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Abstract: We propose an algorithm, called P-HAF, to estimate planar homographies using partially known local affine
transformations. This general theory is able to exploit the affine components obtained by the commonly used
partially affine covariant detectors, such as SIFT or SURF, in a real time capable way. P-HAF as a minimal
solver can estimate the homography using two SIFT correspondences, moreover, it can deal with any number
of point pairs as an overdetermined system. It is validated both on synthesized and publicly available datasets
that exploiting all information leads to more accurate estimates and makes multi-homography estimation less
ambiguous.

1 INTRODUCTION

Estimating planar correspondences is a crucial part of
several vision tasks e. g. robot vision (Zhou and Li,
2006; Chen et al., 2006), camera calibration (Zhang,
2000; Ueshiba and Tomita, 2003; Chuan et al., 2003),
3D reconstruction (Zhang and Hanson, 1996; Werner
and Zisserman, 2002) and augmented reality appli-
cations (Prince et al., 2002). Between two views,
a planar correspondence is described by a 3× 3 ho-
mography matrix which is a P2 → P2 perspective
transformation. Even though the most popular es-
timation techniques are based on point correspon-
dences (Hartley and Zisserman, 2003), a homogra-
phy is estimable from line (Hartley and Zisserman,
2003), region (Tanacs et al., 2014), contour (Jain
and Jawahar, 2006), or affine correspondences (Köser,
2009; Chum and Matas, 2012; Barath and Hajder,
2016). Most of these algorithms include data normal-
ization (Hartley and Zisserman, 2003), and numerical
optimization to minimize the effect of the noise.

In this paper, we assume that not only the point lo-
cations but several affine components and the funda-
mental matrix are known.1 Local affinities are usually
represented by elliptical features. We adapt the defi-
nition used in (Chum and Matas, 2012; Barath and
Hajder, 2016) where a local affine transformation is
defined as the first-order Taylor-approximation of the

1The pre-estimation of the fundamental matrix for rigid
scenes using point correspondences is a usual step in com-
puter vision pipelines. The proposed theory is straightfor-
ward to generalize for multiple rigid motions.

related the homography.

Local affine transformations have become more
popular in the last decade. Matas et al. (Matas et al.,
2002) presented that local affinities can support stereo
matching. The 3D camera pose can also be estimated
using a corresponding point pair and the related affin-
ity as it is proposed by Köser and Koch (Köser and
Koch, 2008). Staying on the topic of 3D reconstruc-
tion, these transformations can facilitate the recov-
ery of spatial point coordinates (Köser, 2009). Cur-
rent 3D reconstruction pipelines exploit point corre-
spondences as well as patches (Furukawa and Ponce,
2010; Bódis-Szomorú et al., 2014; Raposo and Bar-
reto, 2016) to compute realistic 3D models of real-
world objects. Bentolila et al. (Bentolila and Fran-
cos, 2014) proved that affine transformations put con-
straints on the epipoles in stereo images. Barath et
al. (Barath et al., 2016b) showed that a one-to-one re-
lationship exists between the surface normal and the
local affinity.

Even though local affine transformations are use-
ful and can significantly improve the quality of the
estimation, it is time consuming to recover them –
e. g. by affine covariant detectors which cannot be
applied in real time. Even so, most of the detec-
tors obtain some part of these local affinities, such as
SIFT (Lowe, 1999) or SURF (Bay et al., 2006) recov-
ering the rotational and scale components. Therefore,
using solely the translation part (the point location)
causes information loss. The motivation of this re-
search is to formulate a general theory about the usage
of the affine components obtained by partially affine
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covariant feature detectors. The main contributions:

1. A general theory to exploit the affine components
obtained by partially affine covariant detectors
which is real time capable.

2. The proposed method estimates the homography
from two SIFT correspondences if the fundamen-
tal matrix is known. To our knowledge, the mini-
mum number of required point pairs was three.

