
On using Sarkar Metrics to Evaluate the Modularity of Metamodels

Georg Hinkel1 and Misha Strittmatter2

1Software Engineering Division, FZI Research Center of Information Technologies, Karlsruhe, Germany
2Software Design & Quality Group, Karlsruhe Institute of Technology, Karlsruhe, Germany

Keywords: Metamodel, Modularity, Metric.

Abstract: As model-driven engineering (MDE) gets applied for the development of larger systems, the quality assurance
of model-driven artifacts gets more important. Here, metamodels are particularly important as many other
artifacts depend on them. Existing approaches to measure the modularity of metamodels have not been vali-
dated for metamodels thoroughly. In this paper, we evaluate the usage of the metrics suggested by Sarkar et
al. to automatically measure the modularity of metamodels with the goal of automated quality improvements.
For this, we analyze the data from a previous controlled experiment on the perception of metamodel quality
with 24 participants, including both students and academic professionals. From the results, we were able to
statistically disprove even a slight correlation with perceived metamodel quality.

1 INTRODUCTION

Metamodels are a central artifact of model-driven en-
gineering as many other artifacts depend on them. If
a metamodel contains design flaws, then presumably
all other artifacts have to compensate for them. It is
therefore very important to detect such design flaws
as early as possible.

In object-oriented programming, several ap-
proaches exist to detect design flaws and can be cate-
gorized into (anti-)patterns and metrics. Antipatterns
are commonly used, for example as code smells. If
an antipattern can be found in the code, there is a
high defect probability and the smell may be avoid-
able through better design. On the other hand, met-
rics have been established to monitor the complexity
of object-oriented design not captured by smells such
as the depth of inheritance or lines of code.

In prior work (Hinkel et al., 2016b), we have iden-
tified modularity as a quality attribute of metamod-
els that has a significant influence on the perception
of metamodel quality alongside correctness and com-
pleteness. While the latter are hard to measure, met-
rics exist in object-oriented design to measure modu-
larity.

Metamodels essentially describe type systems just
as object-oriented designs do using UML models. In
fact, the differences between usual class diagrams and
formal metamodels lies mostly in the degree of for-
malization and how the resulting models are used.

Whereas UML models of object-oriented design are
often used only for documentation or to generate code
skeletons, metamodels are usually used to generate
a multitude of artifacts such as serialization and ed-
itors. But like class diagrams, metamodels can be
structured in packages, which makes it appealing to
apply the same metrics to measure metamodel modu-
larity as also used for class diagrams.

Metrics make it viable to automate fixing design
flaws through design space exploration of possible
semantics-preserving operations. Such an optimiza-
tion system repeatedly alters the metamodel randomly
in several places and outputs the version that scores
best according to the metrics (or outputs all versions
along the Pareto-front if multiple metrics are used).
For modularity, this is practical as e.g. the module
structure can be easily altered without changing the
metamodels’ semantics. For such an auto-tuner to
produce meaningful results, the underlying metrics
must have a clear and validated correlation to modu-
larity. Otherwise, it is not clear that the outcome of the
auto-tuner is better than the previous one. However,
such a validation of correlations of metrics to quality
attributes is hard as one has to consider consequences
of metamodel design on all dependent artifacts. To
the best of our knowledge, this rarely has been done
before.

In the Neurorobotics-platform developed in the
scope of the Human Brain Project (HBP), these de-
pendent artifacts include not only editors, but also

Hinkel G. and Strittmatter M.
On using Sarkar Metrics to Evaluate the Modularity of Metamodels.
DOI: 10.5220/0006105502530260
In Proceedings of the 5th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2017), pages 253-260
ISBN: 978-989-758-210-3
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

253

an entire simulation platform where the connection
between robots and neural networks is described in
models (Hinkel et al., 2015; Hinkel et al., 2016a). As
the HBP is designed for a total duration of ten years,
it is likely that the metamodel will degrade unless ex-
tra effort is spent for its refactorings (Lehman, 1974;
Lehman et al., 1997). For such refactorings, we aim to
measure their success and potentially automate them.

