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Abstract: The use of time-of-flight (ToF) cameras in industrial applications has become increasingly popular due to the

camera’s reduced cost and its ability to provide real-time depth information. Still, one of the main drawbacks

of these cameras has been their limited field of view. We therefore propose a technique to fuse the views

of multiple ToF cameras. By mounting two cameras side by side and pointing them away from each other,

the horizontal field of view can be artificially extended. The combined views can then be used for object

detection. The main advantages of our technique is that the calibration is fully automatic and only one shot of

the calibration target is needed. Furthermore, no overlap between the views is required.

1 INTRODUCTION

Object detection remains an important challenge in

industry. In many of these applications, a large scene

area needs to be covered. Hence a camera with a wide

field of view is usually required. Since the field of

view of a single ToF camera is limited, multiple ca-

meras must be combined. This requires to first cali-

brate the relative poses (i.e. extrinsic parameters) of

the cameras.

Once the data from the different cameras is trans-

formed into a common reference frame, it can be fed

to the object detection framework. A popular appro-

ach to the 3D object detection problem is to exploit

range images (Bielicki and Sitnik, 2013). These ima-

ges make data processing significantly faster, as they

convert the most time-consuming tasks (e.g., nearest

neighbor search) from a 3D space into a 2D space. We

will therefore render the registered point clouds with

a virtual camera to simulate a depth sensor.

In this paper, we present a convenient external ca-

libration method for a multi-ToF system. That is to

say, the human interaction and export knowledge re-

quired for the calibration is kept to a minimum. The

views from the different ToF cameras can be merged

into an extended range image usable for 3D object

detection. The remainder of this paper is organized as

follows. Firstly, the Related Work section provides an

overview of existing calibration techniques. Section 3

introduces our approach for multi-view TOF fusion.

Experiments in section 4 show the accuracy in cali-

bration. Finally, a short conclusion is given.

2 RELATED WORK

The calibration of multiple cameras is a well-studied

problem in computer vision. The most common met-

hod for calibrating conventional intensity cameras is

to use a checkerboard which is observed at different

positions and orientations within the cameras shared

field of view (Zhang, 2000). Given the image coor-

dinates of the reference points (i.e., the checkerboard

corners) and the geometry of the checkerboard (i.e.,

the number of squares and the square dimension), the

camera parameters can be estimated using a closed

form solution w.r.t. the pinhole camera model. An ite-

rative bundle adjustment algorithm can then be used

to refine the parameters. The same standard technique

could be used for ToF cameras as well, as they pro-

vide an amplitude image associated with each range

image. However, the low resolution of the amplitude

images makes it difficult to detect the checkerboard

corners reliably resulting in inaccurate calibration.

To overcome this limitation, other methods have

been proposed that work directly on 3D shapes. Au-

vinet et al. (Auvinet et al., 2012), for example, use

the intersection points of triplets of planes as refe-

rence points. The equation of each plane can be cal-

culated by using a singular value decomposition of

points lying on the plane. Given the sets of corre-

sponding reference points, the rigid body transforma-

tion between the pair of cameras is estimated in a le-

ast square sense. Another method presented by Ruan

et al. (Ruan and Huber, 2014), uses the centers of a

spherical calibration target as reference points. The
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spherical target has the advantage that it is rotation

invariant. However, the extraction of the center of the

sphere from a noisy point cloud is less robust, since

the active illumination will be mostly scattered away

by the spherical surface. Furthermore, note that these

methods still require a significant amount of human

operation, since the calibration target must be moved

and matched in many different positions.

Alternatively, a method that takes only one pair of

3D images is the Iterative Closest Point (ICP) algo-

rithm (Besl and McKay, 1992). The ICP algorithm

has been widely used for 3D registration. The ri-

gid body transformation between two point clouds is

estimated by minimizing the distance from a point

in one cloud to the closest point in the other cloud.