1.1 Theoretical Background

Homography is defined in this paper as a mapping
P2→ P2 which maps each vector pi

1 = [ui
1 vi

1 1]T

to its corresponding location pi
2 = [ui

2 vi
i,2 1]T as

[ui
2 vi

2 1]T ∼ H[ui
1 vi

1 1]T . The lower and up-
per indices denote the index of the current image (∈
{1,2}) and the number of the feature point (i ∈ [1,n]),
respectively.
Homography and Fundamental Matrix. The well-
known relationship

[e2]×H = F,

where

F =




f11 f12 f13
f21 f22 f23
f31 f32 f33


 , H =




h11 h12 h13
h21 h22 h23
h31 h32 h33


 ,

and e2 = [ex ey]
T are the homography, fundamental

matrix and epipole on the second image, respectively,
decreases the degrees-of-freedom of the homography
estimation to three as it is shown in (Barath and Ha-
jder, 2016) in detail. As a consequence, homography
H is determined by its last row (h31, h32, and h33) as
follows:

h1 j = exh3 j + f2 j, h2 j = eyh3 j + f1 j, j ∈ {1,2}. (1)

To form a three-point-solver, called 3PT in the further
sections, Eq. 1 is substituted into the system given by
p2∼Hp1. The obtained Direct Linear Transform-like
(DLT) system is as

(u1ex−u1u2)h31 +(v1ex− v1u2)h32 +

(ex−u2)h33 =−u1 f21− v1 f22− f23, (2)
(u1ey−u1v2)h31 +(v1ey− v1v2)h32 +

(ey− v2)h33 = u1 f11 + v1 f12 + f13.

Note that one point pair yields only one equation since
the fundamental matrix reduces the DoF of the corre-
spondence problem to one since the point pairs have
to lie on the related epipolar lines. Thus three corre-
spondences are enough to estimate the homography.

Homography estimation using three corre-
spondences and the fundamental matrix is well-
known (Hartley and Zisserman, 2003).

Local Affine Transformation regarding to the i-th
correspondence

Ai =

[
ai

11 ai
12 ai

13
ai

21 ai
22 ai

23

]
(3)

is defined as the partial derivative of the related ho-
mography H (Köser, 2009; Chum and Matas, 2012;
Molnár and Chetverikov, 2014) as follows:

ai
11 =

∂ui
2

∂ui
1
=

h11−h31ui
2

s
,

ai
12 =

∂ui
2

∂vi
1
=

h12−h32ui
2

s
, (4)

ai
21 =

∂vi
2

∂ui
1
=

h21−h31vi
2

s
,

ai
22 =

∂vi
2

∂vi
1
=

h22−h32vi
2

s
,

where s = h3[ui
1,v

i
1,1]

T and h j is the j-th row of H
( j ∈ {1,2,3}). These four parameters of Ai are re-
sponsible for horizontal and vertical scales, shear and
rotation. The last column of Ai determines the trans-
lation as ai

13 = ui
2−ui

1 and ai
23 = vi

2− vi
1.

Homography H defines the correspondence be-
tween the coordinates in the first (u1 and v1) and sec-
ond (u2 and v2) images as

u2 =
hT

1 [u1,v1,1]
T

hT
3 [u1,v1,1]

T , v2 =
hT

2 [u1,v1,1]
T

hT
3 [u1,v1,1]

T .

2 HOMOGRAPHY ESTIMATION
FROM AFFINE
TRANSFORMATION

In this section, we show that the problem becomes
much simpler if the epipolar geometry and local affine
transformations are known.

2.1 Homography from Affinities

As it is shown in the Homography from Affine
transformation and Fundamental matrix (HAF)
method (Barath and Hajder, 2016) the estimation of
a homography can be written in an inhomogeneous,
linear form if at least one local affine transformation
and the epipolar geometry is known. The coefficient
matrix C is as follows:

C =




ai
11ui

1 +ui
2− ex ai

11vi
1 ai

11
ai

12vi
1 +ui

2− ex ai
12ui

1 ai
12

ai
21ui

1 + vi
2− ey ai

21vi
1 ai

21
ai

22vi
1 + vi

2− ey ai
22ui

1 ai
22


 (5)
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The equation system can be formed as Cy = d ,
where vector d = [ f21, f22,− f11,− f12] is the inhomo-
geneous part while y = [h31,h32,h33]

T is the vector of
the unknown parameters. The optimal solution in the
least squares sense is given by y = C†d where C† is
the Moore-Penrose pseudo-inverse of matrix C. Note
that augmenting this system with the formulas regard-
ing to the point locations (Eqs. 2) leads to more robust
estimation.