Given the similarity of metamodels to object-
oriented design, we think that metrics for object-
oriented design are good starting points when trying
to measure the quality of metamodels. In particular,
the set of metrics developed by Sarkar (Sarkar et al.,
2008) have been established to measure the quality of
modularization. All of the metrics are scaled to have
values between 0 and 1, where 0 always is the worst
and 1 the best value. This handyness has given these
metrics some popularity.

In this paper, we have picked the metrics by Sarkar
and analyze whether they can be applied to metamod-
els. We analyze how the values for these metrics cor-
relate with perceived metamodel quality and/or meta-
model modularity.

The remainder of this paper is structured as
follows: Section 2 analyzes the Sarkar metrics
and presents adoptions for metamodels. Section 3
presents the setup of the empirical experiment that we
use to validate these metrics to measure metamodel
modularity. Section 4 presents the results from this
experiment. Section 5 discusses threats to validity of
the results. Finally, Section 6 discusses related work
before Section 7 concludes the paper.

2 SARKAR METRICS TO
MEASURE METAMODEL
QUALITY

In this section, we analyze which Sarkar metrics
can be used to measure metamodel modularity, but
only from an applicability point of view. That is,
many of the metrics need adjustments to be applied
to metamodels or cannot be applied at all. We base
this discussion on the Essential Meta Object Facility
(EMOF) standard, especially on its implementation in
Ecore, to describe the structure of metamodels.

An adaptation is necessary because the Sarkar
metrics require an implementation of the object-
oriented system under observation. They operate on
an executable method specification that allows them
to retrace how classes in the object-oriented design
are used. Furthermore, they rely on interface concepts
such as APIs that exist in many object-oriented pro-

gramming languages but are omitted in many meta-
metamodels. Our goal is to provide metrics to support
the metamodel design process where no implementa-
tion in the form of transformations, analyses or other
artifacts are available.

In the remainder of this section, we discuss the
inheritance-based coupling metric IC in Section 2.1,
the association-based coupling metrics AC in different
variants in Section 2.2 and the size uniformity metrics
MU and CU in Section 2.3. In Section 2.4, we discuss
the (in-)applicability of the other metrics and present
a new proposed metric to measure the degree of mod-
ularization.

2.1 Inheritance-based Coupling

One of the metrics by Sarkar et al. is the
Inheritance-Based Intermodule Coupling IC. It mea-
sures inheritance-based coupling between packages
based on three different rationales, represented by
sub-metrics IC1− IC3. The first metric IC1 measures
for a package p the fraction of other packages p′ who
are coupled to p by including a class that inherits from
a class in p. Conversely, IC2 measures the fraction of
classes outside the package p that inherit from a class
in p. The third component IC3 measures the fraction
of classes of p that have base classes in another pack-
age. The components are combined by simply taking
the minimum value for each of the components for
each package. A formal definition is given in Fig-
ure 1.

There, C defines the set of all classes, P de-
fines the set of all packages and the predicates
C,Module,Par and Chlds depict the classes of a
package, the package of a class, the parent classes and
the derived classes of a class. IC1 and IC2 are set to 1
if the metamodel only consists of a single package.

While all of the components for IC can be eval-
uated for metamodels as well, especially the compo-
nent IC3 yields a large problem. Many metamodels
use a single base class to extract common functional-
ity. An example for this is the support for stereotypes
that can be implemented using a common base class
EStereotypeableObject (Kramer et al., 2012), sep-
arated in its own module. However, using such an
approach means immediately that the component IC3
constantly equals zero. Therefore, we excluded the
component IC3 from the composite metric IC.

IC(p) = min{IC1(p), IC2(p)}.
As in the proposal of Sarkar et al., inheritance-

based coupling for an entire metamodel simply is the
average inheritance-based intermodule coupling of its
packages.

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

254

IC1(p) = 1−
|{p′ ∈ P |∃d∈C(p′)∃c∈C(p)(c ∈Chlds(d)∧ p 6= p′)}|

|P |−1

IC2(p) = 1−
|{d ∈ C |∃c∈C(p)(c ∈Chlds(d)∧ p 6= Module(d))}|

|C |− |C(p)|

IC3(p) = 1−
|{c ∈ C |∃d∈Par(c)(Module(d) 6= p)}|

|C(p)|
IC(p) = min{IC1(p), IC2(p), IC3(p)}

Figure 1: Formal definition of inheritance-based coupling.