A popular variant of this method minimizes the dis-

tance between a point and the tangent plane at its cor-

respondence point instead. The point-to-plane error

metric usually performs better in structured environ-

ments (Low, 2004). One of the advantages of this

algorithm is that in contrast to the first algorithm, it

does not rely on local feature extraction. Unfortuna-

tely, the ICP algorithm requires sufficient overlap be-

tween the point clouds to succeed (Chetverikov et al.,

2002). Hence, at first sight, it might not seem like

an appropriate method for the artificial extension of

a ToF camera’s field of view addressed in this work.

We will however show that using a proper calibration

target, the method contributes to an easy to use cali-

bration tool.

3 MATERIALS AND METHODS

3.1 Camera Set-up

The camera set-up is depicted in 1. Two IFM Efec-

tor O3D303 ToF cameras are mounted side by side

and pointing away from each other to artificially ex-

tend the field of view as can be seen in figure 2. The

red triangle depicts the field of view that would have

been covered if a single ToF camera was placed in the

middle. As can be seen in this figure, a small area at

the bottom is not covered. This is not necessarily a

problem since the minimum operating distance must

be respected anyway. With two cameras, the grey area

that is covered depends on the angle between the ca-

meras. Increasing the angle, further extends the area

covered. However, this also implies that the unco-

vered area in the middle enlarges. Hence a trade-

off must be made depending on the desired operating

range.

To be able to fuse the data from the different ca-

meras, it is important that the images are captured sy-

Figure 1: Camera set-up.

Figure 2: Artificially extended field of view.

nchronously. This can be achieved by cascading the

cameras via hardware trigger. The first camera will

automatically trigger the second camera after com-

pletion of the image capture. However, if both came-

ras are operating on the same active illumination fre-

quency measurement errors may occur due to mutual

interference from simultaneous exposure (see Fig. 3).

By setting the cameras on a different frequency chan-

nel the occurrence of measurement errors can be re-

duced. Both cameras are connected to a single GigE

port through a switch.

3.2 External Calibration

To determine the rigid body transformation between

two point clouds, 6 degrees of freedom (DoF) need

to be eliminated. In theory, a set of 4 non-coplanar

reference points is sufficient. Nevertheless, it is best

to use as many points as possible to increase the re-

liability of the transformation found. As such, a ca-

libration target is defined using geometric primitives
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Figure 3: Mutual interference by ToF cameras during si-
multaneous operation with the same active illumination fre-
quency.

that eliminates all DoFs. Possible primitives are a

sphere eliminating 3 DoF (viz. three translations), a

plane eliminating 3 DoF as well (viz. one translation

and two rotations) and others. In this work, we will

use a calibration target with multiple planar regions.

The motivation for this selection is that planes can be

acquired more reliably with a ToF camera than shapes

with varying normals such as spheres.

The main idea behind our approach is that we do

not directly register the two ToF views with each ot-

her. Instead, each camera individually registers only

to the observed part of the calibration target using

the ICP algorithm. Since both parts of the calibra-

tion target are defined in the same coordinate system,

the point clouds are transformed into a common refe-

rence frame and the extrinsic parameters between the

cameras can be derived. The proposed calibration tar-

get can be seen in Fig. 4. The calibration target is split

into two parts, one that is observed by the left camera

and one by the right camera (see Fig. 5).

Figure 4: CAD model of the calibration target.

A few considerations still need to be addressed.

First of all, the ICP algorithm is a local registration

method, meaning that an initial estimation of the glo-

bal transformation is necessary to obtain a good re-

sult. Chances are otherwise that the algorithm will get

stuck in local minima. Secondly, the input depth data

is transformed to match the calibration model and

not vice versa. Thirdly, due to the planar geometry

of the calibration target, the point-to-plane distance

Figure 5: Calibration target as seen by each camera.

will provide a more robust error metric than the stan-

dard point-to-point distance. Lastly, since ToF came-

ras suffer from multi-path interference, edges might

be represented inaccurately. Therefore, the edges are

eroded in the actual calibration model.

A complete overview of the calibration method is

shown in figure 6. An initial estimate of the transfor-

mation matrix is obtained by measuring the distance

between either camera and the corresponding calibra-

tion part, and taking into account the angle between

the two cameras. Next, the ICP algorithm is perfor-

med to refine these transformation estimates. Since

both calibration parts are referenced in a common

coordinate system, the rigid transformation from one

camera to the other can be derived. The data from the

different cameras can now be fused together.

