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Abstract: The large computational demand is one huge drawback of Bayesian Mixture Models in image segmentation
tasks. We describe a novel approach to reduce the computational demand in this scenario and increase the per-
formance by using superpixels. Superpixels provide a natural approach to the reduction of the computational
complexity and to build a texture model in the image domain. Instead of relying on a Gaussian mixture model
as segmentation model, we propose to use a more robust model: a mixture of multiple scaled t-distributions.
The parameters of the novel mixture model are estimated with Markov chain Monte Carlo in order to surpass
local minima during estimation and to gain insight into the uncertainty of the resulting segmentation. Finally,
an evaluation of the proposed segmentation is performed on the publicly available Berkeley Segmentation
database (BSD500), compared to competing methods, and the benefit of including texture is emphasised.

1 INTRODUCTION

Image segmentation techniques are required in many
computer vision applications. Dividing an image into
coherent regions, which are possibly close to human
perception is not a trivial task. Compression artefacts,
shading, occlusion, and cluttered and textured regions
hinder a simple colour based approach from working
well. Further, the number of possible solutions is ac-
tually quite large and can be computed by the Stirling
partition number (Graham et al., 1994). In the case
of n = 10 data points and k = 3 clusters already 9330
possible clusterings arise.

Generative models are one way among many oth-
ers to divide an image or a set of data points into
meaningful clusters. Our focus resides on genera-
tive models because they offer a way to describe and
model the properties of different regions in a coherent
framework. This is not straightforward in discrimi-
native models, which additionally require a large por-
tion of supervision to work well. In generative mod-
elling the underlying probability distribution which
generated the data is attempted to be approximated
by a model. Commonly, mixture models are used.
One frequent representative of this type of model is
the Gaussian mixture model (GMM), which is usu-
ally estimated by a technique based on the Expecta-
tion Maximisation algorithm (EM) (Dempster et al.,
1977). However, EM tends to be subject to local

minima (McLachlan and Krishnan, 2007). Bayesian
methods provide a good alternative. Through intro-
ducing prior distributions and trying to estimate the
underlying probability distribution of the parameters
instead of single point estimates, local minima may
be left, because during the sampling of the Markov
chain values with a lower probability than the cur-
rent estimate are accepted. The sampling process
leads to an increase of the computational demands,
because in every iteration the whole model needs to
be evaluated. As a result, the statistical literature of-
fers several ways to reduce the computational demand
of Bayesian methods.

Segmentation in general is a task where a large
number of data points have to be considered, because
one image usually consists of millions to billions of
data points depending on the resolution of the image.
The statistics literature focuses on favourable ways to
approximate the posterior distribution as accurately as
possible, although the number of data points is re-
duced during parameter estimation. This is for in-
stance achieved by subsampling of the data points for
likelihood evaluation (Korattikara et al., 2013; Bar-
denet et al., 2014) or by relying on the computation of
lower bounds (Maclaurin and Adams, 2014). We pro-
pose instead to use a domain specific approximation
technique to vastly reduce the computational demand,
namely superpixels. Superpixels are a description of
local neighbourhoods and can therefore directly be
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used to build an additional texture model of the im-
age (see Section 3) .

2 RELATED WORK

Superpixels are a commonly used pre-processing step
in computer vision and are applied in a large variety
of computer vision tasks. This includes, among oth-
ers, segmentation (Achanta et al., 2012), object detec-
tion (Fulkerson et al., 2009), medical image analysis
(Cheng et al., 2013), and hyperspectral image analysis
(Thompson et al., 2010). While the origin of super-
pixels dates back to (Ren and Malik, 2003), research
has developed in several ways to estimate superpixels
from an image. This includes gradient or graph based
methods, or methods based on a k-means clustering.
See (Achanta et al., 2012) for an overview.

The superpixel representation has several benefits
over other techniques which aim to reduce the com-
putational expenses in image analysis. For instance,
if uniform sub-sampling of the image is performed,
information is lost and a filtering is required to reduce
sampling artefacts. By looking at small rectangular
regions of an image, the borders of different regions
or objects usually do not coincide with the rectangu-
lar regions. In contrast, superpixels aim to preserve
the structure of an image by finding small coherent
regions.