2.2 Association-based Coupling

Similar to the inheritance-based coupling, Sarkar also
defines the association-based intermodule coupling
AC based on the usage of classes from a different
module in the public API of a class. Translating
the public API to the set of features of a class, this
can be applied to metamodels as well where a us-
age is defined as including a reference to the used
class. Here, metamodels offer to distinguish between
multiple types of associations. Unlike usual object-
oriented platforms, metamodels draw a big differ-
ence between regular associations and composite ref-
erences, in Ecore called containments. Thus, we com-
pute three association-based coupling indices, one for
associations only, one for composite references and
lastly one for both of them together.

Like IC, the composite metric AC as defined by
Sarkar et al. consists of three components AC1, AC2
and AC3. Their definition is equivalent to the defini-
tion of IC1, IC2 and IC3 except that they are using the
predicate Uses instead of Chlds and Par that yields
the set of used classes for a given class.

We adjust the metrics by altering the semantics of
the usage predicate. The closest adoption of AC is
to use the types of references as usages, but we also
obtain the metric ACcmp by limiting the usage to com-
posite and container references and omitting all re-
maining non-composite cross-references.

This distinction is useful as composite refer-
ences have a very different characteristics than cross-
references in many meta-metamodels such as Ecore,
which is widely used in the model-driven community.
The largest difference probably is that composite ref-
erences determine the lifecycle of referenced model
elements. Container references are just the opposites
of composite references and thus ACcmp also takes
these into account automatically.

Opposite references introduce a strong coupling
between their declaring classes not only if they are
containment references. If a reference is set for one of
these classes, this implies that the opposite reference

is set for the target value as well. Therefore, we have
separated a third variant of the AC metric that only
measures the association-based coupling introduced
by opposite references ACop.

2.3 Size Uniformity

The size-uniformity metrics MU and CU relate the
mean size of modules and classes to the standard de-
viation and are defined as follows:

{MU,CU}=
µ{p,c}

µ{p,c}+σ{p,c}

Here, µ{p,c} and σ{p,c} denote the mean value and
standard deviation for the size of packages in terms
of number of classes contained in a package (MU :
µp,σp) or the size of classes in terms of number of
methods or lines of code (CU : µc,σc). While the
number of classes of a package can be measured for
metamodels as well, the number of methods for a
metamodel is usually meaningless since metamodels
rather concentrate on the structural features, i.e. at-
tributes and references. Also the lines of code for a
class is not applicable since metamodels are often not
defined in textual syntaxes.

Therefore, we adapt the uniformity for classes in
that we take the number of structural features as they
make up the essential parts of a model class, in our
opinion.

2.4 Other Metrics

The remaining metrics defined by Sarkar et al. are
not applicable for metamodels, at least not in an early
stage of development when no subsequent artifact is
available. They may be applicable if e.g. analyses
or transformations based on this metamodel are taken
into account. An overview of these metrics and an
analysis whether they are applicable for metamodels
is depicted in Table 1.

As we do not have an implementation to analyze,
the metrics MII, NC, NPII, SAV I, PPI and APIU are

On using Sarkar Metrics to Evaluate the Modularity of Metamodels

255

Table 1: Summary of the Sarkar metrics with original rationale (Sarkar et al., 2008) and analysis whether they are suited to
measure metamodel modularity.

Metric Rationale Suited
MII Is the intermodule method call traffic routed through APIs? No
NC To what extent are the non-API methods accessed by other mod-

ules?
No

BCFI Does the fragile base class problem exist across the modules? No
IC To what extend are the modules coupled through inheritance? Yes
NPII To what extend does the implementation code in each class pro-

gram to the public interfaces of the other classes?
No

AC To what extend are modules coupled through association? Yes
SAV I To what extend do the classes directly access the state in other

classes?
No

MU To what extend are the modules different in size? Yes
CU To what extend are the classes different in size? Yes
PPI How much superfluous code exists in a plugin module? No
APIU Are the APIs of a module cohesive from the standpoint of sim-

ilarity of purpose and to what extend are the clients of an API
segmented?