2.2 Affine Transformation Model

Let us denote the affine transformation related to the
i-th (i ∈ [1,N]) point pair without the translation part
as follows:

Ai =

[
ai

11 ai
12

ai
21 ai

22

]
=

[
cos(αi) −sin(αi)
sin(αi) cos(αi)

][
si

x wi

0 si
y

]
=

[
si

x cos(αi) wi cos(αi)− si
y sin(αi)

si
x sin(αi) wi sin(αi)+ si

y cos(αi)

]
(6)

Variables αi, si
x, si

y, and wi are the rotational angle,
scales along x and y axes, and the shear parameters,
respectively.

2.3 Homography from Partially Known
Affine Transformation

In this section, it is shown that not the full local affin-
ity is necessary for homography estimation, but their
parts – obtained by e. g. SIFT or other partially affine
covariant detector – can also be exploited. In the rest
of this paper the proposed method is called P-HAF
as the abbreviation of Partial HAF. Let us substitute
Eqs. 6 into Eqs. 5 as

h31
(
sx cos(αi)ui

1 +ui
2− ex

)
+

h32si
x cos(αi)vi

1 +h33si
x cos(αi) = f21, (7)

h32
(
(wi cos(αi)− si

y sin(αi))vi
1 +ui

2− ex
)
+

h31(wi cos(αi)− si
y sin(αi))ui

1 +

h33(wi cos(αi)− si
y sin(αi)) = f22, (8)

h31
(
si

x sin(αi)ui
1 + vi

2− ey
)
+

h32si
x sin(αi)vi

1 +h33si
x sin(αi) =− f11, (9)

h32
(
(wi sin(αi)+ si

y cos(αi))vi
1 + v2

i − ey
)
+

h31(wi sin(αi)+ si
y cos(αi))ui

1 +

h33(wi sin(αi)+ si
y cos(αi)) =− f12. (10)

These four equations contain the affine transforma-
tion in an easy-to-handle form. For a given part of the

affinity, e. g. rotation and scale, the appropriate equa-
tions can be selected and used. After the selection,
the given system is linear, inhomogeneous and can be
solved as in Section 2.1.

2.4 Specialization to SIFT Features

The popular SIFT (Lowe, 1999) detector obtains ro-
tation and scale covariant features, therefore, the pro-
posed theory can be specialized to use SIFT. Beside
the point locations the rotation and the scale is given
for each feature point. After the matching process the
related parts of the local affine transformation are as
follows:

s =
s2

s1
, α = α2−α1,

where s1, s2, α1, and α2 are the scales and angles on
the two images, respectively. Here, we assume s as
horizontal scale, thus only Eqs. 7, 9 have to be kept.
Even though one SIFT correspondence yields three
equations – one from the locations and two from the
affinity –, the two regarding to the affine parts are lin-
early dependent. As a consequence, two SIFT corre-
spondences are enough for homography estimation –
and the system has been already overdetermined.

For N ≥ 2 point pairs, an overdetermined, inho-
mogeneous, linear system is formed.

2.5 Normalization

As it is well-known, normalization of the input data
is a usual and important part of homography estima-
tion (Hartley and Zisserman, 2003) due to the numer-
ical instability. Let us denote the normalization trans-
formations by T1 and T2 where the normalized ho-
mography is calculated as Ĥ = T2HT−1

1 . The trans-
formation matrices T1 and T2 are special affine trans-
formations: they consist of translation and scale. The
horizontal and vertical scales of the two transforma-
tions are denoted by lk

x and lk
y (k ∈ {1,2}), respec-

tively.
Normalization of Point Pairs and Fundamental
Matrix. The normalized point pairs are calculated
on the first and second images as p̂i

1 = T1 pi
1, and

p̂i
2 = T2 pi

2, respectively. The normalization formula
for the fundamental matrix is written (Hartley and
Zisserman, 2003) as

F̂ = T−T
2 FT−1

1 . (11)

Normalization of the Affine Transformation. The
normalizing transformation modifies the basic equa-
tions written in Eqs. 4. For example,

(
h31ui

1 +h32vi
1 +h33

)
âi

11 =
l2
x

l1
x

h11−
l2
x

l1
x

u2
i h31 (12)

P-HAF: Homography Estimation using Partial Local Affine Frames

229



where li
x =Ti,11, li

y =Ti,22(i∈ {1,2}) are the horizon-
tal and vertical scales of the i-th normalizing transfor-
mation, respectively. The left side of Eq. 12 is the
multiplication of the projective depth and first affine
parameter in the normalized system. After elemen-
tary modification, it is straightforward to prove that
the affine parameters are modified as

âi
11 =

(
l2
x/l1

x
)

ai
11, âi

12 =
(
l2
x/l1

y
)

ai
12,

âi
21 =

(
l2
y/l1

x
)

ai
21, âi

22 =
(
l2
y/l1

y
)

ai
22.

