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Abstract: This paper presents a blood pressure estimation method based on pulse wave velocity (PWV). Although 
there are a variety of methods based on PWV to estimate blood pressure, most of them require calibration 
per patient, and the patient has to remain still. The goal of our research is to develop a calibration-free blood 
pressure estimation method that is applicable not only during rest but also during exercise. To accomplish 
our goal, we extracted properties of blood vessels from photoplethysmogram (PPG) signals, and compared 
several regression models, such as the deductive model based on blood vessel physics equation, and the 
inductive model based on machine learning. Twenty-four participants performed exercise, measuring blood 
pressure, electrocardiogram (ECG) and PPG. The best result showed that the mean error for the estimated 
systolic blood pressure (SBP) against cuff-based blood pressure was 0.18 ± 8.68 mmHg. Although there 
was not a big difference between the regression models, PWV and Augmentation Index are effective 
features to estimate SBP. In addition to this, Heart Rate was effective only for the young men, and height 
ratio of c-wave to a-wave of acceleration pulse wave might be effective for elderly men. These results 
suggest that our proposed method has the potential for cuff-less calibration-free blood pressure estimation 
which include measurements during rest and exercise． 

1 INTRODUCTION 

In recent years, the number of hypertension patients 
has increased, and around 40% of adults aged 25 and 
over were estimated to have hypertension (World 
Health Organization, 2014). Hypertension can lead 
to various diseases such as a life-threatening heart 
disease, cardiovascular diseases (CVDs), and renal 
insufficiency. Since most people are not aware of 
their hypertension, they are not treated in time. 
Monitoring one's blood pressure is required for the 
prevention, early detection, and early recovery of 
hypertension. 

However, single blood pressure measurement is 
the mainstream in hospitals or at home. It is difficult 
to monitor the changes of blood pressure, especially 
indicators like short-term changes and changes 
during the day, which are important to diagnose a 
patient’s body. Moreover, white-coat hypertension, 
which leads to high blood pressure when measured 
in the medical environment, could cause 
misdiagnosis. To diagnose and treat such patients 

properly, continuous blood pressure monitoring is 
required. 

Nowadays, Ambulatory Blood Pressure 
Monitoring (ABPM) is used for continuous blood 
pressure measurement. Figure 1 shows ABPM 
equipment. ABPM measures blood pressure by a 
cuff every 15 minutes or so. It is rather 
uncomfortable and the patient has to remain still. 

 

Figure 1: ABPM equipment. 

The method based on pulse wave velocity (PWV) 
has been intensively studied because of its potential 
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for tracking blood pressure change continuously 
without a cuff (Mukkamala et al., 2015). PWV is the 
velocity of an arterial pulse propagating through the 
arterial wall and can easily be calculated from Pulse 
Transit Time (PTT). PTT is the time interval 
between an R-wave peak of electrocardiogram 
(ECG) and a particular  point of 
photoplethysmogram (PPG). PWV is obtained by  
dividing distance from the heart to a particular 
peripheral site by PTT.  

Based on previous researches, a formula which 
takes continuity equation and Navier-Stokes 
equation estimates systolic blood pressure (SBP). 
The formula is as follows (Lopez, 2010, Inajima, 
2012). 

ܲܤܵ ൌ ܾଵݒ௪௩ଶ  ܾଶ (1) 

 ௪௩ is the pulse wave velocity, and coefficients b1ݒ
and b2 are parameters related to individual blood 
vessel properties. Traditionally, the coefficients are  
calibrated by measuring blood pressure and PWV 
beforehand. 

Gesche et al. established a model with PWV to 
estimate systolic blood pressure (SBP) during 
exercise with initial calibration, and the standard 
deviation of estimation error (SD) was 10.1 mmHg 
(Gesche, 2012). Ding et al. established a model with 
PWV and photoplethysmogram intensity ratio to 
estimate blood pressure during rest with initial 
calibration, and SD was 5.21 mmHg for SBP and 
4.06 mmHg for diastolic blood pressure (DBP) (Ding, 
2015). Kauchuee et al. investigated the relationship 
between PTT and blood pressure and found that non-
linear models are better than linear models. 
Kachuee’s model without calibration during rest 
achieved 16.17 mmHg for SBP and 8.45 mmHg for 
DBP (Kachuee, 2015). 

Although there are a variety of methods based on 
PWV to estimate blood pressure, the application of 
the PWV-based method has several problems. First, 
individual blood vessel properties differ from person 
to person. Most of the methods, therefore, require 
calibration per person. Secondly, current methods 
still lack application during exercise. Thirdly, there 
is not enough accuracy of blood pressure 
measurement based on PWV for medical use. 