No

CReuM To what extend are the classes that are used together also
grouped together in the same module?

No

not applicable for metamodels. Furthermore, BCFI is
not applicable as the underlying problematic "Fragile
Base Class Problem" is not possible if method con-
tents are not considered. Likewise, we do not have
any information what classes are used together as we
want to apply the metrics already during the meta-
model development. This makes the metric CReuM
also not applicable.

3 EXPERIMENT SETUP

To evaluate the goodness-of-fit of the presented
Sarkar metrics to measure metamodel modularity, we
used the data collected from a previous controlled
experiment on metamodel quality perception (Hinkel
et al., 2016b). In this experiment, participants were
asked to manually asses the quality of metamodels
created by peers. The material – domain descriptions,
assessments and created metamodels – are publicly
available online1. Due to space limitations, we there-
fore only replicate a very short description of the ex-
periment.

The 24 participants created metamodels for two
domains. Each domain was described in a text and
the participants were asked to design a metamodel
according to it. The participants consisted of profes-
sional researchers as well as students from a practical
course on MDE. They were randomly assigned to the
domains, ensuring a balance between the domains.

1https://sdqweb.ipd.kit.edu/wiki/Metamodel_Quality

The first domain concerned user interfaces of mo-
bile applications. Participants were asked to create
a metamodel that would be able to capture designs
of the user interface of mobile applications so that
these user interface descriptions could later be used
platform-independently. The participants created the
metamodel according to a domain description in nat-
ural language from scratch. We refer to creating the
metamodel of this mobile applications domain as the
Mobiles scenario.

The second domain was business process model-
ing. Here, the participants were given a truncated
metamodel of the Business Process Modeling Lan-
guage and Notation (BPMN) (The Object Manage-
ment Group, 2011) where the packages containing
conversations and collaborations had been removed.
The task for the participants was to reproduce the
missing part of the metamodel according to a textual
description of the requirements for the collaborations
and conversations. We refer to this evolution task as
the BPMN scenario in the remainder of this paper.

To evaluate our adoptions of the Sarkar metrics to
measure the quality of metamodel modularity, we cor-
related the metric results with the manual modularity
assessments and applied an analysis of variance. That
is, we try to statistically prove that metric results and
metamodel modularity are connected.

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

256

4 RESULTS

We correlated the manual quality assessments with
the metric results for the metamodels created by the
experiment participants. The discussion of the results
is split into three sections, one for each of the scenar-
ios and a third for discussion.

4.1 Mobiles

The results correlating the metric results against man-
ually assessed metamodel quality perceptions are de-
picted in Table 2. To get a quicker overview, we have
printed strong correlations (|ρ|> 0.5) in bold. For the
metric ACop, no correlations are shown as the metric
values do not have a variance, i.e. no metamodel con-
tained opposite references across package boundaries.

Table 2: Correlations of metric results to quality attribute
assessments in the Mobiles and BPMN scenario. Strong
correlations (|ρ|> 0.5) are printed in bold.

Mobiles BPMN

Q
ua

lit
y

M
od

ul
ar

ity

Q
ua

lit
y

M
od

ul
ar

ity

IC -0.28 -0.43 0.08 0.45
AC -0.21 -0.46 0.12 0.48
ACcmp -0.20 -0.45 0.06 0.59
AC(op) – – 0.23 0.64
MU -0.24 -0.76 0.38 -0.32
CU 0.73 0.35 0.16 0.35

A surprising result is that all of the coupling-based
Sarkar metrics have a negative correlation with mod-
ularity, among many other negative correlations to
other quality attributes. This is due to the fact that
these metrics only measure the quality of a modular-
ization, but not its degree. In particular, metamod-
els with only one package get the maximum score of
1 for inheritance- and association-based coupling in-
dices as there are no inheritance or association rela-
tions to other packages. However, such a metamodel
is perceived as not modular as there is no modulariza-
tion involved.