The normalized affine transformations modify
Eqs. 7–10 as

h31

(
si

x

(
l2
x /l1

x

)
cos(αi)ui

1 +ui
2− ex

)
+

(
l2
x /l1

x

)(
h32si

x cos(αi)vi
1 +h33si

x cos(αi)
)
= f21, (13)

h32

(
(wi cos(αi)− si

y sin(αi))
(

l2
x /ly

)
vi

1 +ui
2− ex

)
+

(
l2
x /l1

y

)
h31(wi cos(αi)− si

y sin(αi))ui
1 +

(
l2
x /l1

y

)
h33(wi cos(αi)− si

y sin(αi)) = f22, (14)
(

l2
y /l1

x

)
h31

(
si

x sin(αi)ui
1 + vi

2− ey

)
+

(
l2
y /l1

x

)(
h32si

x sin(αi)vi
1 +h33si

x sin(αi)
)
=− f11, (15)

(
l2
y /l1

y

)
h32

(
(wi sin(αi)+ si

y cos(αi))vi
1 + vi

2− ey

)
+

(
l2
y /l1

y

)
h31(wi sin(αi)+ si

y cos(αi))ui
1 +

(
l2
y /l1

y

)
h33(wi sin(αi)+ si

y cos(αi)) =− f12. (16)

If the system is combined with Eqs. 2 an inhomoge-
neous, linear system of equations is obtained. Note
that the normalized correspondences and F̂ are used
in Eqs. 13– 16.

2.6 Algorithmic Details

Alg. 1 shows the P-HAF algorithm specialized to
SIFT features. The required input is a set of point cor-
respondences P and the related rotation R and scale S
components, for each. The output is the homogra-
phy. Note that for functions with parameter · · · , all
the available ones are passed.

2.7 Processing Time

Time Demand of the Algorithm. The processing
time of the proposed algorithm depends on the
solution of the inhomogeneous, linear system which
can be carried out via Moore-Penrose pseudo-
inverse. On a serial processor its time complexity is
O(m3)+O(r3) where m and r are the row number of
the coefficient matrix A and its rank, respectively.

Algorithm 1: P-HAF for SIFT points.
Input: P – points on the first and second images

R, S – rotation and scale for each point pair
F – fundamental matrix

Output: H – homography

1: P,R,S := Normalization(. . . ); . Sec. 2.5
2: C,b := BuildCoefficientMatrix(. . . ); . Eqs. 7, 9
3: x := C†b; . † is the Moore-Penrose pseudo-inverse
4: H := HomographyFromFundMat(x, F); . Eq. 1

Remark that it is reduced to O(m)+O(r3) in paral-
lel computing (Courrieu, 2008). Therefore, P-HAF is
computable in a few milliseconds (see Table 2).
Time Demand of RANSAC. Augmenting
RANSAC (Fischler and Bolles, 1981) or other
robust statistics (Maronna et al., 2006) with P-HAF
significantly reduces the iteration number, thus higher
processing speed is achieved. Table 1 reports the
required iteration number (Hartley and Zisserman,
2003) of RANSAC to converge using different
minimal methods (columns) as engine. Rows show
the ratio of the outliers.
Table 1: Required iteration number of RANSAC augmented
with minimal methods (columns) with 95% probability on
different outlier levels (rows).

# of required points
outl. 2 3 4
50% 11 23 47
80% 74 373 1871

It can be seen that using two points leads to signif-
icantly less iterations, thus speeding up the process,
especially for high outlier ratio.

3 EXPERIMENTAL RESULTS

The aim of this section is to show that the proposed
theory works both on synthetic and real world data.
All algorithms ended with a numerical refinement
stage using Levenberg-Marquardt optimization tech-
nique (Moré, 1978) to minimize re-projection error.

