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Abstract: With the increasing number of smartphone users, mobile malware has become a serious threat. Similar to
the best practice on personal computers, the users are encouraged to install anti-virus and intrusion detec-
tion software on their mobile devices. Nevertheless, their devises are far from being fully protected. Major
mobile application distributors, designated stores and marketplaces, inspect the uploaded application with
state of the art malware detection tools and remove applications that turned to be malicious. Unfortunately,
many malicious applications have a large window of opportunity until they are removed from the marketplace.
Meanwhile users install the applications, use them, and leave comments in the respective marketplaces. Oc-
casionally such comments trigger the interest of malware laboratories in inspecting a particular application
and thus, speedup its removal from the marketplaces. In this paper, we present a new approach for mining
user comments in mobile application marketplaces with a purpose of detecting malicious apps. Two compu-
tationally efficient features are suggested and evaluated using data collected from the ”Amazon Appstore”.
Using these two features, we show that feedback generated by the crowd is effective for detecting malicious
applications without the need for downloading them.

1 INTRODUCTION

The use of mobile devices such as smartphones,
tablets, and smartwatches is constantly increasing.
According to the International Data Corporation
(IDC) (IDC, 2016), smartphone companies shipped
a total of 1.43 billion units in 2015, representing a
10.1% increase compared to the previous year and
setting a new record for the highest number of smart-
phones sold in a year. According to Statista (Statista,
2016), in 2015 there were more than 3.7 million ap-
plications available from the three largest applica-
tion stores: Google Play, iOS AppStore, and Ama-
zon Appstore, a 3% increase compared to the previous
year.

Unfortunately, with the penetration of mobile de-
vices and their applications into our lives, the num-
ber of security threats targeting mobile devices has
increased as well. In fact, malicious users, hackers,
and even manufactures of mobile devices and appli-
cations, take advantage of the growing capabilities of
mobile devices, careless and unaware users, and vul-
nerabilities in the design of standard security mecha-
nisms, in order to develop mobile-specific malware.

Malicious applications aim to exploit the system
and application software for purposes such as the ex-

posure of personal information, identity theft, launch-
ing unwanted pop-ups and browser redirects to down-
load malicious files, and encrypting a victims per-
sonal information to demand money (ransom) in ex-
change for a decryption key.

Lookout1 reports the presence of malicious appli-
cations in official application stores. For example,
malware from the Brain Test malware family and the
FruitSMS Trojan were detected in Google Play in Oc-
tober and December 2015, respectively.

Despite their effectiveness, antivirus engines and
website scanners occasionally provide different con-
clusions regarding the same suspected file. Therefore,
it is not always clear to users whether a suspicious ap-
plication is in fact malicious or not. What do people
do when they are not sure? – ask a friend or consult an
expert. In this paper we bring the former option to an
extreme by automatically mining the user feedbacks
on any particular application.

In recent years, many academic studies have fo-
cused on detecting undesired behavior of mobile ap-
plications using static and dynamic analysis methods.
Static analysis usually involves inspection of an appli-
cations code in order to identify sensitive capabilities
or potentially harmful instructions. Dynamic analy-

1https://blog.lookout.com/blog/category/alerts/
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sis monitors system activity (behavior) and classifies
it as normal or abnormal. This classification is based
on heuristics or rules and attempts to detect irregular
behavior (Wang and Stolfo, 2004).

In contrast to conventional static and dynamic ap-
proaches, in this study we propose a new approach
that analyzes customers reviews, using text mining
and machine learning techniques.

User-generated content comes in a number of
forms, including designated review sites (e.g., Tri-
pAdvisor and Yelp), and purchase/review sites (e.g.,
Amazon and Travelocity), and these sites provide fer-
tile ground for the analysis of such content which
can be highly useful for decision making (Blair-
Goldensohn et al., 2008). Extracting and aggregat-
ing this information across opinion-rich resources is
mainly used as follows. First, it allows a close look at
online communities without having to directly survey
the population, which is a time-consuming and ex-
pensive task (Portier et al., 2013). Second, it provides
the ability to collect subjective information about a
product or service in order to obtain information (the
wisdom of the crowd, which is a well-known phe-
nomenon today). Such approaches have become the
de-facto standard for assessing the quality of products
and services (Ofek et al., 2016)

The main contributions of this paper are as fol-
lows:

• We introduce a novel approach for malware de-
tection that uses text analysis to analyze feedback
generated by users.

