
Distribution Data Across Multiple Cloud Storage using Reinforcement
Learning Method

Abdullah Algarni and Daniel Kudenko
Department of Computer Science, University of York, Deramore Lane, Heslington, YO10 5GH, York, U.K.

Keywords: Machine Learning, Reinforcement Learning, Multiple Cloud Computing Storage, File Access Pattern.

Abstract: Storing data on a single cloud storage service may cause several potential problems for the data owner such as
service continuity, availability, performance, security, and the risk of vendor lock-in. A promising solution to
tackle some of these issues is to distribute the data across multiple cloud storage services (MCSS). However,
the distinguishing characteristics of different cloud providers, in terms of pricing schemes and service perfor-
mance, make it difficult to optimise the cost and the performance concurrently on MCSS. This paper proposes
a framework for automatically tuning the data distribution policies across MCSS from the client side based on
file access patterns. The aim of this work is to optimise the average cost and the average service performance
(mainly latency time) on MCSS. To achieve this goal, two different machine learning algorithms are used in
this work: (1) supervised learning to predict file access patterns, and (2) reinforcement learning to control data
distribution parameters based on the prediction of file access pattern. The framework was tested on a cloud
storage emulator, where its was set to act like several common cloud storage services. The result of testing this
framework shows a significant improvement in the cost and performance of storing data in multiple clouds, as
compared to the commonly used uniform file distribution.

1 INTRODUCTION

Cloud storage allows users to store data on a remote
storage, where it can be accessed through the Internet.
It offers many advantages for users such as increased
work efficiency and reduced operational costs in the
long-run. One of the major benefits of cloud stor-
age is the scalability and elasticity, allowing organi-
sations to improve the management of growth of stor-
age capacity demand in their physical storage, which
are increasing dramatically over time (Rebello, 2012).
Despite these advantages, there are some underlying
concerns about cloud storage:

• Cloud performance: This usually refers to net-
work latency, which is the time a packet takes to
travel from the client-side until it is completely
stored on the cloud provider’s servers. Typically,
the latency is influenced by the distance between
locations of client and cloud service, besides net-
work throughput (Solomon et al., 2014).

• Cloud vendor lock-in: Every cloud provider
has specific API (Application Programming Inter-
face) requirements that allow users’ applications

to interact with their services. This means that
cloud users must build their applications based on
these requirements. The divergence between API
requirements poses the risk of locking a users’
data to a particular cloud provider (Mu et al.,
2012). Several unified APIs have been imple-
mented for interacting with many of the popular
cloud service providers such as Libcloud (Lib-
clouds, 2016) and Jcloud (Jclouds, 2016), which
allow users to move from one cloud to another
without changing their applications and also allow
them to adopt multiple cloud services.

• Service continuity: cloud services may suffer
outages or even go out of business at any time (see
(Marshall, 2013), (Brinkmann, 2016), (Armbrust
et al., 2010), (Tsidulko, 2015), (Bort, 2016) for
prominent examples).

Some researchers have addressed the above issues and
suggested to use the RAID principle (Redundant Ar-
ray of Independent Disks) to distribute data across
multiple cloud storage instead of relying on a sin-
gle one. Typically, RAID has been used in traditional
storage to avoid problems with a single hard-disk by

Algarni A. and Kudenko D.
Distribution Data Across Multiple Cloud Storage using Reinforcement Learning Method.
DOI: 10.5220/0006124804310438
In Proceedings of the 9th International Conference on Agents and Artificial Intelligence (ICAART 2017), pages 431-438
ISBN: 978-989-758-220-2
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

431

distributing data on multiple hard disks. The main ob-
jectives of using RAID: (1) improve the performance
of reading from and writing onto hard-disks and (2)
provide some level of fault tolerance in case one of
the hard disks fails. However, the case with multiple
cloud storage is different, because each cloud service
has different characteristics that affect the connectiv-
ity between client and cloud services. Furthermore,
the file access patterns along with file size play a key
role in the cost of cloud services. More specifically,
the cost of cloud storage is computed mainly from
the number of operations (typically: read, write, and
delete), network usage, and the lifetime and size of
files. Moreover, the file size directly affects the la-
tency time.