Table 2: The processing time (in milliseconds) of normal-
ized P-HAF – including normalization – implemented in
Matlab and C++. The first row shows the time of P-HAF
applied to a minimal subset – two correspondences. The
second one reports the mean time on all pairs of the Ade-
laideRMF and Multi-H datasets. On average, P-HAF is ap-
plied to 27 SIFT point pairs as an overdetermined system.

Matlab (ms) C++ (ms)
2 points 0.336 0.005
N points 1.106 0.012
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The competitor methods are the Direct Linear Trans-
formation (DLT) and Three Point Method (3PT) ap-
plied to normalized data.

3.1 Synthesized Tests

For synthesized testing, two perspective cameras are
generated by their projection matrices P1 and P2.
Their positions are randomized – using uniform distri-
bution – on a plane represented by function Sc(u,v) =
[u v 60]T , (u,v ∈ [−20,20]). Both cameras point
towards the origin. Their common focal length and
principal point are 600 and [300 300]T , respectively.
Fundamental matrix F is computed from projection
matrices P1, and P2 (Hartley and Zisserman, 2003).

A plane passing through the origin is generated
with random orientation and sampled in 50 different
locations – these points are projected onto cameras
P1 and P2. Zero-mean Gaussian-noise is added to
the point coordinates. The local affinity related to
each point pair is calculated from the plane param-
eters (Barath and Hajder, 2016) and the noisy point
locations, then decomposed into the form

A =

[
sx cos(αi) wcos(α)− si,y sin(α)
sx sin(αi) wsin(α)+ si,y cos(α)

]
,

and angle α, scale sx are kept. Tests are repeated 500
times on every noise level.

Fig. 1(a) and Fig. 1(b) visualize the mean and me-
dian errors of the normalized DLT, 3PT and P-HAF
methods plotted as the function of the σ value of the
zero-mean Gaussian-noise. P-HAF achieves the low-
est mean and median errors. Fig. 1(c) shows the effect
of the normalization. Even though the difference is
not significant, the normalized algorithm is the most
accurate estimator.

3.2 Homography Estimation

In order to test P-HAF on real world images Ade-
laideRMF (Wong et al., 2011) and Multi-H (Barath
et al., 2016a) datasets are used. They consist of
images of different sizes and point correspondences
assigned to planes. Figure 2 shows four exam-
ple images – the first one from each stereo pair –
from the datasets. The left column is from Multi-
H, pairs boxesandbooks and glasscasea, and the
right one from AdelaideRMF – pairs elderhalla
and bonhall. Points are painted by circles and each
is assigned to a plane by color.

Annotations contain no information about the ro-
tational or scale components, therefore, SIFT detec-
tor is applied to each image pair. Then the closest
detected feature is paired to every annotated one. If

(a) Comparison of methods, mean error.

(b) Comparison of methods, median error.

(c) The effect of the normalization, mean error.
Figure 1: Re-projection error (vertical axis) calculated from
500 tests on each noise level. Parameter σ of the zero-mean
Gaussian-noise added to the point coordinates is shown on
the horizontal axis.
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Table 3: The mean re-projection error (in pixels) of the
methods applied to the AdelaideRMF and Multi-H datasets.
Each row represents an image pair and each column con-
sists of the re-projection errors of a method. Homographies
are estimated using the 25% of the correspondences, re-
projection error is computed w.r.t. all of them.

Test case P-HAF DLT 3PT
barrsmith 27.01 35.98 27.22
bonhall 0.97 0.82 0.99
bonython 1.33 1.35 1.35
boxesandbooks 2.06 8.46 2.12
elderhalla 3.26 3.50 3.20
elderhallb 4.73 5.34 5.21
glasscasea 7.85 26.76 9.63
glasscaseb 9.63 21.29 7.95
graffiti 0.92 1.01 0.96
hartley 1.98 1.61 2.01
johnssona 10.78 10.39 11.29
johnssonb 5.28 6.34 5.67
ladysymon 7.55 7.58 7.50
library 4.82 6.03 4.97
napiera 15.01 14.48 17.78
napierb 17.74 30.61 17.28
neem 4.31 5.44 5.64
nese 4.35 6.90 4.66
sene 4.07 7.88 4.73
unihouse 8.80 5.38 5.58
unionhouse 7.01 7.53 7.01
mean 7.11 10.22 7.27
median 4.82 6.90 5.58