The objective of our study is to establish a 
calibration-free blood pressure estimation method 
based on PWV during rest and exercise. To achieve 
the objective, we extracted properties of blood 
vessels from photoplethysmogram (PPG) signals and 
compared several regression models, such as the 
deductive model based on blood vessel physics 

equation and the inductive model based on machine 
learning. 

In this research, we focused on SBP that is 
superior to Diastolic blood pressure as a predictor of   
CVDs (Mourad, 2008).  

This paper is organized as follows. Chapter 2 
shows an overview of our methodology including 
peak detection method, feature extraction, regression 
models and evaluation method. Chapter 3 explains 
the experiment, and Chapter 4 describes the result. 
Lastly, Chapter 5 is the conclusion of this research 
and future perspectives. 

2 METHOD 

Our method estimates SBP by using ECG and PPG. 
The method is demonstrated in Figure 2. While 
extracting features from ECG and PPG signals, we 
use peak detection to extract features automatically. 
Therefore, we first explain the peak detection 
method before feature extraction. 

 

Figure 2: Overview of the method to estimate SBP. 

2.1 Peak Detection 

In order to extract features from ECG and PPG 
signals automatically, we need to build a robust 
pattern-matching model. Therefore, we applied 
Continuous Wavelet Transform (CWT), which is 
widely used for R spike detection (Legarreta, 2005) 
and PPG waveform analysis (Fan, 2011). The 
Mexican Hat wavelet was selected as the mother 
wavelet, because of its similarity with the ECG and 
PPG signals (Daubechies, 1992). We found optimal 
scales for each signal using annotations provided on 
small data. Figure 3 shows an R spike detection of 
ECG signal, and Figure 4 shows a foot point 
detection of PPG signal. 
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Figure 3: R spike detection of ECG signal. 

 

Figure 4: Foot point detection of PPG signal. 

2.2 Feature Extraction 

We extract Heart Rate (HR) from ECG signal, PPG 
features from PPG signal, and PWV from ECG and 
PPG signals. 

2.2.1 PWV and HR 

PWV was calculated by dividing the participant's 
height by time interval between R-wave peak of 
ECG and three points of PPG, which are the steepest 
slope of the corresponding upstroke (PWVm), the 
maximum point (PWVp), and the minimum point 
(PWVb), as shown in Figure 5. HR is calculated by 
the time interval between the nearest R spikes. 

 

Figure 5: Definition of each PWV. 

2.2.2 PPG Features 

The PPG signal reflects the blood volume of the 

vessel, measured by red, green or infrared light, 
which is irradiated into the tissue and is absorbed or 
reflected. The features extracted from PPG signal 
have relationships with blood vessel conditions 
(Elgendi, 2012). Most researches extract features 
from velocity pulse waves (first derivative) and 
acceleration pulse waves (second derivative) of the 
PPG signal to interpret the original PPG signal 
(Takazawa, 1998). In this research, features are 
extracted from volume pulse waves and acceleration 
pulse waves. 

In volume pulse waves, Inflection Point Area 
Ratio (IPA), Augmentation Index (AI), Crest Time 
(CT), and Large Artery Stiffness Index (LASI) are 
extracted. 
 Inflection Point Area Ratio (IPA): IPA is the 

ratio of the four pulse areas between the 
selected points, S1, S2, S3 and S4, which are 
shown in Figure 6. IPA is used as an indicator 
of the total peripheral resistance (Wang, 2009). 
In this research, it is proposed to use the ratio 
of S2, S3, and S4 to S1. 

 

Figure 6: Definition of S1, S2, S3 and S4. 

 Augmentation Index (AI): AI is the ratio of the 
height of the diastolic peak to height of the 
systolic peak (Figure 7). AI is a measure of the 
wave reflection and arterial stiffness 
(Takazawa, 1998). 

 Crest Time (CT): CT is the time interval 
between the foot point and the systolic peak 
(Figure 7). CT is an important feature for 
classifying cardiovascular diseases (Alty, 
2007). 

 Large Artery Stiffness Index (LASI): LASI is 
the time interval between the systolic peak and 
the diastolic peak (Figure 7). LASI is related 
to large artery stiffness (Elgendi, 2012). 

 

Figure 7: Definition of AI, CT, and LASI. 
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As Figure 8 shows, an acceleration pulse wave 
includes five component waves, namely a-wave, b-
wave, c-wave, d-wave and e-wave. The type of 
acceleration pulse waveform varies depending on the 
blood vessel conditions. The height ratios and the 
time intervals of each wave are extracted. 
 Height ratio b/a, c/a, d/a, e/a; each height ratio 

reflects arterial stiffness. If arterial stiffness 
increased, b/a would increase and c/a, d/a, e/a 
would decrease (Takazawa, 1998). 