2.1 Morphological Reconstruction

While superpixels are a way to reduce the over-
all amount of data points in a useful manner, other
pre-processing steps may be included in the analy-
sis pipeline to modify the data in a beneficial way.
Morphological reconstruction (Vincent, 1993) is one
of such techniques and can be applied to binary and
grey scale images. In the binary case morphological
reconstruction computes connected components and
in the grey scale case it is used to remove local peaks
from the distribution of pixel intensities. Morpho-
logical reconstruction aims to reconstruct the image
I from a marker image M. As a result, local peaks
are removed from the image by subsequent dilation of
M constrained through I. The marker image is con-
structed by erosion with a structuring element S. In
our case S is disk-shaped with radius SR.

According to (Benesova and Kottman, 2014) we
apply morphological reconstruction six times using a
marker image, which is computed by eroding the orig-
inal image with a disk of size SR = s px. Once for
every colour channel and once for the inverse of ev-
ery colour channel, removing local light and dark ex-

tremes from the image. The advantage of this prepro-
cessing step is that it preserves edges between neigh-
bouring regions, while additionally removing high
frequency patterns from the image, which aids the
mixture model in modelling the structure of the im-
age. An analysis of the effect of this operation is
provided in the experiments section. The effect of
morphological reconstruction with various sizes of
the eroding disk is illustrated in Figure 1. Note how
the eyes of the koala gradually vanish with increasing
disk size.

2.2 Texture Features

Various texture features have been proposed in the lit-
erature. This includes, among others, Textons (Ar-
belaez et al., 2011), grey-level-co-occurrence matri-
ces and Haralick features, (Haralick et al., 1973),
Laws’ texture energy features (Laws, 1980), dense
SIFT (Tighe and Lazebnik, 2013), windowed second
moment matrices of a local neighbourhood (Belongie
et al., 1998), dictionary learning using k-means (Dahl
and Dahl, 2015), structured tensors (Rousson et al.,
2003), and histogram based methods (Kim et al.,
2005). While all methods look at a local neighbour-
hood around a pixel to define a measure of texture,
not all methods are directly compatible with super-
pixels, because they look at rectangular regions like
Textons or simply do not match the superpixel size,
like dense SIFT. Textons yield another difficulty, be-
cause the most meaningful filters occur around the
edges of neighbouring regions, which makes it diffi-
cult to use them to distinguish between different tex-
tures. Since our goal is to include a single texture
feature into the mixture model we propose a custom
texture map based on histograms and a superpixel rep-
resentation of the image. Therefore it accounts for the
superpixel borders, is one-dimensional, and it is de-
fined in an euclidean space, which makes it suitable
to be integrated as another dimension in a generative
model (cf. Section 3).

2.3 Choice of Mixture Distribution

Commonly, images are modelled as Gaussian Mix-
tures. However, in practice outliers frequently occur
and a Gaussian distribution is not necessarily an ap-
propriate description of every part of the image. This
either leads to over-segmentations or an incoherent
segmentation of the image. One possibility to in-
crease the flexibility of the mixture model is to change
the mixture distribution to something different from
the Gaussian distribution. (Nguyen and Wu, 2012)
use a multivariate t-distribution, and (Wilhelm and
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Figure 1: Effect of the extent SR of the eroding disk during morphological reconstruction. Image taken from the validation set
of the BSD500 (Arbelaez et al., 2011).

Wöhler, 2016) use a generalised hyperbolic distribu-
tion (GHD). While the use of a GHD is generally jus-
tified if a huge number of data points is available, for
superpixels, which aim to efficiently reduce the num-
ber of data points, the sample size may be to small too
achieve meaningful parameter estimates. However, a
robust distribution seems favourable in the task of im-
age segmentation. Therefore we propose to use a mul-
tiple scaled variant of the multivariate t-distribution
(Forbes and Wraith, 2014). The probability density
function (pdf) of the multivariate t-distribution corre-
sponds to

t(x|µµµ,ΣΣΣ,ν) = Γ((ν+ p)/2)

Γ(ν/2)νpπp/2 |ΣΣΣ|1/2 ×

×
[

1+
1
ν
(x−µµµ)T ΣΣΣ−1 (x−µµµ)