Optimising cost and latency on different cloud ser-
vices are made difficult because of the differences
in service performance and pricing schemes of each
cloud storage provider. Besides, the prices scheme
and performance in any cloud provider are not sta-
tionary, i.e. the cost may change automatically based
on how much data is stored or transferred through the
network. Thus, the optimisation should ideally ac-
count for long-term cost and performance, rather than
just optimising the current state. Accordingly, it is
important to find a dynamic solution that is capable of
optimising cost and latency time and adapt to changes
in the states of the different cloud storage services.

This paper demonstrates that reinforcement learn-
ing is a suitable technique to deal with these chal-
lenges because of its ability to maximise the expected
long-term utilities. Furthermore, we show how su-
pervised learning can be used to generate predictive
models of file access pattern within large enterprise
workflows.

The overall contribution of this paper is an intel-
ligent framework for optimising the cost and latency
on MCSS. The framework has a novel design to over-
come the problem of service continuity, availability
and vendor lock-in. The development of this frame-
work combines two machine learning methodologies:
(1) a new method of reinforcement learning to deter-
mine the percentage of file data that should be located
in each cloud storage based on file access patterns and
(2) supervised learning to predict these access pat-
terns for each file.

2 CLOUD COMPUTING
OVERVIEW

Cloud Computing has become a significant business
trend recently. In its broadest sense cloud computing
represents computing resources delivered as services

over the Internet. One of these services iscloud stor-
age service, which is getting much attention as a result
of the increasing of data capacity volume every year
in organisation data centres.

Broadly, there are two categories of ”on-line” stor-
age, both often referred to as cloud storage. The first
category is designed to be a personal on-line storage
for private consumers. This category usually offers
limited free storage and a fixed price per month for
any extra space. Examples of this kind of storage in-
cluding GoogleDrive and OneDirve. The second cat-
egory is designed to work as utility services, mainly
for enterprises. This type is called Cloud Storage Ser-
vice. It provides unlimited storage space and charges
users via a pay-as-you-go method. This category is
intended to be accessed primarily through an API.
Cloud storage services are more attractive to busi-
nesses since they offer many benefits, such as flexi-
bility, scalability, and a reduction in spending on tech-
nology infrastructure. (Furht, 2010; Thakur and Lead,
2010). Examples of this type include Google Cloud
Storage , Amazon S3 , Microsoft Azure Storage, and
Rackspace File Cloud. Usually, users of this type are
charged based on three factors: (1) the amount of data
stored, (2) the amount of network bandwidth used,
and (3) the number of operations such as read, write,
and delete.

This paper focus on the second type only (cloud
storage services), which is most relevant to our target
domain of data-intensive enterprises.

3 RELATED WORK

Several researchers have addressed the issue of de-
pending on a single cloud storage service. An useful
approach for tackling the problems associated with
a dependence on a single cloud provider is adopt-
ing MCSS. Although the distribution of data among
MCSS increases availability, and reduces the proba-
bility of losing data, it may increase the cost and not
guarantee to enhance the performance because it is re-
stricted to the lowest performance of cloud services.

Scalia (Papaioannou et al., 2012) presented a
cloud brokerage solution that continuously adapts the
placement of data, based on files access statistics
among several cloud storage services to minimise the
storage cost, improve the data availability, and elim-
inate vendor lock-in risk. However, the work does
not evaluate the impact of the system on the latency
time. HAIL (Bowers et al., 2009) used the princi-
ple of RAID to distribute files across a collection of
cloud storage to enhance the availability of data and
remotely manage data security risks in the cloud by

ICAART 2017 - 9th International Conference on Agents and Artificial Intelligence

432

Table 1: A comparison between our framework LOMCSS and otherwork, where S.Cost is Storage Cost, N.Cost is Network
Cost (i.e Transaction cost), O.Cost is Operation Cost (read, write, and delete).