• The proposed method is capable of identifying
suspicious applications which can be further an-
alyzed by static and dynamic approaches; thus the
method can play a role in executing more com-
plex and time-consuming methods on large do-
mains such as application stores.

• Because our method uses independent data, it can
also be used as a tool, serving as a tie breaker
in cases in which other techniques have obtained
ambiguous results.

2 RELATED WORK

To the best of our knowledge, there is no in depth
work that focuses on malware detection based on text
mining techniques applied to user feedback. Thus,
the discussion of related work is divided into two sec-
tions: related work concerning text classification and
work in the area of malware detection.

2.1 Text Classification

Methods for text classification can be based on fea-
ture focused algorithms that propose new features,
and model focused algorithms that propose new clas-
sification models. Like our work, the bulk of the
research in text classification focuses on feature fo-
cused algorithms and concentrates on creating new
features that enable new perspectives of the analyzed
data. Since raw text is a special type of data that: (1)
should be pre-processed (e.g., tokenize sentences into
words or normalize words) (Ofek et al., 2014), and (2)
can be represented in many ways given the versatility
of human language (Katz et al., 2015), various ap-
proaches for feature engineering have been proposed.
These features are then fed to commonly used clas-
sifiers in order to classify the class of the text. Re-
search based on model focused algorithms is aimed at
proposing new algorithms and classification models.
Approaches for feature-engineering presented in the
literature are diverse, proposing both text-based fea-
tures and the integration of information from multiple
sources.

A number of works generate a lexicon of terms
to represent each class, which then can be used to
determine the class of a test instance, for example,
by counting terms (Hu and Liu, 2004) or computing
their joint probability (e.g.,utilizing the Naive Bayes
approach) (Ofek and Shabtai, 2014). Other feature fo-
cused approaches attempt to bridge the gap between
lexicon-based and learning-based approaches by dy-
namically setting weights to sets of predefined terms.

Works in this area include (Choi and Cardie,
2008), which uses machine learning with voting, and
(Balahur et al., 2013), which emphasizes the text sur-
rounding special entities in the analyzed text.

A simple approach involves representing a frag-
ment of text as a term frequency (TF) vector and
feeding this into a classifier (Ye et al., 2009). Such
representation can be augmented with additional in-
formation about specific phrases (Mullen and Collier,
2004).

Since this approach is highly effective (Ofek et al.,
2015), it has been used as a baseline in our work
as part of the latent Dirichlet allocation (Blei et al.,
2003).

2.2 Malware Detection

In recent years a great deal of academic research has
been published proposing a wide range of methods
for malware detection. We mention the academic re-
search that, in our opinion, has provided the most sig-
nificant contribution to this field.
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2.2.1 Behavior-based Analysis

In (Xie et al., 2010), the authors proposed a behavior-
based malware detection system (pBMDS) that cor-
relates the users input and output with system calls
in order to detect anomalous activities such as unso-
licited SMS/MMS and email messages. Like other
research, the authors rely on kernel calls that require
root privileges on devices. (Portokalidis et al., 2010)
presented the Paranoid Android framework that aims
to detect viruses and run-time attacks. The authors
also introduce cloud-based computation for Android
systems. The authors do not refer to the privileges
that their program operates with, however they dis-
cuss user-level mode. However, based on their use of
the ptrace utility it seems that they need root privi-
leges.

(Burguera et al., 2011) presented Crowdroid
which is a machine learning-based framework for dy-
namic behavior analysis that recognizes Trojan-like
malware on Android smartphones. The framework
analyzes the number of times each system call has
been issued by an application during the execution of
an action that requires user interaction. In addition,
the authors make use of the strace program that can
only be operated on rooted Android devices.

In (Shabtai et al., 2014), the authors presented a
new behavior-based anomaly detection system for de-
tecting meaningful deviations in a mobile applications
network behavior. The main goal of the proposed
system is to protect mobile device users and cellular
infrastructure companies from malicious applications
by: (1) the identification of malicious attacks or mas-
querading applications installed on a mobile device,
and (2) the identification of republished popular ap-
plications injected with a malicious code (i.e., repack-
aging).

Most of the research proposing application behav-
ior analysis suffers from one of the following draw-
backs. First, many of the studies make use of a secure
environment, which is problematic, since their con-
clusions may be misleading in real-life settings, par-
ticularly considering the wide range of environments
that exist. Second, many studies explore malicious
behavior at the kernel level (e.g., system calls, real-
time permission monitoring using the Android intent
system). In such solutions the monitoring system re-
quires root permissions to access necessary informa-
tion, whereas most of the malicious applications (and
potentially malicious applications) do not require spe-
cial permissions (snoopwall, 2014). Moreover, a se-
curity application that requires root permissions itself
becomes a threat to the security of the mobile device.