Using the Fisher transformation based on 14 ob-
servations and applying the Bonferroni method to
control the family-wise error-rate, we can reject the
null-hypothesis that the true correlation of a given
metric with modularity is at least 0.3 on a 95% confi-
dence level when the correlation is lower than -0.39.
Besides CU , this is the case for all Sarkar metrics. For
MU , we can even reject this hypothesis at a 99.9%
confidence level.

The module uniformity metric MU shows the
strongest negative correlations not only to modular-
ity but also to changeability and transformation cre-
ation. The reason for this is the same as for the
coupling-based metrics: Those participants that were
not aware of the benefits of a good modularization of-
ten also failed in other aspects and therefore created
metamodels that are hard to read. But unlike the cou-
pling metrics where a value of 1 can also be achieved
through a high quality modularization, it is highly un-
likely for metamodel developers to create perfectly
balanced modules, in particular because many meta-
models contain modules that are only used to give a
structure but do not contain any classes.

Despite it only being a corner case, the case of
lacking modularization is very important. The reason
is the automated refactoring, we envisioned in the in-
troduction. Such an approach requires the underlying
metrics to be robust against lacking modularization.
Otherwise, the obtained results will always be mono-
lithic metamodels, i.e. all classes put into a single
package.

Interestingly, the class uniformity metric CU has
strong correlations to a range of quality attributes,
but not to modularity as one might have expected.
A uniform class design correlated strongly with con-
sistency, completeness, correctness, instance creation
and ultimately also overall quality. A potential rea-
son is that in object-oriented code, many bad smells
such as god classes manifest in single classes having
far more members than others, so one may suspect
causality here. While we agree that CU can be a suit-
able metric for consistency, we think that the correla-
tions to completeness and correctness are rather intro-
duced by the fact that the most complete and correct
metamodels were created presumably by the most ex-
perienced participants that also had an eye on consis-
tency.

4.2 BPMN

In this section, we validate the applicability of the
metrics in the BPMN scenario. Despite the fact that
the participants have only evaluated manual exten-
sions, the metric results were taken from the complete
metamodels, also taking into account the larger part
of the metamodel that had not been changed. While
this means that the metric values may not be com-
pared across scenarios, the influence on correlations
is limited. Furthermore, we do think that this better
represents an evolution scenario which is more com-
mon than creating a metamodel from scratch.

Besides, it is also not trivial to identify the relevant
subset of a metamodel that should be evaluated. Even

On using Sarkar Metrics to Evaluate the Modularity of Metamodels

257

though a major part of the metamodel was not modi-
fied by the participants of the experiment, the created
extension had references and inheritance relations to
the rest of the metamodel such that this could not be
ignored easily by the metrics.

●

●

●

●

●

●

●

●

●

●

●●

x

y

0.885 0.895
IC

−
4

−
2

0
2

4
M

od
ul

ar
ity

(a) Inheritance-based coupling

●

●

●

●

●

●

●

●

●

●

●●

x

y

0.855 0.865 0.875 0.885
AC(cmp)

−
4

−
2

0
2

4
M

od
ul

ar
ity

(b) Association-based coupling

Figure 2: Coupling metrics plotted against the perceived
modularity.

We can see that the inheritance- and association-
based coupling metrics correlate with modularity, but
this correlation is not so strong and for both IC and
AC, the correlation coefficient is below 0.5. Espe-
cially the association-based coupling has a stronger
correlation to consistency than to modularity, al-
though we get a stronger correlation to modularity
if we limit the coupling to containment references.
However, this still gives worse results than restricting
the association to opposite references. The correlation
of ACcmp to modularity is significant with p = 0.045
in an ANOVA, but does not withstand a correction. A
similar ANOVA for IC yields a p-value of p = 0.14
so that this correlation is not even significant on the
10%-level.

The results for inheritance-based and
containment-based coupling are depicted in Fig-
ure 2. As one can see, most metamodels were in
a small range of metric values achieved for the
inheritance-based coupling. However, the one meta-
model that received a much higher score was also
perceived as most modular.