]
(1)

with the number of degrees of freedom ν, the num-
ber of dimensions p, the mean vector µµµ, and the co-
variance matrix ΣΣΣ. The parameter ν describes the
tail behaviour of the distribution. This enables the
distribution to place more weight on infrequent data
points and as a result achieve robust estimates of the
parameters in comparison to a Gaussian distribution.
Since the tail behaviour is equal in every dimension
this enforces a rather strict assumption on the shape
of the distribution. One can easily imagine cases
where this shape may not be desired. We therefore
choose the multiple scaled variant of the multivariate
t-distribution (Forbes and Wraith, 2014) as the model
for a single component of the mixture model. In con-
trast to a multivariate t-distribution the multiple scaled
variant allows to set the scale parameter ν indepen-
dently for every dimension, including the unscaled
variant if ν is equal in every dimension. According
to (Tortora et al., 2014) the pdf is

tMS(x|µµµ,ΓΓΓ,ΦΦΦ,ννν) =
p

∏
j=1

Γ((ν j +1)/2)
Γ(ν j/2)(Φ jν jπ)1/2 ×

×


1+

(
ΓΓΓT [x−µµµ]2j

)

Φ jν j



−(ν j+1)/2

(2)

with mean vector µµµ, the eigenvectors ΓΓΓ and eigenval-
ues ΦΦΦ of ΣΣΣ, and ννν the vector of degrees of freedoms.
We use this distribution, because it is a compromise
between flexibility and simplicity. Further details on
the distribution may be found in (Forbes and Wraith,
2014) or (Tortora et al., 2014).

2.4 Delayed Rejection Adaptive
Metropolis

Estimation of the model is performed in a Bayesian
framework, because it enables us to aid the mix-
ture model by defining appropriate prior distributions
for the model parameters. Recall, in a Bayesian
framework the model parameters are not point esti-
mates, but probability distributions and the parame-
ters of these distributions are usually estimated with
Markov chain Monte Carlo (MCMC). One of such al-
gorithms which performs this is Metropolis-Hastings
(MH) (Hastings, 1970), which is described by (Nt-
zoufras, 2011) as follows:

1. Initialise θθθ(0).
2. For t = 1, . . . ,T

(a) Set θθθ = θθθ(t−1)

(b) Obtain new candidate parameter using the pro-
posal distribution q(θ→ θ′) = q(θ′|θ).

(c) Calculate

α = min
(

1,
p(θθθ′|X)q(θθθ|θθθ′)
p(θθθ|X)q(θθθ′|θθθ)

)
= min(1,A) .

(3)
(d) Update θθθ(t) = θθθ′ with probability α, otherwise

set θθθ(t) = θθθ = θθθ(t−1).
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In contrast to a common MH step, Delayed Re-
jection Adaptive Metropolis (DRAM) (Haario et al.,
2006) aims to improve the exploration and conver-
gence speed of the Markov chain by adapting the
proposal distribution q(θ→ θ′) on the fly. In con-
trast to other methods, which compute the gradient of
the posterior, like Hamiltonian Monte Carlo (HMC)
(Hoffman and Gelman, 2014) DRAM does not need
to evaluate the gradient of the posterior distribu-
tion. Actually DRAM combines two separate tech-
niques, Delayed Rejection (DR) (Tierney and Mira,
1999) and Adaptive Metropolis (AM) (Haario et al.,
2001). While DR does not afflict the assumptions of
a Markov chain, AM violates them and the resulting
chain is neither Markovian nor reversible. However,
in practice this does not always seem to influence the
results strongly and can even be beneficial (Haario
et al., 2006), because it improves the exploration of
the parameter space. This is especially beneficial in
high dimensional parameter spaces, where it is diffi-
cult to design appropriate multivariate proposal distri-
butions.

Delayed Rejection works as follows. In contrast to
a common MH step, where the proposal move is ei-
ther accepted or rejected, DR modifies this behaviour
by not wasting this information, but by proposing a
new sample, which can be based on a different pro-
posal distribution or on the rejected sample itself.
This delaying may be iterated several times, for in-
stance based on a fixed number or on defined proba-
bility.