2.2.2 Permission-based Analysis

In (Aung and Zaw, 2013), the authors proposed a
framework that is based on machine learning meth-
ods for the detection of malicious applications on An-
droid. This framework is designed to detect malicious
applications and enhance the security and privacy of
smartphone users.

In (Zhang et al., 2013), the authors presented a
new concept based on learning permissions used by
applications according to user behavior. They also de-
veloped the VetDroid framework, which is a dynamic
analysis platform for reconstructing sensitive behav-
iors in Android applications from the permission per-
spective.

2.2.3 Static Code based Analysis

Most static malware detection techniques suffer from
inability to detect vulnerabilities introduced only at
run-time. In addition, attackers have developed var-
ious techniques that are particularly effective against
static analysis (Moser et al., 2007).

(Rastogi et al., 2013) proposed code transforma-
tion procedures for the Dalvik virtual machine (VM)
and ARM (two engines for virtual machines on An-
droid). The assumption behind this line of research
is that malware writers rely on similar code transfor-
mation procedures to evade static signatures. There-
fore, evaluating malware detectors against mutants is
a good estimation of their robustness to future mal-
ware.

In (Yang et al., 2013), the authors presented a
static analysis tool for privacy leaks in Android ap-
plications. This tool analyzes the intention of privacy
leaks and can distinguish between intended and un-
intended data transmission. However, the proposed
tool cannot analyze other types of undesirable behav-
ior such as stealthily sending SMSs and cant examine
the internal logic of sensitive behavior.

Zheng et al. (Zheng et al., 2013) propose the
DroidAnalytics framework for static analysis which
is designed to detect obfuscated malware on the An-
droid platform. The proposed framework generates
signatures in order to detect obfuscated code and
repackaged malware. The detection of obfuscated and
repackaged code procedure is performed on three lev-
els: (1) the method level, (2) class level, and (3) ap-
plication level.

User Feedback Analysis for Mobile Malware Detection

85



3 THE PROPOSED APPROACH

3.1 Architectural Overview

Figure 1 presents an overview of the proposed mal-
ware detection systems architecture. The components
in the figure correspond to the steps of the algorithm
(pseudo code).

The systems inputs are application reviews and
a malware related textual corpus, i.e., computer and
network security books such as (Dunham, 2008). The
output is a statistical classifier which can detect and
classify malicious and benign applications based only
on application reviews.

The system performs the detection and classifi-
cation in three main steps: (1) the generation of a
domain-specific lexicon; (2) extraction of application
features based on reviews and the domain lexicon;
and (3) generation of a classification model using su-
pervised learning.

3.2 Textual Corpora

In this paper, we deal with two different types of tex-
tual corpora: (1) a domain-specific corpus, and (2)
a corpus of application reviews provided by general
users. These corpora are presented in natural lan-
guage form, which imposes additional processing dif-
ficulties as described in (Baron, 2003). Therefore,
text normalization is required in order to reduce lan-
guage diversity, including transformation to canonical
form for further processing.

In this paper we obtain language diversity reduc-
tion by performing textual normalization as presented
in Algorithm 1. The main steps are: (1) remov-
ing numbers, punctuation, and stop words to remove
noise as described in (Onix, 2016) ; (2) character
replacement, including: character continuity (i.e., a
character which repeats itself more than three times
will be reduced to two times, e.g., goooood will be re-
placed by good), slang words as described in (Twitter,
2016) predetermined spelling mistakes and expres-
sions (e.g., helpfull will be replaced by helpful), pre-
determined missing apostrophe (e.g., dont will be re-
placed with dont), and predetermined apostrophe ex-
pansion (e.g., dont will be replaced with do not); and
(3) stemming each word to its root, as described in
(De Marneffe et al., 2006).

Algorithm 1. Textual Normalization.
Input: textual document.
Output: normalized textual document.
Steps:
1. Convert characters into lower case.
2. Remove punctuation.

3. Remove numbers.
4. Remove stop words.
5. Replace continuity.
6. Replace slang terms.
7. Add apostrophe.
8. Replace apostrophe.
9. Spelling correction for known mistakes.
10. Word stemming to its root.

