, efficiency, 
betweenness, modularity and maximised modularity of the observed complex brain networks. Our results 
showed that GC showed little linear causal activity in the brain at rest, with small world topology, while PSI 
showed little information flow in the brain, with random network topology. However, both analyses produced 
complementary results pertaining to the resting state of the brain. 

1 INTRODUCTION 

The brain is the main hub of all intellectual activity, 
the coordination centre of all levels of conscious and 
subconscious movement as well as the interpretation 
centre of all activity (Fornito, et al., 2015; Rescorla, 
2015). It is made up of soft nervous tissue and is one 
of the largest organs in the body (Orrison, 2008). 
Similarly, like any other organ in the body, the brain 
is subject to changes with age. Thus, many studies 
have been conducted in a bid to understand how the 
structure and function of the brain are affected by the 
ageing process throughout life (Lebel, et al., 2007; 
Schafer, et al., 2014). 

Complex network analysis, a subset of methods 
from graph theory, has been successfully used to 
analyse multidimensional, multimodal systems 
containing various levels of directed, undirected, 
symmetric, and unsymmetrical connections 
(Chowdhury & Stauffer, 2000; Hsu, et al., 2003; 
Sporns, et al., 2004; Dehemer, 2010). At its core, a 
graph is defined as a mathematical representation of 

a network made up of nodes and edges. Graph theory 
principles, such as degree, clustering coefficient, 
betweenness centrality, efficiency, modularity, and 
maximised modularity, can be used to estimate 
robustly the structure of observed networks in the 
brain (Dehemer, 2010). Centrality measures such as 
degree and betweenness provide a description of local 
centrality and connectivity, segregation measures 
such as clustering coefficient provide a description of 
the subdivision within in a network, and modularity 
and maximised modularity provide a description of 
the overall structure of the detected graph network. 
Thus, centrality measures provide the intimate details 
of the structures alluded to by the topology analyses, 
and so enable robust descriptions of the observed 
network topologies (Bullmore & Sporns, 2009). 

When applied to neuroscience, these graphs can 
be used to define robust estimates of structural, 
functional and anatomic networks present in the brain 
(Papo, et al., 2013; Fornito, et al., 2015). Many 
studies have been conducted to determine the changes 
in the brain at rest, task or due to pathology using 
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functional magnetic resonance imaging (fMRI), 
magnetoencephalography (MEG), 
electroencephalography (EEG), and 
electrocorticography (ECoG) to determine the 
changes in the brain either at rest, task or due to 
pathology (Ogawa, et al., 1990; Niedermeyer & 
Lopes da Silva, 2005; Jafarpour, et al., 2013). 

A study performed by Goldenberg and Galvan 
(2015) using fMRI and dynamic causal modelling 
(DCM) revealed that in resting state, brain network 
topologies resembled small world architecture when 
studied using graphs theory. However, when the brain 
was studied using Pearson’s Correlation, Cao et al. 
(2013) observed that the brain networks present in the 
brain throughout life, move from being local to 
distributed and revert back to having local functional 
structure. Furthermore studies performed by 
Huttenlocher, et al. (1982), Good, et al. (2001), Salat, 
et al. (2005), and Giedd and Rapoport (2010) show 
that changes in the brain networks were attributed to 
the maturation of nerve fibres, changes in myelination 
in the brain as it matures, synaptic pruning as well as 
changes in the dendrite structures throughout life.  

Over the years, there has been a notable increase 
in the use of magnetoencephalograms (MEGs) to 
study the background activity of the brain. 
Magnetoencephalography is a non-invasive analysis 
technique used to record, reference free, the magnetic 
fields generated by electrical activity in the human 
brain  (Gomez, et al., 2008; Escudero, et al., 2009; 
Jafarpour, et al., 2013). Due to the weak magnetic 
fields generated by the brain, large arrays of 
superconducting quantum interface devices 
(SQUIDs) immersed in liquid helium at 4.2K and 
below are used to record the brains activity in a 
magnetically shielded room to reduce contamination 
by environmental noise  (Ahonen, et al., 1993; Stam, 
2005; Carlson, et al., 2007). 

With the advances in technology and a higher life 
expectancy, it becomes necessary to be able to map 
and define the changes that networks in the brain 
undergo throughout life. In so doing, this knowledge 
of healthy ageing could help in the early diagnosis of 
pathologies such as dementia and epilepsy as they can 
assist with the identification of activity lying outside 
the normal ranges defined by the healthy ageing brain 
networks. 