AM modifies the proposal distribution of the MH
step during the sampling by determining the empiri-
cal covariance of the chain and using this information
to propose new samples for the MH acceptance step.
This violates the assumptions of the Markov chain,
yet it works in practice. Further details on DRAM
may be found in (Haario et al., 2006).

2.5 Accuracy Evaluation of
Segmentation Tasks

After the model is estimated, an evaluation of the re-
sult is important in order to compare it to different
approaches. Commonly two ways exist to evaluate
the accuracy of the segmentation. The first variant
looks at the boundaries of the segments and treats the
segmentation as a binary classification problem. See
(Arbelaez et al., 2011) for further details. The other
way is to look at the segmentation itself and mea-
sure the accuracy of the underlying clustering. Two
commonly used quantities are the Probabilistic Rand
Index (PRI) and the Variation of Information (VoI).
The PRI between a computed segmentation A and a

5 10 15 20 25 30

# Components

0

2000

4000

6000

8000

10000

B
IC

 [
-]

1

1.5

2

2.5

3

V
o
I 
[-

]

Figure 2: Relation between BIC and VoI for the image used
in Figure 3.

ground-truth segmentation G is defined by (Arbelaez
et al., 2011) as

PRI(A,G) =
1
T ∑

i< j
[cii pi j +(1− ci j)(1− pi j)] , (4)

where ci j indicates if pixel i and j have identical labels
and pi j is the corresponding probability of this event.
VI measures the difference in terms of the average
conditional entropy between segmentations A and G,
defined by (Arbelaez et al., 2011) as

V I(A,G) = H(A)+H(G)−2I(A,G) (5)

with entropy H(·) and mutual information I(·).
While the first variant stresses the importance of

correct borders, the second way is a region based cri-
terion. Since we propose to use a generative model
for the segmentation, we restrict ourselves to a region
based evaluation instead of a boundary focused eval-
uation (see Section 4).

3 PROPOSED PROCEDURE

Our contribution is threefold. Firstly, a novel tex-
ture measure is proposed on the basis of superpixels.
Secondly, a Gaussian process regression is applied to
predict the aforementioned segmentation evaluation
measures PRI and VoI. Lastly, the multiple scaled t-
distribution is used as a model instead of a Gaussian
distribution to describe the different image regions.

3.1 Building a Texture Feature from
Superpixels

We use the zero parameter variant of simple linear it-
erative clustering (SLICO) by (Achanta et al., 2012)
to compute the superpixel, because it shows the best
performance regarding speed, boundary recall, and
robustness with respect to under-segmentation error
(Achanta et al., 2012). Further, histograms are cho-
sen as superpixel representation, because they best fit
the irregular shapes of a superpixel and histograms of
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Figure 3: Overview of the used feature channels for an exemplar image of the training set of the BSD500 (Arbelaez et al.,
2011).

image parts are rotational invariant. Other descrip-
tors usually look at a square regions, which would not
fully match the regions defined by a superpixel. We
experimented with Dense SURF (Bay et al., 2006),
but the resulting texture maps did not look as mean-
ingful as the ones obtained by a histogram represen-
tation. We start by building a custom distance ma-
trix, which covers the distance from every superpixel
to each other. As a distance measure we us the sym-
metric variant (cf. Eq. 7) of the Kullback-Leibler di-
vergence for discrete distributions (cf. Eq. 6) and the
mean squared difference between the median colour
values inside a superpixel according to the YUV
colour space.

DKL(P‖Q) = ∑
i

P(i)log
P(i)
Q(i)

, (6)

DSym
KL (P,Q) = DKL(P‖Q)+DKL(Q‖P). (7)

The YUV colour space is used because its behaviour
is supposed to be closer to human perception with re-
spect to the distinction between colours than the RGB
colour space. The distance matrix is finally trans-
formed into a one dimensional feature space by mul-
tidimensional scaling (Borg and Groenen, 2005), in
order to use it as a texture channel, comparable to the
YUV colour channels. Further, the position of image
the image pixels in a Cartesian coordinate system is
used as an additional feature. Note that, only the me-
dian values of the feature channels inside every su-
perpixel are used during the estimation of model pa-
rameters, which amounts to a large reduction of the
computational demands. Figure 3 illustrates the six
feature channels used in this work.