The best results have been achieved by restrict-
ing the association-based coupling to opposite refer-
ences with a correlation coefficient of ρ = 0.64 and a
p-value of p = 0.024. However, the samples showed
only a very small variance as only two metamodels
had introduced new opposite references, so the sam-
ple size is too small to produce reliable results.

The class size uniformity correlates strongly with
conciseness but in the BPMN scenario had a nega-
tive correlation with consistency. This means that this
metric apparently cannot be used to measure consis-
tency, as suggested from the Mobiles scenario. Like-
wise, the correlation to conciseness is not confirmed
by the Mobiles scenario.

4.3 Discussion

The metrics by Sarkar et al. are only meant to mea-
sure the quality of modularization but not the degree
to which a system is modularized. In particular, many
of the metrics, in particular the ones that we adopted
for metamodels as well, yield best results when no
modularization is applied at all. The metrics IC and
AC are set to the maximum and presumably best value
1 in case no package structure has been applied to the
system or in our case the metamodel.

A possible conclusion for metamodel developers
could be that the best modularization can be achieved
simply by putting all classes of a metamodel into a
single package and thus forgetting about packages at
all. There are several examples of larger metamodels
used in both industry and academia that seem to have
adopted this idea as they consist of exactly one pack-
age but this way, developers have to know the entire
metamodel before they can do anything. These ex-
amples include the UML metamodel used by Eclipse
and many component models such as Kevoree (Fou-
quet et al., 2014) or SOFA 2 (Bureš et al., 2006).

On the other hand, if a metamodel consists only
of a single package, developers are aware that they
have to understand the entire metamodel before they
can do anything. This may be better than a poor mod-
ularization where developers may get the impression
that they can neglect some packages which in the end
turns out as wrong, because of complex dependencies
between packages. Therefore, the goal of developers
must be a balance between the degree of modulariza-
tion and its quality.

5 THREATS TO VALIDITY

The internal threats to validity described in the origi-
nal experiment description (Hinkel et al., 2016b) also
apply when using the collected data to validate meta-
model metrics. We do not repeat them here due to
space limitations.

However, a threat to validity arises as we com-
puted the metric values in the BPMN scenario based
on the entire metamodels whereas the participants
were asked to assess the quality specifically of the
user extensions. Additionally to the problems of al-
ternative approaches we mentioned before, we think
that the threat to the validity is acceptable since corre-
lations coefficients do not change under linear trans-
formations.

We are correlating the metrics results with per-
ceived modularity in order to utilize the wisdom of
our study participants. However, metrics are most

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

258

valuable if they find the subtle flaws that humans do
not perceive in order to raise awareness that there
might be something wrong. Furthermore, the expe-
rience of our experiment participants, especially the
students, may be insufficient.

6 RELATED WORK

The Sarkar metrics have been already validated in
large-scale software systems (Sarkar et al., 2008).
This validation showed that randomly introduced de-
sign flaws could be detected by decreasing metric val-
ues. The goal in our validation, however, is to com-
pare entirely different design alternatives.

Related work in the context of metamodel quality
consists mostly of adoptions of metrics for UML class
diagrams and object-oriented design. However, to the
best of our knowledge, the characterization of meta-
model quality has not yet been approached through
the perception of modeling experts.

Bertoa et al. (Bertoa and Vallecillo, 2010) present
a rich collection of quality attributes for metamodels.
However, as it is not the scope of their work, they
do not give any information how to quantify the at-
tributes.

Ma et al. (Ma et al., 2013) present a quality
model for metamodels. By transferring metrics from
object-oriented models and weighting them, they pro-
vide composite metrics to quantify quality properties.
They calculate these metrics for several versions of
the UML metamodel. However, they do not provide a
correlation between their metrics and quality.

López et al. propose a tool and language to check
for properties of metamodels (López-Fernández et al.,
2014). In their paper, they also provide a catalog
of negative properties, categorized in design flaws,
best practices, naming conventions and metrics. They
check for breaches of fixed thresholds for the same
metrics, but both their catalog and also these thresh-
olds stem from conventions and experience and are
not empirically validated.

Williams et al. applied a variety of size metrics
onto a big collection of metamodels (Williams et al.,
2013). However, they did not draw any conclusions
with regards to quality.