 Time interval between a-wave and b-wave 
(a_b), a-wave and c-wave (a_c), a-wave and d-
wave (a_d), a-wave and e-wave (a_e). Time 
interval of each wave describes acceleration 
pulse waveform.  

 

Figure 8: Acceleration pulse wave waveform. Waveform 
differs depending on the vascular status (Homma, 1992). 

In this research, features are selected in each 
regression model by greedy forward selection 
(Caruana, 1994). 

2.3 Regression Model 

In this research, two main approaches are taken to 
choose a better regression model. One is the 
deductive model based on blood vessel physics 
equation, which is represented as Eq. (1), while the 
other is the inductive model based on machine 
learning. 

2.3.1 Model based on Physics Equation 

As shown in Eq. (2), the extracted features determine 
individual blood vessel condition parameters b1 and 
b2. We use PWVm as pulse wave velocity in Eq. (2). 

ܲܤܵ ൌ ሺܽଵ  ܽଵଵݔଵ  ܽଵଶݔଶ ⋯ሻݒ௪௩ଶ 
                       ሺܽଶ  ܽଶଵݔଵ  ܽଶଶݔଶ ⋯) 

(2) 

ܽ is the partial regression coefficient and ݔ is the 
extracted feature. We named this model as LR. 

 

2.3.2 Model based on Machine Learning 

We use the inductive model based on machine 
learning, not using a hypothesis but learning only 
from the data. 

Three regression models are selected, K-Nearest 
Neighbours (KNN), Random Forest (RF) and Linear 
Support Vector Machine (SVM). 
 K-Nearest Neighbours (KNN): KNN is the 

simplest nonparametric decision procedure, 
and predicts a sample data by using its K-
nearest neighbors (Cover, 1967). 

 Random Forest (RF): RF is a combination of 
tree predictors, such that each tree depends on 
the values of random features sampled 
independently and with the same distribution 
for all trees in the forest (Breiman, 2001). 

 Linear Support Vector Machine (SVM): SVM 
is the algorithm that maximizes the margin 
between the training patterns and the decision 
boundary, and is widely used for classification 
and regression problems (B. E. Boser, 1992). 

Each hyper-parameter is optimized by cross 
validation. 

2.4 Evaluation 

As shown in Figure 9, in order to evaluate the 
accuracy without any individual dependency, each 
participant's data is taken out as test data in turn, and 
is evaluated with the data of remaining train data.  

 

Figure 9: Cross-validation for independent validation. 

Though it is better to split data into three sets, which 
are training data, validation data and test data, we 
will split data into two sets, train data and test data, 
because of the small sample size. 

3 EXPERIMENTS 

We conducted experiments on 18 young men 
(22.9±1.2 years) and six elderly men (43.3±9.3 
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years). All participants underwent an exercise test for 
28 minutes on a  bicycle ergometer, and four 
minutes of rest before and after the test, acquiring 
ECG, PPG and SBP by sphygmomanometer. The 
timing of load increase and decrease is shown in 
Figure 10. The load was adjusted corresponding to 
their exercise capacity.  

Participants wear the ECG sensor surrounding 
the heart, PPG sensor at the right index finger, and a 
sphygmomanometer with a cuff (Tango M2 from 
SunTech Medical) on the left arm. SBP was 
measured every two minutes by a cuff and the 
sampling rate of ECG and PPG measurements were 
both at 1 kHz. ECG and PPG signals are sampled at 
the same time with same microcomputer that would 
guarantee the synchronization. As a reference, 
participants wear PPG sensor at the right earlobe and 
finger cuff (ClearSight from Edwards Lifesciences) 
on the right middle finger. Figure 11 shows a 
schematic of the experimental set-up. All the 
participants gave their informed consent prior to the 
experiment. 

 

Figure 10: Exercise weight transition. 

 

Figure 11: Schematic of the experimental set-up. 

4 RESULTS 

The SBP distribution histogram is shown in Figure 
12, including 341 SBP measurements. The mean 
SBP measured by the sphygmomanometer was 

128.05±16.90 mmHg. 

 

Figure 12: Histogram of SBP measurements. 

We defined two groups, Group A only contains 
young men and Group B contains both, young and 
elderly men. The reason for not grouping elderly 
men is that the sample size was not large enough. 

The results from various regression models are 
shown in Table 1. Although KNN showed the best 
regression model for estimating SBP, there was not a 
big difference between the deductive model based on 
blood vessel physics equation and the inductive 
model based on machine learning.  

Table 1: Standard Deviation of estimation error for each 
regression model. 