3.2 Estimation of Covariance Matrix
During DRAM

We estimate the parameters of the covariance ma-
trix in the eigenspace. This is beneficial because
through separation of eigenvalues and eigenvectors
proposing invalid covariance matrices is limited to the
case of a proposal of an invalid eigenvalue, which
can be controlled efficiently in the estimation process.

Proposing invalid covariance matrices frequently oc-
curs if the parameters of the covariance matrix are
updated independent of each other with a MH step.
New eigenvalues are directly proposed by the pro-
posal matrix and new eigenvectors through a rotation
of the whole eigenspace around the coordinate axes.
The rotation of the whole space R(ααα) is divided into
d = p(p−1)/2 rotation matrices Ri(αi) around a sin-
gle axis of the eigenspace and then multiplied such
that

R(ααα) =
d

∏
i=1

Ri(αi). (8)

R(ααα) can then be used to propose a change in the ori-
entation of the covariance matrix during parameter in-
ference.

3.3 Learning to Select an Appropriate
Number of Clusters

Due to the speed-up of using superpixel it is possible
to evaluate a large number of clusterings for one im-
age with different parameters in a reasonable amount
of time. In order to generate a mixture model with an
appropriate number of classes we propose to evaluate
multiple clustering and choose one based on some cri-
terion. One common choice in mixture modelling is
the Bayesian Information Criterion (BIC) according
to (Schwarz et al., 1978)

BIC =−2 · L̂(ΘΘΘ)+ k · ln(n) (9)

with L̂(ΘΘΘ) as the log-likelihood of the model, ΘΘΘ as
the set of all model parameters, k as the number of
all free parameters, and n as the number of superpix-
els. Unfortunately, the BIC was designed to represent
a good compromise between model complexity and
achieved likelihood score. However, in image seg-
mentation tasks the used model is commonly far from
being correct, which leads to the result that the BIC
favours models with a large number of mixture com-
ponents. This is visualised in Figure 2, where for an
exemplar image the BIC and the VoI are computed
for a varying number of mixture components. It is
clearly evident that the optimal solution with respect
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to VoI and the BIC widely differ. We therefore pro-
pose to expand on the BIC and try to regress the re-
lationship between likelihood, number of parameters,
and the evaluation metrics. This enables us to train
the regression model on the training data subset of the
BSD500 and let the model predict the highest score
among different segmentations. This segmentation is
then chosen for evaluation.

For the regression model we choose a Gaus-
sian Process (GP) (Rasmussen and Williams, 2006).
Broadly speaking, a GP is a distribution over func-
tions and can be seen as a further generalisation of
a Gaussian distribution to the domain of continuous
functions. Mathematically, the relation of a random
function Y and a GP is expressed as:

Y ∼ GP(m,K) (10)

The parameters of the covariance function K and the
mean function m are commonly learned from data.
An overview and further details about GP are given
in (Rasmussen and Williams, 2006). We use a Matern
kernel as covariance function and estimate the param-
eters of the kernel based on the training set of the
BSD500. Since we try to learn the relationship be-
tween the key components of the BIC and the evalua-
tion metrics in order to choose the best segmentation
from a collection, the negative log-likelihood of the
mixture model L̂(ΘΘΘ) and k · ln(n) are chosen as inde-
pendent variables. We train two separate GP, one with
the PRI as dependent variable and one with the VI as
dependent variable. This can be thought of as a gen-
eralisation of the BIC, which is better suited towards
estimating the number of components of the mixture
model in the task of image segmentation.

Table 1: Evaluation of the segmentation accuracy of differ-
ent disk sizes SR used in morphological reconstruction on
the training split of the BSD500 dataset (Arbelaez et al.,
2011) for various values of SR. Probabilistic Rand In-
dex (PRI) and Variation of Information (VoI) are presented.
Best values are marked in bold.

BSD500
PRI VoI

OIS OC OIS OC

SR = 0 px 0.86 0.88 1.73 1.38
SR = 2 px 0.84 0.88 1.75 1.40
SR = 5 px 0.84 0.88 1.75 1.40
SR = 7 px 0.83 0.87 1.76 1.42

Figure 4: Exemplar segmentation results obtained by the
proposed method on the BSD500. Left column: raw im-
ages; middle column: achieved segmentation; right column:
ground truth segmentation.