The use of linear vs. non-linear analysis to 
accurately describe brain dynamics, has been under 
debate, with researchers using either branch of 
analysis to validate their preferences (Stam, 2005). 
Therefore, in this study, the use of both linear and 
non-linear methods to analyse the brain networks 
recorded using MEG was performed so as to 

determine if non-linear analysis is superior to linear 
analysis or if these analyses are complementary 
(Nolte, et al., 2010; Haufe, et al., 2012). 

In this study, we examined MEG background 
activity in healthy subjects using GC and PSI. The 
main aim of this work was to test the hypothesis that 
linear analysis tools reveal less information when 
compared to non-linear analysis tools. The results 
from GC and PSI were then used in combination with 
network analysis tools to determine if the topology of 
the brain networks changed with age. 

2 MATERIALS AND METHODS 

2.1 Materials 

MEGs were recorded in a shielded room using a 
whole head magnetometer with 148 channels 
(MAGNES 2500WH, 4D Neuroimaging) at ‘Centro 
de Magnetoencefalografía Dr. Pérez-Modrego’ 
(Madrid, Spain). The subjects lay comfortably in an 
awake relaxed state with eyes closed while 5 minutes 
of recording was acquired. The MEGs were recorded 
at sampling frequency of 678.17Hz using a hardware 
bandpass filter from 0.1 to 200Hz after which down 
sampling using Nyquist criterion followed to obtain a 
sampling rate of 169.55Hz. The MEG data were 
acquired from 220 subjects aged between 7 and 84 
and were grouped according to age. Table 1 
summarises the relevant information about the 
different age groups.  

Table 1: Grouping of subjects according to age. 

Group Age Subjects Male Female 
1 7-10 12 7 5 
2 11-20 27 11 16 
3 21-30 39 15 24 
4 31-40 30 19 11 
5 41-50 15 9 6 
6 51-60 22 12 10 
7 61-70 44 12 32 
8 71-80 27 12 15 
9 81-84 4 1 3 

2.2 Methods 

2.2.1 Granger Causality 

Granger causality (GC) is a linear asymmetric method 
used to predict causality between two simultaneously 
occurring signals. The results from the use of GC 
have been successfully used to characterise functional 
circuits in the brain by identifying regional 
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activations (Seth, et al., 2015). For instance, the study 
of lexical influences on speech perception performed 
by Gow et al. (2008) used GC to reveal the functional 
architecture of cognition. Furthermore the use of GC 
to analyse monkey brain dynamics has revealed 
causal relationships in the alpha, beta and gamma 
ranges (Friston, et al., 2013). 

Though GC is a powerful analysis tool lying 
between fully model-free and light model dependent 
methods, it only models linear interactions (Bressler 
& Richter, 2014). Therefore, though the use of a 
higher model order can be used to try analyse non-
linear systems, more often than not this leads to 
confound results (Gao, et al., 2015; Winkler, et al., 
2015). 

GC can be determined using the following 
equations where the univariate autoregressive model 
is used to calculate the regression of 	ሺݐሻ	 which is 
added to the past values of ݍ	ሺݐሻ. The model 
parameters	ܽ	are estimated using least squares 
method while the order is estimated using the Akaike 
and Bayesian Information Criterion (Akaike, 1974; 
Schwarz, 1978): 

→ܥܩ ൌ 	݊ܫ ቆ
ܸ|̅

ܸ|̅,ത
ቇ (1)

ܸ|̅,ത ൌ ݎܽݒ ൫ݑ൯ (2)

ܸ|̅,ത ൌ ݎܽݒ ൫ݑ൯ (3)

ܸ|̅ୀ௩൫௨൯|ഥ ൌ ሻ (4)ݑሺݎܽݒ

where var (.) is the variance over time and ̅|,  ത isݍ
the prediction of 	ሺݐሻ	by the past samples of values 
of 	ሺݐሻ	and ݍ	ሺݐሻ	and the residuals which depend on 
the past values of both signals are: 
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The results of this analysis range from 0	 
→ܩ	 ൏∞, with the lower limit implying that the 
past of p (t) does not improve the prediction of q (t). 
However, the upper limit implies that the past of p (t) 
improves the prediction of q (t) therefore implying 
that q is causal to p (Niso, et al., 2013). 