3.3 Data Fusion

The main goal of data fusion is to combine the data

from the ToF cameras such that it can be used by

an object detection framework. The registered point

clouds could simply be summed into a larger point

cloud. However, the core of our detection framework

is based on 2D detection methods for computational

reasons. Therefore, the combined point cloud must be

projected onto an image plane. The simple and well-

known pinhole camera model is used to describe the

3D to 2D projection. To make sure that the complete

point cloud fits on the image plane, appropriate model

parameters must be selected.

First of all, a single viewpoint is defined for the

virtual camera. This viewpoint is chosen such that

the horizontal field of view of the virtual camera mat-

ches the combined horizontal field of view of the ToF

cameras as can be seen in figure 7. Consequently,

the virtual camera is placed at the intersection of the

horizontal boundary field of view vectors. However,

since the ToF cameras are not perfectly aligned, the

viewing rays will not intersect. Therefore the inter-

section point is calculated as the point that minimizes

the distance to each ray.

Next the intrinsic parameters of the virtual camera
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Left camera CL Right camera CR
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TICPL
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Transformation matrix from CL to CR:

T = T−1
ESTR

T−1
ICPR
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Figure 6: Overview of the calibration method.

Figure 7: Sensor origin of the virtual camera.

are chosen in accordance with the original ToF ca-

meras. Based on the extrinsic parameters between

the two ToF cameras the angle of view can be esti-

mated. The focal length of the ToF camera is main-

tained. Since the angle of view and focal length are

now fixed, the resolution of the image plane is fixed as

well. Each point in the point cloud is then projected

on the camera image using the pinhole camera model.

This way a range image is obtained that can be used

for object detection as shown in the next section.

4 RESULTS

4.1 Registration Experiment

To obtain an idea of the accuracy of the calibration,

the camera-setup was pointed towards a wall. Using

the method described previously, the point clouds

were combined into a range image. Next a plane was

fitted to the wall. In figure 8, the difference between

each point of the wall and the mesh representation of

the plane is shown. The color indicates the distance

between the fitted plane and wall. When the distance

is small, the point is colored green. The histogram

has a Gaussian distribution due to the noisy nature

of the range data itself. The root mean square error

between the fitted plane and wall is 9.84mm, which

corresponds to the relative accuracy of the camera. If

there would have been a discrepancy between both

due to incorrect calibration, then the histogram would

have been more skewed or have outliers.

Figure 8: Accuracy of the calibration.

4.2 Application Example

Existing 3D object detection methods can be slow

due to the 3D complexity (Abbeloos and Goedemé,

2016). The core idea of our object detection frame-

work is therefore to reduce the 3D problem into a 2D

space. The work flow of our object detection frame-

work is shown in figure 9. Firstly, the point clouds
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are merged using the extrinsic parameters obtained

during calibration. Then the combined point cloud

is projected onto a range image. Using a template

matching technique (e.g. LINEMOD (Hinterstoisser

et al., 2012) ), the object can be detected in the range

image. Lastly, all 2D detection results can be re-

projected back into 3D space for an object location

refinement. Each 2D detection provides two coordi-

nates, while the third coordinate is estimated from the

available depth information. The pose refinement can,

for example, be achieved with the ICP algorithm.

Left camera CL Right camera CR

3D transformation

3D-2D projection

2D detection

Figure 9: Object detection in an industrial application.

5 CONCLUSIONS

We proposed an accurate and easy-to-use technique

for extrinsic calibration of two ToF cameras that are

placed side-by-side with only a small overlap between

the views. We demonstrated that using only a part of

the calibration target in each view, ICP can be used to

register both views despite the limited overlap. The

calibration target that has been used consists of four

planar regions. This has the benefit that it is more ro-

bust to noisy range data. Furthermore, for the calibra-

tion only one shot of the calibration target is required.

The effectiveness of our method was also proven in a

real-life application.
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