4 EXPERIMENTS

In a first step the influence of including the proposed
texture feature is analysed. As a second step we anal-
yse to which extend morphological reconstruction can
aid the segmentation process. Finally, the evaluation
of the proposed model is performed using the test set
of the BSD500 and compared to results from the lit-
erature. Note, that the Optimal Data Scale (ODS),
Optimal Image Scale (OIS), and Optimal Compliance
(OC) are provided. ODS measures the performance
of the algorithm in the determination of the number
of mixture components is performed by the algorithm
itself. In our case this is done by predicting the PRI
and VoI with a GP trained using the training data set
of the BSD500 and selecting the segmentation with
the highest predicted score (see Section 3). In con-
trast, OIS and OC use the best possible number of
mixture components to evaluate the accuracy. This
can be considered as an upper bound of the achiev-
able accuracy for this model. OIS measures the av-
erage score over all provided ground truth segmen-
tations and OC takes only the best matching ground
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Table 2: Evaluation of the segmentation accuracy of different algorithms on the BSD500 dataset (Arbelaez et al., 2011).
Probabilistic Rand Index (PRI) and Variation of Information (VoI) are presented. Best values are marked in bold. The
proposed method has a performance that is similar to state-of-the-art approaches. Referenced scores are taken from (Arbelaez
et al., 2011).

BSD500
PRI VoI

ODS OIS OC ODS OIS OC

gPb-owt-ucm (Arbelaez et al., 2011) 0.83 0.86 - 1.69 1.48 -
Mean Shift (Comaniciu and Meer, 2002) 0.79 0.81 - 1.85 1.64 -

Felz-Hutt (Felzenszwalb and Huttenlocher, 2004) 0.80 0.82 - 2.21 1.87 -
Canny-owt-ucm (Arbelaez et al., 2011) 0.79 0.83 - 2.19 1.89 -

NCuts (Cour et al., 2005) 0.78 0.80 - 2.23 1.89 -
Quad-Tree (Arbelaez et al., 2011) 0.73 0.74 - 2.46 2.32 -

GMM 0.82 0.85 0.89 2.20 1.88 1.51
tMSMM 0.82 0.85 0.89 2.22 1.84 1.51

truth into consideration.
Table 1 depicts the influence of choosing the size

of the eroding disk SR during morphological recon-
struction for the construction of texture features of the
whole training data set of the BSD500. Note that, this
parameter can be adjusted on a per-image basis to fur-
ther improve the results, but since SR = 0 px appears
to be best on average, no morphological reconstruc-
tion is used on the test set to analyse the accuracy.

In the last experiment, the whole algorithm is eval-
uated on the test set of the BSD500 (see Table 2 for a
summary). While the proposed method performs very
well in terms of OIS and ODS according to the PRI,
there is a slight drop of performance according to the
VoI when changing from OIS to ODS. This behaviour
is probably due to an imperfect prediction of the num-
ber of mixture components by the trained GP, which
is punished more strongly by the VoI. However, the
performance of the mixture model is notable, because
the competing methods do not model the image in a
generative way, but in a discriminative way. Exem-
plar segmentations of a subset of the test set of the
BSD500 are provided in Figure 4.

Although the difference between the proposed
multiple scaled t-distribution and a simple Gaussian
distribution is small, its advantage is measurable and
in slight favour of the more flexible distribution.

5 CONCLUSIONS

In this work we have suggested a novel way to include
texture as one part of a generative model for image
segmentation tasks using superpixels. Further, by us-
ing superpixels the computational demands can vastly
be reduced due to the and multiple segmentations

with a varying number of mixture components can be
computed in a reasonable amount of time. Selecting
the probably best model for each image is achieved
by predicting the anticipated scores and selecting the
model with the highest predicted score. The proposed
method performs very well in comparison with com-
peting methods from the literature. However, those
methods model the image usually in a discrimina-
tive way and our method uses a generative approach,
which enables us to describe each region of every im-
age in a coherent framework.
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