2.2.2 Phase Slope Index 

Phase slope index (PSI) is a non-linear asymmetric 
method that makes use of the complex coherency 
function to detect synchronous statistically 

significant time delays between two signals (Niso, et 
al., 2013). By calculating a combination of both 
instantaneous and delayed causal relationships 
between two signals PSI can be used to determine the 
flow direction of information and thus can be used to 
determine the level of synchronisation in a network.  
The use of PSI has increased over the years. Nolte et 
al. (2010) applied PSI to EEG data and found that 
there was a net flow of information between default 
regions of the brain when the eyes are open. 
Furthermore, Rana et al. (2012) detected an increase 
in information flow in the brain at the onset of 
epileptic seizures using PSI. PSI can be determined 
using: 

ܫܵܲ ൌ Ψ௫௬ ൌ
Ψ௫௬෪

ሺΨ௫௬෪݀ݐݏ ሻ
 (6)

Ψ௫௬෪ ൌ Աቌܭ௫௬∗ ሺ݂ሻܭ௫௬ሺ݂  ሻ݂ߜ
ఢி

ቍ (7)

Where ܭ௫௬ሺ݂ሻ is the complex coherence, ݂ߜ is the 
frequency resolution, Աሺ. ሻ is the imaginary part and 
 is the set of frequencies over which the slope is ܨ
summed (Niso, et al., 2013). 

In this study, the entire 5 minute length of 
recording was used un-epoched so as to extract as 
much information as possible. The data was filtered 
using an FIR bandpass filter with cut-off frequencies 
at 1.5 Hz and 40 Hz. Additionally, the HERMES 
toolbox was used to do the GC and PSI calculations 
on the data set (Niso, et al., 2013). Graph theory 
complex network analysis was then used to determine 
the connectivity of the brain networks. By evaluating 
the node degree, betweenness centrality, local (nodal) 
and global efficiencies, modularity and maximised 
modularity, the structure of the brain networks was 
inferred.  

3 RESULTS 

Before processing the MEG signals with GC and PSI. 
They were tested for stationarity using the augmented 
Dickey–Fuller test (ADF). To avoid the potential loss 
of information associated with the selection of a 
threshold that can be used to binarise the data for 
network analysis, the results presented below for both 
GC and PSI were saved as weighted data in adjacency 
matrices, after which they were combined with 
complex network analysis tools.  

Figures 1 and 2 illustrate the results observed 
using GC and graph theory principles on the MEG 
dataset. Sparsely connected global networks with low 
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nodal degree, low clustering coefficient, and low 
betweenness were observed throughout life. 
Furthermore, low nodal and global network 
efficiencies were observed despite the maximised 
modularity results showing that the module 
topologies reflected ordered structures. Therefore, 
though the structure and number of identified 
modules changes throughout life, it was observed that 
the topology of these structures does not. 

Figures 3 and 4 show a graphical representation 
of the observed results using PSI and graph theory on 
the MEG dataset. Densely connected global networks 
with high nodal degree, low clustering coefficient and 
high betweenness were observed throughout life. 
However, low network efficiency was also observed 
on both local (nodal) and global scales. Furthermore, 
the maximised modularity values for the brain 
networks were all high, i.e. >0.7, therefore implying 
that the structure of the identified modules were 
similar to random networks, a result echoed by the 
modularity analysis. 

4 DISCUSSION 

In this pilot study we explored the ability of GC and 
PSI to identify the structure of brain networks in 
MEG recordings of 220 healthy volunteers. The 
results obtained by applying GC and graph theory 
revealed that there is very little causal activity present 
in the brain during rest throughout life. These results 
complement those obtained by Stam et al. (2016) who 
observed that the brain at rest resembles a system that 
is in phase transition and thus, until an input disrupts 
the rest state, the system will remain in ‘limbo’. 
Therefore, the presence of simple non-causal modules 
in the brain aide in maintaining this rest state to ensure 
that the brain operates optimally upon reception of an 
input. 