Framework
the goal is to optimise Tackling problems of # clouds

S.Cost N.Cost O.Cost Latency time Vendor lock-in Availability Multiple
HAIL X x x x X X X
Scalia X x x x X X X
MCDB x x x x X X X

µLibCloud x x x X X X X
DepSky x x x X X X X
Deco X x x X x x x

LOMCSS X X X X X X X

employing the Proofs of Retrievability (PORs) sys-
tem. Although this work shows a reduction of storage
cost, they do not consider the effect of access patterns
on the network cost. Besides, they assume that the file
is static, such as backup files and archives.MCDB
(AlZain et al., 2011) is a multi-cloud database mod-
ule, which employs Shamers secret sharing algorithm
(Shamir, 1979) to reduce the data integrity, data in-
trusion, and service availability. (Mu et al., 2012)
have designed a prototype system calledµLibCloud
that leverages RAID to improve the availability, read
and write performance, global access experience of
clouds, along with fault tolerance of cloud storage
services. However, their work is subject to reason-
able extra costs. In other research, (Bessani et al.,
2011) presented a system calledDepSky that employs
a cryptographic secret sharing scheme with erasure
codes to avoid vendor lock-in and enhance the avail-
ability and efficiency of distributed data. Although
DepSky shows an improvement of performance, the
cost doubles on average compared to a single cloud
storage.All above mentioned solutions do not con-
sider the differences in cloud services network char-
acteristics that have an impact on the connectivity be-
tween client and cloud storage services. Each cloud
storage possesses a different network architecture and
access policies that affect the performance (latency
time) of reading and writing the data. Moreover, no
one, to the best of our knowledge, has proposed a so-
lution to optimise the cost and performance together
in the distribution of files across MCSS. However, it
is worth mentioning here that there is one work by
(Zhou et al., 2015) who proposed a system called
”Deco” to optimise cost while keeping performance
at reasonable levels . But, they designed their sys-
tem for distributing processes tasks across multiple
instances (not storage) in a single cloud for workload
purpose. Besides, they did not take account of net-
work and operational cost in their system. Further-
more, the efficiency of their solution will be restricted

by the slowest cloud service used, if they implement
it on MCSS. In this paper, we propose a framework
(we call it Learning to Optimise Multiple Cloud Stor-
age Services, for short LOMCSS) to optimise the
performance of multiple cloud storage, while keep-
ing the overall cloud storage cost low. Table (1) sum-
marises the differences between the various solutions
mentioned above compared to LOMCSS.

4 FRAMEWORK
ARCHITECTURE

Figure (1) demonstrates an overview of the pro-
posed framework. It comprises two machine learning
methodologies: (1) Reinforcement Learning that de-
cides how to distribute files across multi-clouds based
on the variance between cloud storage services and
the prediction of file access patterns; (2) supervised
learning that predicts the access pattern for each file,
which we call it ”Access Pattern Prediction Model”
(APPM). Before discussing these algorithms, we will
first give a brief description of the RAID technology.

APPM

File

RL Agent

RAID

C2 CkC1

File Attributes

Access pattern

attributes

Distribution Parameters

file fragment file fragment file fragment

Figure 1: A high level of the Distribution Framework Struc-
ture, where APPM is estimating file access pattern; the RL
decide how much proportion of each file size will be located
in each cloud; RAID is the distribution manager;C1,C2,and
CK are cloud storages.

Distribution Data Across Multiple Cloud Storage using Reinforcement Learning Method

433

4.1 RAID Controller

RAID stands for Redundant Array of Independent
Disks, which is a technology that combines several
hard disks into a single logical drive. It was devel-
oped to overcome the performance and availability is-
sues in traditional data centre hard disks. There are
several ways of using RAID to spread data across
multiple hard drives, which have been standardised
into various levels (Buyya et al., 2002). In this work,
we use the principle of RAID level 5 because it is
the most common RAID configuration for business
servers (LYNN, 2014) and it offers appropriate per-
formance and fault-tolerance.

Although employing RAID for MCSS can im-
prove the reliability, it is hard to optimise overall per-
formance while reading and writing to different cloud
storage services concurrently. Many factors impact
the performance such as the distance, the cloud net-
work structure and policies, and throughput. Conse-
quently, the overall performance is restricted by the
slower cloud services. In this work, we address this
challenge.