Domain-specific corpus gives us the ability to gen-
erate a domain-specific lexicon as a prior step to nat-
ural language processing (NLP). In this work we fo-
cus on the domain of cyber-security, and the extrac-
tion of relevant information has been applied on com-
puter and network security books such as (Dunham,
2008). We chose to use books as a resource for the
cyber-security domain corpus, since they contain reli-
able and conventional terminology for this domain.

An application review corpus is required for train-
ing a malicious application detector (i.e., classifier).
Unfortunately, as far as we know, there is no pub-
licly available corpus (or dataset) for malicious appli-
cations and their corresponding reviews. Therefore,
in order to collect such data, we applied a crawler on
the Android application store (Amazon, 2016). In to-
tal, we collected 2,506 applications along with their
128,863 user reviews. Each review consists of the fol-
lowing information: (1) textual content, (2) authors
name, and (3) review rating (1-5 stats).

Additional application information is collected for
each application: (1) metadata such as: size, permis-
sions, sellers ranks, average rating, operating system,
release date, update date, etc.; and (2) Android appli-
cation package files (APKs), which constitute the bi-
nary representation of an application on the Android
platform.

3.2.1 Domain Specific Corpus

Using the domain-specific corpus we generate
domain-specific lexicon, referred to as the Domain
Lexicon (DL). As a first step, the textual corpus has
been extracted from computer and network security
books and transformed to canonical form by apply-
ing textual normalization as presented in Algorithm
1. As a second step, from the normalized corpus,
unigrams and bigrams (phrases) have been extracted
along with their frequencies in the corpus. As a fi-
nal step, the most frequent phrases have been selected
and included in the DL.

The DL representation is a list of phrases that rep-
resent the p percent (p is an independent variable
which will be determined in Section 4) of the most
frequent unigrams and bigrams in the normalized do-
main corpus, as presented in Algorithm 2.
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Figure 1: Flowchart of the presented malware detection system’s architectural overview.

Algorithm 2. Creating Domain-Specific.
Lexicon
Input: security books, p.
Output: domain lexicon.
Steps:
1. Perform textual normalization on security
books.
2. Phrases <- extract unigrams and bigrams,
along with their frequencies from the
normalized security books.
3. Domain lexicon <- select the p percent of
the most frequent phrases.

3.2.2 Application Review Corpus

In this paper, only application reviews have been used
in order to extract features, without any additional in-
formation. For this purpose we apply Algorithm 3.
As a first step we crawl application reviews from an
application store (applications′ URLs). As a second
step, each review is segmented into separate sentences
(De Marneffe et al., 2006). This step requires in or-
der to prevent the presence of bigrams composed of
words from different sentences. Finally, each sen-
tence is transformed to canonical form by applying
textual normalization as presented in Algorithm 1.

Algorithm 3. Creating Application Review.
Corpus
Input: applications’ URLs.
Output: reviews corpus.
Steps:
1. Crawl all reviews found in applications’
URLs pages.
2. Segment each review to sentences.

3. Perform textual normalization on each
sentence.

3.3 Model Generation

The proposed method uses NLP techniques for the
identification of linguistic phrases that correspond to
the basic phrases of a malicious applications domain.
The input to the method is a set of phrases (DL) which
describes the malicious applications language (as de-
scribed in Section 3.2.1) and application reviews (as
described in Section 3.2.2). Once those two inputs
have been obtained by Algorithm 2 and Algorithm
3 respectively, the creation of an intermediate rep-
resentation model proceeds, reflecting the relation-
ships between the DL and an applications reviews.
The intermediate representation model is a dataset, in
which an instance represents an application, and fea-
tures represent statistical information. The final stage
of the method consists of generating a classification
model using supervised learning, which used to clas-
sify malicious applications based only on application
reviews.

The proposed method is composed of three main
steps:
Feature Extraction - based on both corpora and the
detection and counting of DL occurrences in an appli-
cations reviews.
Feature engineering - based on the extracted fea-
tures, we generate two features for each application,
which serve as input data for supervised learning (i.e.,
input dataset).
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Supervised Learning - in this paper, performed for
generating a model which is a classifier for malicious
applications.

3.3.1 Features Extraction

As mentioned previously, in this paper we only use
an application review corpus for feature extraction.
Therefore, as a first step we apply the DL on appli-
cation reviews, in order to detect and count the oc-
currences of each phrase DLi ∈DL in each applica-
tion’s reviews. We focus on one-star ratings, because
complains on malicious behavior are usually provided
along with negative feedback. This step provides a
list of phrases DLi ∈DL and their associated occur-
rences in the applications one-star reviews, informa-
tion that is required for the feature engineering pro-
cess that follows.