It has been argued that PSI, being a non-linear 
analysis tool, reveals more information than a linear 
analysis tool. Nolte et al. (2010) observed in EEGs 
that PSI enabled them to determine robust estimations 
of the net flow of information between regions of the 
brain when eyes are open, while GC was not able to 
reveal this. Complementary to this study, Rana et al. 
(2012) also observed an increase in the information 
flow in the brain before the onset of an epileptic 
seizure using PSI, therefore suggesting that there is a 
net flow of information in the brain during task and 
pathology. Literature has shown that brain networks 
resemble small world network topology, however 
contrary to this, the results from this study have 
revealed that at rest, the brain networks resemble a 

more random topology. Rubinov et al. (2011) and 
Deco et al. (2013) suggested that the meaningful 
relation between structure and function can be 
identified when a system is near a critical state. 
Therefore, if the resting brain, which is assumed to be 
in a metastable state, is analysed using PSI, very little 
synchronisation between MEG channels, 
representing network nodes, can be observed, thus 
resulting in the complex brain network resembling a 
densely connected random network structure. With 
this in mind it is then plausible that in a healthy brain 
at rest, i.e. without mind wandering or daydreaming, 
there is no distinct flow of information between 
network nodes (Bullmore & Sporns, 2009; Rubinov, 
et al., 2011; Deco, et al., 2013). 

The results obtained using GC and PSI, both 
reveal different aspects of the resting state brain 
networks. While GC showed the absence of Granger-
causality between any of the brain regions, PSI 
revealed that there were no regions of the brain that 
exhibited efficient information flow. 

Nevertheless both linear and non-linear 
approaches have shown that the brain has very low 
efficiency at rest and resembles a metastable state 
(Stam, et al., 2016). Evidently, the connectivity of the 
brain networks have shown that both linear and non-
linear analysis tools show complementary 
information i.e. that there is very low causal activity 
in the brain at rest, and that though there are many 
paths for information flow in the brain, there is little 
observable net information flow at rest (Nolte, et al., 
2010; Haufe, et al., 2012). Though PSI and GC 
revealed different network topological structures of 
the resting brain, the low granger-causal information 
present in the brain coupled with the difficulty in 
prediction of the direction of information flow in the 
brain, can be used in combination to give a more 
complete image of the metastable state of the brain at 
rest. Thus, the results from this study show that non-
linear and linear analysis tool work hand-in-hand as 
they give complementary information about brain 
network topology at rest. Finally, this study was also 
observing if there were any changes in the topological 
structures of the resting brain throughout life. The 
results in Figure 1(e) show that the network 
topologies for all groups had maximized 
modularity<0.3, which implies that across all ages 
when analysed using GC the network topologies were 
all of simple network topology. Similarly, the results 
in Figure 2(e) show that the maximized 
modularity>0.7 thus implying random network 
topology for the PSI results across all groups 
(Dehemer, 2010). These results suggest that when 
analysed  using  GC  and PSI there are no differences  
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Figure 1: Averaged results for analysis performed using Granger Causality for (a) nodal degree, (b) clustering coefficient, (c) 
local efficiency, (d) betweenness, (e) maximised modularity and (f) global efficiency, with the error bars representing the 
standard deviation for each group (where the numbers on the x axis represent the subject group number i.e. 1 represents group 
1). 

 

Figure 2: Modularity results obtained after using GC to determine the different clusters detected in the brain resting state 
network, as well as their location. 
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Figure 3: Averaged results for analysis performed using Granger Causality for (a) nodal degree, (b) clustering coefficient, (c) 
local efficiency, (d) betweenness, (e) maximised modularity and (f) global efficiency, with the error bars representing the 
standard deviation for each group (where the numbers on the x axis represent the subject group number i.e. 1 represents group 
1). 

 

Figure 4: Modularity results obtained after using PSI to determine the different clusters detected in the brain resting state 
network, as well as their location. 

in network topology throughout life. 
Some limitations of the study should be 

mentioned. Firstly, the groups did not contain similar 

number of subjects with group 7 having 44 subject 
and group 9 only 4. Thus, the results for the latter 
group may not be conclusive. Furthermore, analysis 
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was done using only two methods, and so more 
methods should be used to explore the MEG 
background activity of the brain. Thus, future lines of 
research will include further signal processing using 
methods such as synchronisation likelihood, transfer 
entropy and mutual information so as to obtain a more 
complete description of the MEG background activity 
with ageing. In addition, statistical analysis will be 
performed to ascertain the significance of the 
obtained results. 

5 CONCLUSIONS 

A study of brain network topology was conducted 
using granger causality and phase slope index, in 
combination with graph theory, on data acquired from 
MEG recordings. The results observed showed that 
both linear and non-linear analysis tools reveal 
different complementary aspects of brain 
connectivity. 
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