Di Rocco et al. also applied metrics onto a large
set of metamodels (Di Rocco et al., 2014). Besides
size metrics, they also feature the number of isolated
metaclasses and the number of concrete immediately
featureless metaclasses. Based on the characteristics
they draw conclusions about general characteristics of
metamodels. However, to the best of our knowledge,
they did not correlate the metric results to any quality

attributes.
Leitner et al. propose complexity metrics for do-

main models of the software product line field as well
as feature models (Leitner et al., 2012). However,
domain models are not as constrained by their meta-
models as it is the case with feature models. The
authors argue, that the complexity of both, feature
and domain models, influences the overall quality of
the model, but especially usability and maintainabil-
ity. They show the applicability of their metrics, but
do not validate the influence between the metrics and
quality.

Vanderfeesten et al. investigated quality and de-
signed metrics for business process models (Vander-
feesten et al., 2007). Some of them can be applied to
metamodels or even graphs in general. The metrics
are validated by assessing the relation between metric
results and error occurrences and manual quality as-
sessments (Mendling and Neumann, 2007; Mendling
et al., 2007; Sánchez-González et al., 2010; Vander-
feesten et al., 2008). However, it is subject of fur-
ther research to investigate how these metrics can be
adapted to metamodels.

7 CONCLUSION AND OUTLOOK

The results of this paper suggest that the metrics es-
tablished to measure the quality of modularization in
software systems alone may be misleading. From the
few metrics suggested by Sarkar et al., many were not
applicable to metamodels as they require an existing
implementation and the remaining metrics partially
favor monolithic metamodels over properly modular-
ized ones. As a consequence, no significant corre-
lations between these metrics and the manually as-
sessed modularity of metamodels could be observed.
Particularly in the Mobiles scenario, we were even
able to statistically disprove even a slight correlation
of 0.3 between the metric values and the perceived
metamodel, which makes the metrics practically use-
less for the purpose of predicting how the modularity
of a given metamodel is perceived.

This insight raises the question whether there are
there other metrics that correlate with the perception
of metamodel quality. An answer to this question will
improve the understanding on how the modularity of
metamodels is perceived.

ACKNOWLEDGEMENTS

This research has received funding from the European
Union Horizon 2020 Future and Emerging Technolo-

On using Sarkar Metrics to Evaluate the Modularity of Metamodels

259

gies Programme (H2020-EU.1.2.FET) under grant
agreement no. 720270 (Human Brain Project SGA-I)
and the Helmholtz Association of German Research
Centers.

REFERENCES

Bertoa, M. F. and Vallecillo, A. (2010). Quality attributes
for software metamodels. In Proceedings of the
13th TOOLS Workshop on Quantitative Approaches
in Object-Oriented Software Engineering (QAOOSE
2010).

Bureš, T., Hnetynka, P., and Plášil, F. (2006). Sofa 2.0:
Balancing advanced features in a hierarchical compo-
nent model. In Proceedings of the fourth International
Conference on Software Engineering Research, Man-
agement and Applications, pages 40–48. IEEE.

Di Rocco, J., Di Ruscio, D., Iovino, L., and Pierantonio,
A. (2014). Mining metrics for understanding meta-
model characteristics. In Proceedings of the 6th In-
ternational Workshop on Modeling in Software Engi-
neering, MiSE 2014, pages 55–60, New York, NY,
USA. ACM.

Fouquet, F., Nain, G., Morin, B., Daubert, E., Barais, O.,
Plouzeau, N., and Jézéquel, J.-M. (2014). Kevoree
Modeling Framework (KMF): Efficient modeling
techniques for runtime use. Technical report, SnT-
University of Luxembourg.

Hinkel, G., Groenda, H., Krach, S., Vannucci, L., Den-
ninger, O., Cauli, N., Ulbrich, S., Roennau, A.,
Falotico, E., Gewaltig, M.-O., Knoll, A., Dillmann,
R., Laschi, C., and Reussner, R. (2016a). A Frame-
work for Coupled Simulations of Robots and Spiking
Neuronal Networks. Journal of Intelligent & Robotics
Systems.