3.3.2 Features Engineering

The feature engineering process is used to create two
statistical features that will be used to generate a sta-
tistical model (i.e., classifier) as shown in Algorithm
4. Therefore, as a first step we denote that for review
r, a review weight w(r) will be the occurrences sum-
mary of each phrase DLi ∈DL in r as follows:

w(r)← ∑
DLi∈DL

DLi occurrences in r (1)

This weighting function is been used to generate the
features Review′s DL and User′s DL.

Review’s DL - represents the average number of DL
occurrences found in an application reviews. There-
fore, the computation of this feature is performed as a
normalization by the amount of one-star reviews (R1).

Review′s DL←
∑

r∈R1

w(r)

|R1|
(2)

User’s DL - represents the average number of DL oc-
currences that have been used by a unique reviews au-
thors. The computation of this feature is performed
similarly to the preceding computation, except for the
division by the amount of unique one-star reviews au-
thors (U1).

User′s DL←
∑

r∈R1

w(r)

|U1|
(3)

Algorithm 4. Feature Engineering.
Input: reviews of application (R1), DL.
Output: dataset instance.
Steps:
1. DL aggregation <- DL occurrences in reviews.

2. Reviews number <- amount of reviews.
3. Authors number <- amount of unique authors.
4. Create instance’s features as follow:
4.1 Dataset(application).Review’s DL <-
(DL aggregation)\(reviews number).
4.2 Dataset(application).User’s DL <-
(DL aggregation)\(authors number).

3.3.3 Supervised Learning

In order to generate the model in this paper we use
supervised learning algorithms. There are several ap-
proaches for supervised classification, however all of
them require known labels (classes) for the training,
testing, and validation stages. Therefore, the identifi-
cation of labels for the presented dataset is required.
(Ranveer and Hiray, 2015) research have tested static
and dynamic state of the art methods for malware de-
tection. Their results show that static analysis meth-
ods can provide accuracy between 92% to 99%, and
dynamic analysis methods accuracy are between 91%
to 96%. For this reason, we select static approach
to serve as a gold standard for the proposed method,
by labeling applications as malicious using VirusTo-
tal (Total, 2016), as described in Algorithm 5.

For each application’s APK (APK) we obtain la-
bels from several antivirus (AV) vendors that pro-
vide information such as whether the given applica-
tion has a label B = {benign application} or label M =
{malicious application}. In label M cases, most AVs
provide additional information regarding the specific
type of malicious application. Furthermore, due to
the diversity and accuracy of AVs, different AVs can
associate the APK with different malicious families.

Additionally, out of the more than 40 AVs hosted
by VirusTotal usually only a few provide positive
classification (i.e., M) for the same APK.

Due to non-zero false positive classification of
some AVs, their results cannot be trusted when only
one AV reports that an APK is malicious. Therefore,
we need to carefully choose the minimal number of
AVs required to declare an APK as malicious (M).

For no specific reason, related works (Šrndic and
Laskov, 2013; Nissim et al., 2014) usually set t = 5.
In our dataset we manually reviewed the applications
that were classified as malicious by more than two
AVs and identified no false positives. Thus, in this
research we set t = 1 as described in Section 4.

Algorithm 5. Labeling.
Input: application’s APK, t.
Output: application label.
Steps:
1. Positive reports <- VirusTotal scan results
of application’s APK.
2. If positive reports > t,
application label = M.
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3. Else, application label = B.

4 EXPERIMENTAL EVALUATION

In this section, we describe our evaluation settings,
which include the dataset, results, accuracy, and inde-
pendent variables. We start by describing the dataset
used for the evaluation, including the malicious fam-
ily type distribution. Furthermore, we describe the
motivation behind our decision to use unigrams and
bigrams rather than higher order n-gram models to
generate the DL and describe independent variables
p and t, where p is the percent of the most frequent
phrases in the domain authors number the corpus se-
lected to generate the DL, and t is the threshold of
the AVs positive reports for the ground truth labeling
approach.

Finally, we evaluate the proposed methods accu-
racy, based on multiple AV reports, and compare the
results to two baseline methods: (1) bag-of-words
(BOW) (Harris, 1954) and (2) latent Dirichlet allo-
cation (LDA) (Blei et al., 2003), which are popular
textual classification methods.