4.2 Access Pattern Predictive Model

The goal of this module is to predict the lifetime of the
file (lifespan) and how many times a file will be read
and updated in the future. Prediction is performed us-
ing numeric linear regression , which expresses the
inputs as a linear combination of attributes with pre-
determined parameters (usually called weights). As
the name implies , this technique use regression anal-
ysis to optimise the parameters over training.

In LOMCSS, file attributes are used as an in-
put vector for three linear regression models, each
of which predicts one of the following access pattern
characteristics: (1) Lifetime which indicates to how
many days the file will be active.; (2) Number of read
operations which shows how ; (3) Number of write
operations which is the number of times the file will
be updated during its lifetime. For our experiments,
we trained the algorithm on a file access log, based
on the business workflow of a large organisation. The
training set is composed of six input patterns and three
desired outputs.

4.3 Reinforcement Learning Agent

Reinforcement Learning (RL) is a machine learning
method that is used to tackle sequential decision-
making problems through a trial-and-error technique
(Sutton and Barto, 1998). In the broadest sense, RL

States
action-selection

policy

Representation

Learning
Algorithm

RL Agent

Environment

st+1

rt+1

at

Figure 2: The reinforcement learning paradigm consists of
an agent interacting with an environment. At each discrete
time t, the agent observesst and performsat in order to
transition to state subsequentst+1, and receives a reward
r(t+1).

agent interacts with a single environment by observ-
ing the state of its environment, selecting an action,
and receiving a scalar reward for that action, as de-
picted in figure 2. The reward from the environ-
ment provides an indication of the utility of the ac-
tion in a given state. More specifically, the environ-
ment is characterised by a set of statesS in which
every state is constructed from a vector of state fea-
tures, and the agent decides which action(s) to be per-
formed from a set of admissible actionsA based on an
action-selection policy. Over time, an RL agent can
learn how to behave in its environment through the
search for the optimal policy (denotedπ∗) of choosing
an action in a respective state. Many methodologies
have been used to learn an optimal policy in RL prob-
lems. These methodologies can be categorised into
three groups (Konda and Tsitsiklis, 2003): actor-only,
critic-only , and actor-critic methods.Critic refers the
state-value function, whereactor refers to the policy
structure. Most of the RL applications use methods
that estimate the value function (critic-only), which
determines the value of the agent to be in a given state
V : S→ R or the value of performing an action in a
particular stateQ : S×A→ R, which called Q-value.
Broadly, the value of each state is computed as the
sum of discounted rewards accumulated when start-
ing from states, acting under a policyπ for a horizon
of t time steps, which takes the following form:

Qπ(st ,at) = Eπ

[∞

∑
t=0

γrt |st = s,at = a

]
(1)

Where 0≤ γ < 1 is a factor used to discount the
future reward, andEπ is the expectation assuming the
RL agent follows policyπ. The goal of the agent is to
learn the optimal policyπ∗ that maximises the cumu-
lative rewards starting a given states.

The best way to represent the Q-value is via a
parametrised function approximation such as alin-
ear regressionandneural network. In this work we
use neural network with back-propagation that to op-
timise the network parameters withTemporal Differ-
ence error(TD error) function that evaluate the Q-

ICAART 2017 - 9th International Conference on Agents and Artificial Intelligence

434

value function, which takes the below form:

TD=
[
rt + γQ(st+1,at+1)

]
−Q(st ,at) (2)

Despite the wide use of the critic-only method,
employing this method in a continuous state and ac-
tion spaces can be non-trivial and time-consuming
(Hasselt, 2012). In such case, actor-critics methods
have been demonstrated to be more successful (Has-
selt, 2012). Actor-critics methods rely on two func-
tions: (1) the actor function which is used to imple-
ment a stochastic policy that maps states to actions,
and (2) the critic or the value function as described
above. This method , also, usesTD-error function (2)
to evaluation and update critic value and adjusting the
action probabilities.