Hinkel, G., Groenda, H., Vannucci, L., Denninger, O.,
Cauli, N., and Ulbrich, S. (2015). A Domain-Specific
Language (DSL) for Integrating Neuronal Networks
in Robot Control. In 2015 Joint MORSE/VAO Work-
shop on Model-Driven Robot Software Engineering
and View-based Software-Engineering.

Hinkel, G., Kramer, M., Burger, E., Strittmatter, M., and
Happe, L. (2016b). An Empirical Study on the Per-
ception of Metamodel Quality. In Proceedings of
the 4th International Conference on Model-driven
Engineering and Software Development (MODEL-
SWARD). Scitepress.

Kramer, M. E., Durdik, Z., Hauck, M., Henss, J., Küster,
M., Merkle, P., and Rentschler, A. (2012). Extend-
ing the Palladio Component Model using Profiles and
Stereotypes. In Becker, S., Happe, J., Koziolek, A.,
and Reussner, R., editors, Palladio Days 2012 Pro-
ceedings (appeared as technical report), Karlsruhe
Reports in Informatics ; 2012,21, pages 7–15, Karl-
sruhe. KIT, Faculty of Informatics.

Lehman, M., Ramil, J., Wernick, P., Perry, D., and Turski,
W. (1997). Metrics and laws of software evolution-the
nineties view. In Software Metrics Symposium, 1997.
Proceedings., Fourth International, pages 20–32.

Lehman, M. M. (1974). Programs, cities, students: Limits
to growth? (Inaugural lecture - Imperial College of
Science and Technology ; 1974). Imperial College of
Science and Technology, University of London.

Leitner, A., Weiß, R., and Kreiner, C. (2012). Analyzing
the complexity of domain model representations. In
Proceedings of the 19th International Conference and
Workshops on Engineering of Computer Based Sys-
tems (ECBS), pages 242–248.

López-Fernández, J. J., Guerra, E., and de Lara, J. (2014).
Assessing the quality of meta-models. In Proceedings
of the 11th Workshop on Model Driven Engineering,
Verification and Validation (MoDeVVa), page 3.

Ma, Z., He, X., and Liu, C. (2013). Assessing the qual-
ity of metamodels. Frontiers of Computer Science,
7(4):558–570.

Mendling, J. and Neumann, G. (2007). Error metrics for
business process models. In Proceedings of the 19th
International Conference on Advanced Information
Systems Engineering, pages 53–56.

Mendling, J., Neumann, G., and Van Der Aalst, W. (2007).
Understanding the occurrence of errors in process
models based on metrics. In On the Move to Meaning-
ful Internet Systems 2007: CoopIS, DOA, ODBASE,
GADA, and IS, pages 113–130. Springer.

Sánchez-González, L., García, F., Mendling, J., Ruiz, F.,
and Piattini, M. (2010). Prediction of business process
model quality based on structural metrics. In Concep-
tual Modeling–ER 2010, pages 458–463. Springer.

Sarkar, S., Kak, A. C., and Rama, G. M. (2008). Metrics
for measuring the quality of modularization of large-
scale object-oriented software. Software Engineering,
IEEE Transactions on, 34(5):700–720.

The Object Management Group (2011). Business process
model and notation 2.0. http://www.bpmn.org/.

Vanderfeesten, I., Cardoso, J., Mendling, J., Reijers, H. A.,
and van der Aalst, W. (2007). Quality metrics for busi-
ness process models. BPM and Workflow handbook,
144.

Vanderfeesten, I., Reijers, H. A., Mendling, J., van der
Aalst, W. M., and Cardoso, J. (2008). On a quest for
good process models: the cross-connectivity metric.
In Advanced Information Systems Engineering, pages
480–494. Springer.

Williams, J. R., Zolotas, A., Matragkas, N. D., Rose, L. M.,
Kolovos, D. S., Paige, R. F., and Polack, F. A. (2013).
What do metamodels really look like? In Proceedings
of the first international Workshop on Experiences and
Empirical Studies in Software Modelling (EESSMod),
pages 55–60.

MODELSWARD 2017 - 5th International Conference on Model-Driven Engineering and Software Development

260