4.1 Datasets

As mentioned before, to the best of our knowledge,
there is no publicly available corpus (or dataset) for
malicious applications along with their end user re-
views. Malicious applications whose official reviews
appear in news reports are immediately removed from
application stores and markets, and therefore we can-
not obtain their end user reviews for in depth analysis.

In order to collect available (free) applications, a
crawler was applied on an Android application store
(Amazon, 2016) for a two month period (October
through November 2015). Due to the large number
of applications available, we randomly selected a sub-
set of applications in order to generate the classifiers.
In this paper, a single crawling session has been pre-
formed, extracting a single version for each applica-
tion. In total, we collected 2,506 applications APKs
along with their 128,863 user reviews as shown in Ta-
ble 1.

Each applications APK was scanned by VirusTo-
tal (Total, 2016), which aggregates different antivirus
products that provide an online scan engines and
presents a comprehensive report regarding whether a
given APK is malicious or not, including the mali-
cious threat. In our case, the VirusTotal Mass API has
been used, which is available for researchers to per-
form malicious file detection.

Note, that due to the diversity and accuracy of the
AVs, scanning by different AVs can associate a sin-
gle APK with different malicious families. Thus, the
evaluated dataset contains many malicious types, and
each application can belong to several different mali-
cious type families, as shown in Figure 2.

As seen in the Venn diagram in Figure 2, our
dataset includes the following types of malicious
threats: Trojan, Adware, Viruse, Spyware, Riskware,
and other less familiar malicious threats. As is known,
several types of malicious threats, particularly in the
mobile domain, can be classified by VirusTotal with
different labels, for example Spyware, Adware, and
Trojan. However, most of the applications receive a
single label.

Figure 2: Malicious family distribution of 510 malicious
applications.

4.2 Independent Variables

The method presented has two independent variables:
(1) t, the threshold of the AVs positive reports for
ground truth labeling approach; and (2) p, the per-
centage of the most frequent phrases in the domain
corpus selected to generate the DL.

In order to determine the value of t we perform
a scan of 2,506 application and summarize (Total,
2016) the scan reports using a histogram that is pre-
sented in Figure 3. In this figure Positive reports ag-
gregate the number of AVs that label each APK as
malicious. The majority (1,996 applications) were la-
beled as non-malicious by all of the AVs. As can
be seen in Figure 3, different threshold values can
be used for evaluation, as was performed by (Šrndic
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Table 1: Dataset volume for evaluating the classification task.

Total Applications Total Reviews Malicious Applications Benign Applications
2,506 128,863 510 1,996

and Laskov, 2013; Nissim et al., 2014). However, in
this paper the authors selected a single threshold value
without justification. In our paper, we perform a set of
experiments in order to select the most suitable value
for this parameter starting at 0, i.e., an application was
labeled as M when at least a single AV labeled it as
malicious (t>0), each evaluation differ by increase in
1 (t ∈{0,1,2,3,4,5}).

In order to determine parameter p parameter
we start our evaluation with p=10 up to p=50
(p ∈{10,20,30,40,50}), i.e. top p% of the most fre-
quent domain unigrams and bigrams. We used uni-
grams and bigrams rather than higher order n-gram
models to represent the text, due to the following stud-
ies: (1) (Pang et al., 2002) which shows that unigrams
beat other higher order n-grams, and (2) (Dave et al.,
2003) which shows experimentally that trigrams and
higher failed to show significant improvement.

The evaluation results were performed for differ-
ent values of t and p, simultaneously, and are pre-
sented in Section 4.4.

4.3 Classifiers

In this paper, we used supervised machine learning
methods for the classification of Android applications
into malicious and benign classes. For this purpose,
we have used Waikato Environment for Knowledge
Analysis (WEKA) (WEKA, 2016).

The evaluation was performed on different clas-
sification models based on the following approaches:
(1) decision tree, (2) ensemble, and (3) regression.

For each approach we use the following classifica-
tion algorithms: (1) C4.5 decision tree learner (Quin-
lan, 1993); (2) random forest (Ho, 1998); and (3) lo-
gistic (Walker and Duncan, 1967), respectively. A
brief explanation of these three algorithms follows.

1. C4.5 decision tree learner: The algorithm for the
induction of decision trees uses the greedy search
technique to induce decision trees for classifica-
tion.

2. Random forest: An ensemble of 100 unpruned
classification trees, induced from bootstrap sam-
ples of the training data, using random feature se-
lection in the tree induction process. The predic-
tion is made by aggregating (majority vote) the
predictions of the ensemble.