Recall that the action of the RL agent, in this work,
is to decide on the proportion of each file to be stored
in each cloud storage service to optimise the cost and
latency time. This implies that the RL agent must
execute multiple continuous actions simultaneously,
where each action is dependent on other action val-
ues since they all have to sum up to 100 percent.
Moreover, in this work, the RL agent interacts with
multiple independent environments (the cloud storage
providers) and receives various reward values, which
means we have multiple states values at each time step
t.

The reward function incorporates two factors: (1)
latency time and (2) total cost of each cloud service
including storage, network, and operation cost. These
factors are subject to change at any time which means
that the reward isnon-stationary. With all these chal-
lenges, we developed a new algorithm specially de-
signed for this problem.

The new algorithm is an on-policy algorithm be-
cause it is based on the state value function that is
evaluated based on theTD-error. Unlike critic-only
algorithms, it does not have a discrete action space.
Also, in contrast to actor-critic algorithms, it does not
have an independent actor function. However, actions
are generated directly from the state value function.
This algorithm can be thought of as a value and ac-
tions approximation based on a neural network. More
specifically, the neural network produces a number of
output values equal to the number of cloud services
and then transforms these value to actions, i.e. a list
of percentage values corresponding to the file propor-
tion to be stored on each cloud service provider re-
spectively. Also, unlike other applications of neural
networks in RL, in this work, the number of output
values in the neural network is not fixed because the
number of cloud services available can change over
time. This means that the number of output values
can be increased or decreased at any time, which is

another contribution in this work. More details about
our algorithm are provided in the following section.

4.3.1 Learning to Optimise Multiple Cloud
Storage Services (LOMCSS)

Our framework (LOMCSS) is based on neural net-
works, which is a powerful mathematical method ca-
pable of representing complex linear and non-linear
functions (Whiteson, 2012). It has been used widely
in machine learning applications. The basic struc-
ture of a neural network is a feed-forward network.
Usually, neural network applications use the back-
propagation (BP) algorithm to adjust the connection
weights using the gradient descent method. In most
RL applications, there are two methods to approxi-
mateV(s) or Q(s,a) using a neural network. The
first is that the neural network takes the state vec-
tor s as input, and output a single number that repre-
sentsV(s). The second method is to produce multiple
outputs, where each output is interpreted asQ(s,a)
denoting the value of actiona in the given states.
Then the RL agent chooses a single action that sat-
isfies the policyπ(s,a) = argmax(Q(s,a)). After-
wards, the agent computes theTD-error for each out-
put value separately and applies back-propagation to
update the weights, ignoring the rest of the output
nodes. This method requires a fixed number of output
nodes, which does not fulfil our requirement in this
work. For this reason, we design a new method for the
neural network that fulfills our target, as illustrated in
figure 3. The goal of this new design is to allow an
RL agent to interact with each cloud independently
and produce multiple output values, where each one
of them represents the value of the state in the differ-
ent environment. For example, suppose we have three
cloud storages, each of which has its state spaceS.
The neural network takes all the state features from
APPM as the input vector and produces three out-
put values, each one corresponding to a single cloud.
Each one of these values can be interpreted asV(s) for
the state of the file on that cloud. As shown in figure 3,
each output value will be transformed into a single nu-
merical action, considering the value of other actions,
as shown in Algorithm?? (line #8). After executing
all actions, the RL agent receives a reward from each
environment, which is used to compute the multiple
TD-error functions. Each of these errors is used to
evaluate the state value for each cloud within the BP
algorithm. However, it is worth mentioning that the
cost is an accumulative function based on usage rate,
which means it rises over time within the billing pe-
riod. Thus, optimising the cost of cloud storage after
each action is tricky. On top of that, as aforemen-
tioned, the reward function is non-stationary. Thus,

Distribution Data Across Multiple Cloud Storage using Reinforcement Learning Method

435

x2 Σ ϕ Σ ϕ y2 a2 c2

x1

Input layer

(i ∈ R>0)

Σ

Hidden Layer

(j ∈ R>0)

ϕ

Transfer

function

Σ

Output Layer

(k∈ R>0)

ϕ

Transfer

function

y1

V(s)

a1

Action

Values

c1

xi

.