the distance is greater than 5 pixels the point pair is
omitted from the evaluation. The fundamental ma-
trix F is estimated by the RANSAC eight-point tech-
nique (Hartley and Zisserman, 2003) with threshold
value set to 1.0 followed by a Levenberg-Marquardt
optimization minimizing symmetric epipolar dis-
tance. Every homography is estimated using the 25%
of the correspondences, however, the reported re-
projection errors are computed using all of them.

In Table 3, the mean re-projection errors (in
pixels) are reported. Rows represent different test
pairs from the AdelaideRMF and Multi-H datasets,
columns show the related errors. It can be seen that
the mean errors of P-HAF and 3PT are quite simi-
lar, even so, P-HAF is slightly better. The median er-
ror of P-HAF is significantly better than that of DLT
and 3PT. This is expected since DLT and 3PT use a
smaller part of the underlying affine transformation –
the translation – while P-HAF exploits all the avail-
able information.

Figure 2: Example images from the image pairs of Multi-
H (left column) and AdelaideRMF (right column) datasets.
Points are marked by circles, planes are denoted by color.

3.3 Multiple Homography Fitting

One of the main advantage of P-HAF is the required
minimal point number as it is able to estimate a ho-
mography from only two SIFT correspondences. DLT
needs four and 3PT three of those. Most of the robust
model fitting techniques, e. g. RANSAC, are based on
minimum subsets consisting of the minimum number
of data to estimate a given model. Using as few data
as possible makes the estimation faster, less ambigu-
ous, and possibly more accurate.

In this section, a multi-model fitting technique,
PEARL (Isack and Boykov, 2012), is augmented with
different model initialization methods: normalized
DLT and P-HAF. The same datasets are used as in
the previous experiments, AdelaideRMF and Multi-
H. AdelaideRMF mainly consists of buildings while
Multi-H smaller planar objects.

Fig. 3 shows the results of multi-homography fit-
ting. Each row consists of the first image of a se-
lected test pair. The left column shows the original
image and the other ones report the obtained planar
labellings obtained by PEARL with different hypoth-
esis generation techniques: normalized DLT (middle)
or P-HAF (right). The same parameters are used for
all the tests and the same amount of hypothesizes are
generated. The reported misclassification error (ME)
is the ratio of the points assigned to wrong plane in
percentage. It can be seen that PEARL augmented
with P-HAF is significantly more accurate then the
one using normalized DLT.
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(a) Test: neem. 1. Original image, 2. by DLT (ME = 29.46%), 3. by P-HAF (ME = 10.63%)

(b) Test: nese. 1. Original image, 2. by DLT (ME = 19.90%), 3. by P-HAF (ME = 13.78%)

(c) Test: hartley. 1. Original image, 2. by DLT (ME = 19.06%), 3. by P-HAF (ME = 9.06%)

(d) Test: napierb. 1. Original image, 2. by DLT (ME = 38.22%), 3. by P-HAF (ME = 23.17%)
Figure 3: The results of multiple homography fitting to point correspondences. Each row is the first image of a test pair
from AdelaideRMF dataset and the results of PEARL. Columns reports the obtained planar labellings of PEARL method with
different hypothesis generation techniques: normalized DLT or P-HAF. The same parameters are used for all the tests and the
same amount of hypothesizes are generated. The reported misclassification error (ME) is the ratio of the points assigned to
wrong plane in percentage. Points are painted by circles and planes marked by color.

4 CONCLUSION

A novel minimal method is presented in this paper
to improve the general point-based homography esti-
mation by exploiting the information yielded by the

commonly used feature detectors. The proposed P-
HAF method is able to estimate the homography us-
ing at least two SIFT correspondences and applicable
in real time. The main message of this paper is that
usually there are more information about the underly-
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ing homography than only the point coordinates – e.
g. SIFT, SURF obtain the rotational component and
the scale as well. Neglecting this information yields
information loss. We see no reasons to use the four-
point algorithm instead of P-HAF for rigid scenes if
SIFT or SURF features are given.
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