3. Logistic regression: This algorithm allows pre-
diction of a discrete outcome, such as group mem-

bership, from a set of variables that may be con-
tinuous, discrete, dichotomous, or a mix of any
of these. In our case, we used logistic regression
from a set of continuous variables. Since logis-
tic regression calculates the probability of class M
over the probability of class B, the results of the
analysis are in the form of an odds ratio.

4.4 Results

Our domain has an imbalanced class distribution,
namely there are many more genuine applications
than malicious, due to the nature of application stores
which contain a small percentage of malicious appli-
cations.

To evaluate the performance of machine learn-
ing classifiers, k-fold cross-validation is usually used
(Bishop, 2006). Therefore, for each classifier that has
been used, we apply k-fold cross-validation (Kohavi
et al., 1995) with k = 10, i.e., the dataset is partitioned
ten times into ten different sets. This way, each time
we use 90% of the data for training and 10% for test-
ing.

In order to measure the performance of each clas-
sifier, we measured the true positive rate (T PR):

T PR =
T P

T P+FN
(4)

Where T P is the number of malicious applications
correctly classified (true positives) and FN is the
number of malicious applications misclassified as be-
nign (false negatives).

In addition, we measured the false positive rate
(FPR):

FPR =
FP

FP+T N
(5)

Where FP is the number of benign applications incor-
rectly detected as malicious and T N is the number of
benign applications correctly classified.

Furthermore, we measured the accuracy (the total
number of the classifiers successful detection divided
by the number of instances in the dataset):

Accuracy =
T P+T N

T P+FP+FN +T N
(6)

Moreover, we measure the area under the ROC curve
(AUC) which establishes the relation between false
negatives and false positives (Singh et al., 2009). The
ROC curve is obtained by plotting the TPR against
the FPR.
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Figure 3: Histogram of 2,506 VirusTotal applications scan results.

AUC measure is independent of prior probabili-
ties of class distributions, and therefore is not over-
whelmed by the majority class instance. (Oommen
et al., 2011) indicate that AUC is more robust over
other measures and is not influenced by class imbal-
ance or sampling bias.

Figures 4-6 summarizes the results of the evalu-
ation performed for the independent variables t and
p, with the three classification models mentioned in
Section 4.3.

The AUC precision of our method drops slightly
as the values of p and t increase by more than ten and
one respectively, thus our method achieves the best
performance when p = 10 and t = 1.

Table 2 presents the results obtained with the most
efficient independent variable settings (p = 10 and
t = 1). Using these settings, the methods achieved
accuracy rates higher than 86%. In particular, the
best classifier, in terms of accuracy, was logistic re-
gression with an accuracy rate of 89%. Regarding the
TPR results, random forest trained with 100 trees was
the best classifier with a TPR of 38%. TPR results
show that it is not feasible for using our method as
a sole detection method, and further research should
be performed in this aspect. In terms of AUC, logis-
tic regression was the best classifier with an AUC of
86.4%.

Table 2: Results of different classifiers.

Classifier TPR FPR AUC Accuracy
C4.5 0.27 0.02 0.81 0.87

Random Forest 0.38 0.06 0.83 0.86
Logistic 0.23 0.02 0.86 0.89

4.5 Baselines

Popular textual classification methods such as bag-of-
words (BOW) (Harris, 1954) and latent Dirichlet al-
location (LDA) (Blei et al., 2003) was used to eval-
uate the proposed method. Table 3 present the ob-
tained results. The BOW methods hypothesis is that
the frequency of words in a document tends to in-
dicate the relevance of the document to other docu-
ments. If documents have similar column vectors in a
term document matrix, then they tend to have sim-
ilar meanings. The hypothesis expresses the belief
that a column vector in a term document matrix cap-
tures (to some degree) an aspect of the meaning of
the corresponding document, i.e., what the document
is about. However, this method generates a mathe-
matical model of all words (perhaps with the excep-
tion of a list of high frequency noise words), without
any additional knowledge or interpretation of linguis-
tic patterns and properties.

LDA can also be cast as language-modeling work.
The basic idea is to infer language models that cor-
respond to unobserved factors in the data, with the
hope that the factors that are learned represent top-
ics. However, as (Hong and Davison, 2010) shows
this method does not work well on classifying short
text documents such as tweets or costumers reviews.

Table 3: Results of different baseline methods.