.

.

.
Σ

.

.

.

ϕ Σ

.

.

.

ϕ yk a3 ck

.

.

.

ε2

ε1

εk

v11

Weights

v[i, j]

v12
v1 j

v21

v2 j

v22

v11

v32

vi j

w11

Weights

w[j,k]

w12

w1k

w22

w21

w23

w j2

w j1

w jk

r2

r1

rk

BP function

BP function

BP function

S
tate

FeaturesX

Figure 3: At each discrete timet, the agent receives file access pattern arbitrates (from APPM) that represent the state features
X, which will be passed through neural network to produce different outputs. Each output will be transformed to proportion
of the file size that will be stored in each cloudak. Afterwards, the agent receives rewards from each cloudrk, which will be
used by theTD-error (TDK). Then, the back-propagation function (BP) updates the connection weights.

we compute the cost with respect to the amount used
of data as expressed below:

cost=
n

∑
i=0

(
sci

sui
+

nci

nui
+

otci

otui
) (3)

Wherescis the cost of storing data (su) into cloud
i per US dollar,su is the amount of data stored in
cloud i per GB,nc is the network usage cost,nu the
amount of transferring data to cloud,otc is the cost
of performing a number of operations (otu) on cloud
provideri. n denotes to the number of cloud providers
available. In short, by given the network the pre-
dicted attributes of each file (as discussed in section
4.2) along with the file size, the network produces
multiple output values corresponding to the number
of cloud storage services available at a timet. The
output values represent the value of storing the file on
each cloud. Based on that, the RL agent decides how
much proportions of the file size is going to be sent to
each cloud. Afterwards, the decisions will be evalu-
ated and tuned usingTD-error and back-propagation.
One of the strengths of the proposed framework is that
the number of outputs of the network is flexible, cor-
responding to the number of cloud storage providers
available at each time step. This feature gives the
framework the ability to overcome the issue of ser-
vice availability and continuity. For example, if one
of the cloud providers is not available for any reason,
or the data owner has added new cloud storage, the
number of output nodes can be changed accordingly,
without the need to reset the agent.

5 EXPERIMENT SET-UP

In this section, we show how the proposed framework
was evaluated. First of all, we have designed and
implemented a cloud storage emulator, especially for
this work to emulate performance and costs. The em-
ulator is flexible and capable of emulating any num-
ber of cloud storages, simultaneously. The perfor-
mances of the providers in this emulator have been
set up to act as a number of cloud providers: Google
Cloud storage services, Amazon S3, Microsoft Azure
Storage, and Rackspace Cloud File. The performance
of these providers has been measured using theper-
formance analysis servicesof ”cloudharmony.com”.
Then, APPM has been trained based on an access log
file for several department systems of a large organi-
sation (SFD, www.sfd.gov.sa), which has been gener-
ated based on the file workflow of the systems for va-
cations, payroll, financial reporting, and budget. Re-
call, that the goal of APPM is to predict access pat-
tern attributes for each file which includes expected
lifetime, the number of read operations, and a num-
ber of write operations. After the APMM has trained,
we used the following statistical methods to evaluate
the overall quality of the APMM(1) Correlation co-
efficient (denoted asr), and (2) Root Mean Squared
Error (asRMSE).(3) Mean Absolute Error (denoted
asMAE).

The settings for the RL agent and the neural net-
work are shown in table 2. Most of these settings
have been chosen based on (Gatti, 2015). Finally, the
whole framework has been evaluated by distributing
2874 files with a total size 261 GB.

In order to test the flexibility of the framework (i.e.
how the RL agent adapts with a dynamically changing
of number of cloud providers), we defined three sce-

ICAART 2017 - 9th International Conference on Agents and Artificial Intelligence

436

Table 2: Neural network and RL parameters sittings.

parameters values
input nodes 4

hidden nodes 16
output nodes = # cloud storages

Transfer function 1
1+e−x

β 0.0007
η 0.5
α 0.001
λ 0.7
γ 0.75

Figure 4: comparison between the cost and latency time in
each cloud individually and between the Standard RAID.

narios: Scenario #1: the number of cloud providers
are fixed and does not change during the learning pro-
cess.Scenario #2: one of the cloud providers is re-
moved out of the cloud storage array in the middle
of the learning process.Scenario #3: a new cloud
provider is added to the storage array in the midst of
the learning process.