 LR KNN SVM RF 
Group A [mmHg] 8.68 8.65 8.74 9.28 
Group B [mmHg] 8.79 8.68 8.75 9.20 

 

Table 2 shows the feature subset that is selected by 
each regression model and Eq. (3) shows the 
deductive model based on the blood vessel physics 
equation. While PWV is an important feature in each 
group, as expected, AI also appeared to be an 
important feature. HR is only effective for young 
men, and the height ratio of c-wave to a-wave of 
acceleration pulse wave might be effective for 
elderly men. 

Group A 
ܲܤܵ       ൌ ሺ13.0ܴܪ  1.8ܵ3/ܵ1ሻݒ௪௩

ଶ 
                                                    െ3.3125.9+ܫܣ 

Group B 
ܲܤܵ ൌ ሺെ0.3ܿ/ܽ  11.2ሻݒ௪௩

ଶ 
                                                     െ4.8128.0+ܫܣ 

(3)

Hereinafter, KNN is selected as the most accurate in 
the regression model evaluation, according to Table 
2. Figure 13 shows the plot of cuff-based SBP and 
estimated SBP of Group B, and the correlation 
coefficient was r=0.86 (p-value<0.01). Figure 14 
gives   the  Bland-Altman   plot,  comparing  for   the  
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Table 2: The feature subset that is selected by greedy forward selection in each regression model. Group A is the young 
men group and Group B is the young and elderly men group. ○ is the selected feature. 

  PWVb PWVm PWVp HR 
IPA 

(S2/S1, S3/S1, S4/S1) 
AI CT LASI 

Height ratio 
(b/a, c/a, d/a, e/a) 

Time interval 
(a_b, a_c, a_d, a_e) 

A 

LR - - - HR × PWVm
2 S3/S1 × PWVm

2 ○ - - - - 

KNN ○ ○ - ○ - ○ - - - a_b 

SVM - ○ - ○ - ○ - ○ - a_c, a_e 

RF - ○ - ○ - ○ - - - - 

B 

LR - ○ - - - ○ - - c/a × PWVm
2 - 

KNN ○ ○ - - - ○ - - e/a - 

SVM ○ ○ - - - ○ - - c/a a_e 

RF - ○ - - - ○ - - c/a - 

 
performance of the proposed method with the cuff-
based measurements of Group B. A total of 94.73% 
of the measurements lies in the limits of agreement 
(1.96×SD). 

 

Figure 13: Correlation plot of SBP. 

 

Figure 14: Bland-Altman plot of SBP. 

Our proposed model for Group B, which contains 
young and elderly men, showed that the mean error 
was 0.18±8.68 mmHg, and the mean absolute 
difference (MAD) was 6.93 mmHg, achieving grade 
C as IEEE standard requirement (IEEE Standards 
Association, 2014). 

5 DISCUSSIONS 

Previous researches show an effective model with 
initial calibration during rest or exercise. The present 
study proposed the calibration-free blood pressure 
estimation method based on PWV during rest and 
exercise and the method achieved grade C as IEEE 
standard requirement. Moreover, we showed that 
PPG features, especially AI, are effective to estimate 
SBP. Although we tried to find the cause of large 
error lying out of the limits of the agreement in 
particular subjects, we were not able to find it out 
because of the small sample size. 

Some limitations remain in this research. One is 
that our proposed model are validated by cuff-based 
blood pressure but should be validated by invasive 
arterial blood pressure. Furthermore, the proposed 
model applied to 18 young men (22.9±1.2 years) and 
6 elderly men (43.3±9.3 years), which is not enough 
to pass the standard requirement. Finally, the 
situation is limited to rest and specific exercise 
compared to ambulatory environment. 

6 CONCLUSIONS 

In this research, we presented a calibration-free 
blood pressure estimation method under ambulatory 
environment. Using PPG features, especially AI, 
enhances the accuracy of blood pressure estimation. 
HR is only effective to estimate SBP for young men, 
and height ratio of c-wave to a-wave of acceleration 
pulse wave might be effective in elderly men. 
According to the IEEE standard, the proposed 
method achieved grade C in the SBP estimation. 

In order to apply our method to daily use, we 
have to address some issues. 
 Validation should be conducted with a larger 

sample size, including female participants, 
elderly participants and hypertensive patients, 
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to pass the standard requirement and to 
investigate the difference between the 
hypertensive participants and non-
hypertensive participants as well as the elderly 
participants and the young participants. 

 Although we considered the situation of rest 
and exercise, other situations that could cause 
blood pressure changes, such as stressful 
situations, should be taken into account. 

 Motion artifact can obscure the waveform of 
PPG signals obtained from the hand for daily 
use. Therefore, obtaining PPG signal from 
different specific portions of a body that are 
less affected by motion artifact should be 
considered. 
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