Method TPR FPR AUC Accuracy
Proposed 0.23 0.02 0.86 0.89

BOW 0.26 0.06 0.61 0.84
LDA 0.15 0.03 0.62 0.81
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Figure 4: TPR results for three classification models.

Figure 5: FPR results for three classification models.

Figure 6: Accuracy results for three classification models.

Figure 7: AUC results for three classification models.

5 CONCLUSIONS

This paper presents method for constructing effective
classifiers for malicious applications in applications
stores. Classification is based on a set of features
that are extracted from customers textual reviews.
We achieved this by defining a set of significant fea-
tures and extracting them from real application store

dataset. Evaluation of the classifier is performed with
several machine learning algorithms. The evaluation
demonstrates that our model performs well in terms
of accuracy and AUC measures, as presented in Sec-
tion 4. The best results were obtained using the logis-
tic regression model which achieved accuracy rates
of 89% and an AUC of 86%. However, TPR results
show that it is not feasible for using our method as a
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sole detection method, and further research should be
performed in this aspect.

The proposed method uses static approach as a
gold standard, by labeling applications as malicious
using VirusTotal, as mentioned in section 3.3.3. In
terms of space complexity, traditional methods ana-
lyze application files (a few dozen megabytes), while
the proposed method analyze text files (a few kilo-
bytes). In our dataset, an average application file size
is 18MB, while an average application reviews text
file size is 7.8KB, a 99.9% space resource decrease.
Time complexity for classifying a single application
in the proposed methods is O(w), where w is the num-
ber of words in all of the applications reviews.

Another contribution of this paper is that we in-
troduced a fast classifier, which by using a genera-
tive model, can classify large-scale domains, such as
the three biggest application stores: Google Play, iOS
AppStore and Amazon Appstore.

Moreover, our model provides better results com-
pared to several baseline methods for textual classifi-
cation such as BOW and LDA. Such results demon-
strate the ability to detect malicious applications when
using cyber-security domain information, such as do-
main lexicon, rather than general linguistic informa-
tion such as word frequency.

Our research considers malicious application de-
tection by analyzing only end users textual reviews.
A possible future research direction includes an anal-
ysis of other types of user-related features such as
user reputation, diversity of reviews, etc. Examples
of other feature types are user reliability and profes-
sional domain knowledge. Another future direction is
detection of unknown malware, based on the reported
behavior of an application.
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Šrndic, N. and Laskov, P. (2013). Detection of malicious pdf

files based on hierarchical document structure. In Pro-
ceedings of the 20th Annual Network & Distributed
System Security Symposium.

Walker, S. H. and Duncan, D. B. (1967). Estimation of the
probability of an event as a function of several inde-
pendent variables. Biometrika, 54(1-2):167–179.

Wang, K. and Stolfo, S. J. (2004). Anomalous payload-
based network intrusion detection. In International
Workshop on Recent Advances in Intrusion Detection,
pages 203–222. Springer.

WEKA (2016). http://www.cs.waikato.ac.nz/ml/weka/.
[Online; accessed April 2016].

Xie, L., Zhang, X., Seifert, J.-P., and Zhu, S. (2010). pb-
mds: a behavior-based malware detection system for
cellphone devices. In Proceedings of the third ACM
conference on Wireless network security, pages 37–
48. ACM.

Yang, Z., Yang, M., Zhang, Y., Gu, G., Ning, P., and
Wang, X. S. (2013). Appintent: Analyzing sensitive
data transmission in android for privacy leakage detec-
tion. In Proceedings of the 2013 ACM SIGSAC confer-
ence on Computer & communications security, pages
1043–1054. ACM.

Ye, Q., Zhang, Z., and Law, R. (2009). Sentiment classifica-
tion of online reviews to travel destinations by super-
vised machine learning approaches. Expert Systems
with Applications, 36(3):6527–6535.

Zhang, Y., Yang, M., Xu, B., Yang, Z., Gu, G., Ning, P.,
Wang, X. S., and Zang, B. (2013). Vetting undesir-
able behaviors in android apps with permission use
analysis. In Proceedings of the 2013 ACM SIGSAC
conference on Computer & communications security,
pages 611–622. ACM.

Zheng, M., Sun, M., and Lui, J. C. (2013). Droid analyt-
ics: a signature based analytic system to collect, ex-
tract, analyze and associate android malware. In 2013
12th IEEE International Conference on Trust, Secu-
rity and Privacy in Computing and Communications,
pages 163–171. IEEE.

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

94