6 EXPERIMENT RESULTS

The results of the training data that performed to train
the APPM are shown in Table 3. Also, To evaluate our
approach, we first measured latency time and the total
cost for each cloud provider individually by sending
the whole files to each one (i.e. without distribution)
. Therefore we distributed the entire data into each
cloud providers individually. Then we re-distribute
them using the standard principle of RAID. When us-
ing RAID, the average latency time was 11.22 sec-
onds for all files and the total cost was $36.13. After
that, we tested LOMCSS on the same data and the
same cloud storage provider settings. The bar chart
in figure 4 illustrates the differences in total cost and
average latency times in four different clouds. In ad-
dition, the graph shows the cost and average latency
of distributing files using RAID and LOMCSS.

The result indicates that, by using LOMCSS, the
total cost decreased by % 22 which amounted to

Table 3: APPM, measurement evaluation.

Lifetime # of read # of write
r 0.9761 0.9228 0.9889

MAE 0.9621 0.5648 0.0418
RMSE 1.3025 1.143 0.2119

$28.1. and the average latency time was significantly
reduced by more than %66 (to 3.78 seconds), com-
paring to RAID. In fact, The RL agent learned how to
optimise both latency and cost by applying different
weight to cost and latency based on the importance of
the file which is extracted from the file access pat-
tern attributes. Additionally, the experiments show
that the framework is flexible and adaptable when
changing the number of clouds or the behaviour of a
cloud. Figures 5 6 demonstrate how the agent’s learn-
ing curve changes when the number of available cloud
providers is reduced increased based on the scenarios
that we described in the previous section.

0 50 100 150 200 250 300 350 400 450 500

Episode

25

30

35

40

45

50

C
os

t p
er

 $

Scenario #1
Scenario #2
Scenario #3

Figure 5: Cost Scenarios, cost slightly decreases when a
one of cloud was removed, and raised up as one cloud was
removed , then start gone down over learning.

0 50 100 150 200 250 300 350 400 450 500

Episode

0

5

10

15

20

25

30

La
te

nc
y

T
im

e
pe

r
se

co
nd

s

Scenario #1
Scenario #2
Scenario #3

Figure 6: Latency Scenario , cost raised up as one cloud
was removed , then start gone down over learning.

7 CONCLUSION

This paper presented a framework for automatically
tuning distribution parameters over multi-cloud stor-
age services to optimise long-term cost and latency
time. The framework combines two machine learn-
ing methods: supervised learning for predicting the

Distribution Data Across Multiple Cloud Storage using Reinforcement Learning Method

437

access patterns for each file and RL for tuning the
distribution parameters based on the predicted access
patterns. We empirically demonstrated the benefits
of the framework by performing experiments on a
cloud storage emulator. The main challenges that
were tackled are how to interact with multiple envi-
ronments, execute a non-fixed number of actions si-
multaneously, and deal with non-stationary multiple
rewards signal. Therefore, the learning algorithm in
RL has been designed in a unique way to satisfy the
goal of this work. The empirical evaluation showed
that the proposed framework is capable to signifi-
cantly reduce both the cost and average latency time
in MCSS.

REFERENCES

AlZain, M., Soh, B., and Pardede, E. (2011). Mcdb: Us-
ing multi-clouds to ensure security in cloud comput-
ing. In Dependable, Autonomic and Secure Comput-
ing (DASC), 2011 IEEE Ninth International Confer-
ence on, pages 784–791. IEEE.

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz,
R., Konwinski, A., Lee, G., Patterson, D., Rabkin, A.,
Stoica, I., and Zaharia, M. (2010). A view of cloud
computing.Commun. ACM, 53:50–58.

Bessani, A., Correia, M., Quaresma, B., Andr, F., and
Sousa, P. (2011). Depsky: Dependable and secure
storage in a cloud-of-clouds. InProceedings of the
Sixth Conference on Computer Systems, EuroSys ’11,
pages 31–46, New York, NY, USA. ACM.

Bort, J. (2016). Google apologizes for cloud outage that one
person describes as a comedy of errors.

Bowers, K. D., Juels, A., and Oprea, A. (2009). Hail: A
high-availability and integrity layer for cloud storage.
In Proceedings of the 16th ACM Conference on Com-
puter and Communications Security, pages 187–198,
New York, NY, USA. ACM.

Brinkmann, M. (2016). Copy cloud stor-
age services life ends on may 1, 2016.
http://www.ghacks.net/2016/02/02/copy-cloud-
storage-services-life-ends-on-may-1-201. Online;
accessed 19-10-2016.

Buyya, R., Cortes, T., and Jin, H. (2002).A Case for Redun-
dant Arrays of Inexpensive Disks (RAID), pages 2–14.
Wiley-IEEE Press.

Furht, B. (2010). Cloud Computing Fundamentals, chap-
ter 1. Springer.

Gatti, C. (2015).Design of Experiments for Reinforcement
Learning. Springer, Heidelberg New York Dordrecht
London.

Hasselt, H. (2012).Reinforcement Learning in Continuous
State And action Spaces, pages 207–251. Springer,
Heidelberg New York Dordrecht London.

Jclouds, A. (2016). The java multi-cloud toolkit.
http://jclouds.apache.org. Online; accessed 08-07-
2014.

Konda, V. R. and Tsitsiklis, J. N. (2003). On actor-critic al-
gorithms.SIAM J. Control Optim., 42(4):1143–1166.

Libclouds, A. (2016). One interface to rule them all.
https://libcloud.apache.org. Online; accessed 08-07-
2014.

LYNN, S. (2014). Raid levels explained.
Marshall, D. (2013). Cloud storage

provider nirvanix is closing its doors.
http://www.infoworld.com/article/2612299/cloud-
storage/cloud- storage-provider-nirvanix-is-closing-
its-doors.html. Online; accessed 19-10-2016.

Mu, S., Chen, K., Gao, P., Ye, F., Wu, Y., and Zheng, W.
(2012). libcloud: Providing high available and uni-
form accessing to multiple cloud storages. InGrid
Computing (GRID), 2012 ACM/IEEE 13th Interna-
tional Conference on, pages 201–208, Beijing. IEEE.

Papaioannou, T., Bonvin, N., and Aberer, K. (2012). Scalia:
An adaptive scheme for efficient multi-cloud storage.
In High Performance Computing, Networking, Stor-
age and Analysis (SC), 2012 International Confer-
ence, pages 1–10. ACM.

Rebello, J. (2012). Subscriptions to cloud storage services
to reach half-billion level this year.

Shamir, A. (1979). How to share a secret.Commun. ACM,
22:612–613.

Solomon, M. G., Kim, D., and Carrell, J. L. (2014).Funda-
mentals Of Communications And Networking. Jones
and Bartlett Publishers, Inc., USA, 2nd edition.

Sutton, R. S. and Barto, A. G. (1998).Reinforcement learn-
ing: An introduction. MIT press.

Thakur, N. and Lead, Q. (2010). Performance testing in
cloud. Citeseer A pragmatic approach.

Tsidulko, J. (2015). Overnight aws outage reminds world
how important aws stability really is. CRN. Online;
accessed 01-06-2016.

Whiteson, S. (2012).Evolutionary Computation for Rein-
forcement Learning, pages 325–355. Springer, Hei-
delberg New York Dordrecht London.

Zhou, A. C., He, B., Cheng, X., and Lau, C. T. (2015).
A declarative optimization engine for resource pro-
visioning of scientific workflows in iaas clouds. In
Proceedings of the 24th International Symposium on
High-Performance Parallel and Distributed Comput-
ing, HPDC ’15, pages 223–234, New York, NY, USA.
ACM.

ICAART 2017 - 9th International Conference on Agents and Artificial Intelligence

438

