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Abstract: A novel eye status detection method is proposed. Contrary to the most of the previous methods, this new 
method is not based on an explicit eye appearance model. Instead, the detection is based on a deep learning 
methodology, where the discriminant function is learned from a large set of exemplar images of eyes at 
different state, appearance, and 3D position. The technique is based on the Convolutional Neural Network 
(CNN) architecture. To assess the performance of the proposed method, it has been tested against two 
techniques, namely: SVM with SURF Bag of Features and Adaboost with HOG and LBP features. It has been 
shown that the proposed method outperforms these with a considerable margin on a two-class problem, with 
the two classes defined as “opened” and “closed”. Subsequently the CNN architecture was further optimised 
on a three-class problem with “opened”, “closed”, and “partially-opened” classes. It has been demonstrated 
that it is possible to implement a real-time eye status detection working with a large variability of head poses, 
appearances and illumination conditions. Additionally, it has been shown that an eye blinking estimation 
based on the proposed technique is at least comparable with the current state-of-the-art on standard eye 
blinking datasets.  

1 INTRODUCTION 

The recent interest in the eye status and blinking 
detection is reflected by a large number of new 
publications related to numerous relevant 
applications. For instance, driver assistance systems 
use eye tracking and eye status detection to assess 
driver attentiveness (Du et al., 2008). In psychology, 
the frequency of the blinking is used to estimate stress 
while attending a job interview (Marcos-Ramiro et 
al., 2014), or fatigue detection of students (Joshi et al., 
2016) during an online learning. In (Wascher et al., 
2015) authors correlated the awareness of the subject 
to the new information by measuring the blinking 
rate. The eye status detection was also utilized in 
assisting the human interaction (Królak et al., 2012), 
(Mohammed et al., 2014). The objective, in these 
studies, was helping people with special needs in 
controlling the execution of common tasks using their 
eyes. The eye status detection has been also used to 
assess the eye health. In that case, changes in an 
average estimated number of blinks are linked to a 
specific eye condition (Sun et al., 2013). In case of 
eye dryness the number of blinks is expected to 

increase (Divjak and Bischof, 2009). Similarly, it has 
been reported that computer users’ blinking rate 
decreases to 60% compared to the normal blinking 
rate of 10-15 times a minute (Fogelton and Benesova, 
2016). Blinking detection can be also used against 
spoofing in face recognition systems (Pan et al., 
2007) (Szwoch et al., 2012).  

The eye blink is defined by changes in the eye 
status between opened, partially-opened, and closed. 
A so called complete blink occurs when the eye status 
is changing sequentially between the three states 
within a specified timeframe, typically between 100 
and 400 milliseconds. The incomplete and extended 
blinks are also defined, and happen respectively, 
when either the closed state is not completely 
reached, or it takes longer to execute (Portello et al., 
2013).  A number of methods have been proposed for 
the blink detection. They are either based on 
identifying the eye state in each individual frame, and 
subsequently combining the outcomes, or by 
detecting the motion of the eyelids by processing 
multiple image frames at once. 
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2 RELATED WORK 

The most frequent approach for eye status and 
blinking estimation uses face and eyes area detections 
as a pre-processing step. The Viola-Jones (Viola and 
Polatsek, 2004) method is the most common 
technique applied for relevant area detection. This is 
sometimes followed by face/eye tracking to handle 
the out-of-plane (Saragih et al., 2011) and/or in-plane 
head rotations (Tomasi and Kanade, 1991) 

The eye status detection is often the first stage to 
estimate the blinking rate as in Du et al., 2008. After 
detecting the face and eye areas, the cropped eye 
images are binarized and resized to 12x30 pixels. The 
estimate is based on the ratio of the length of the 
detected eye to its width, with an empirically set 
threshold. The authors reported 91.16% accuracy 
using this technique. However the dataset used for 
comparison was not provided. 

Similarly, Lee et al., 2010 extract two features that 
describe the eye status, open or close. To have a 
meaningful estimation, illumination normalization is 
performed first and subsequently the eye images are 
binarized. The Support Vector Machine (SVM) is 
used as a classifier operating on features derived from 
the binary images. The method showed a recall of 
92% on the ZJU dataset (Pan et al., 2007). 

A specific geometry of the eye can also be applied 
to extract features that can be used to train a Neural 
Network (NN) to estimate the eye status and 
consequently the blinking. Danisman et al., 2010, 
suggested using the pupil to detect the eye status. If 
the eye is open, then the upper half of the pupil will 
be similar to the lower, opposite to the case when the 
eye is closed. Therefore, the difference between the 
upper and the lower halves are used to create the 
necessary features to train the NN. The algorithm 
achieved 90.7% precision and 71.4% recall on the 
ZJU dataset. 

In a similar fashion, eye status is also utilized to 
estimate blinking by measuring the number of white 
colour pixels representing sclera and the black pixels 
corresponding to the iris and eyelash (Fazli and 
Esfehani, 2012). The authors suggested that if the 
face image is divided into five horizontal areas, the 
eye location will appear on the third and fourth 
subdivisions of the face. After locating the relevant 
areas, the image is converted to grey scale and a 
suitable threshold is applied to estimate the number 
of white pixels representing the sclera. Authors 
reported a success rate between 94.93-100% on four 
purposed captured videos with 720x1280 pixel 
resolution. 

Malik, Smolka, 2014, used the distance between 
the histograms of Local Binary Patterns (LBP) 
features of the eye area of the subsequent frames to 
detect the eye status. They measured the distance with 
Kullback-Leibler Divergence and smoothed the 
resulting signal with the Savitzky-Golay filter. To 
identify the local peaks, which represents the 
blinking, they utilized Grubb’s test. They reported 
99.2% detection accuracy on the ZJU database. 
However, the method is working offline.  

Motion vectors have been also utilized for 
blinking detection. Drutarovsky, Fogelton, 2014 use 
Lucas-Kanade traker (LKT) for that purpose. They 
first applied Viola-Jones detector to extract the eye 
region. Subsequently, the eye region is divided into 
3x3 cells. The average of the cell motion vector is 
calculated to create 9 motion vectors. Out of these 9 
motion vectors, the upper 6 vectors gave a clear 
indication of the eyelid motion. From these vectors 
the variance related to the eyelid motion is estimated 
and the obtained value is compared to an empirically 
selected threshold value.  A state machine has been 
designed to estimate the eye blink. They reported 
91% precision and 73.1% recall on the ZJU dataset 
and 79% precision and 85.27% recall on Eyeblink8 
dataset developed by the same authors. 

Fogelton, Benesova, 2016, proposed a similar 
approach to (Drutarovsky and Fogelton, 2014). 
However, to have an even distribution of the motion 
vectors, Farnebck algorithm has been utilized to 
estimate the motion vector at each pixel within the 
eye area. They postulated that there is a linear relation 
between the intraocular distance and the eye region 
size and used the intraocular distance to normalize the 
motion vectors. They were able to reduce effects of 
other movements, like a head motion. A similar state 
machine technique, as in the earlier study, was 
adapted to estimate blinking. Reported results 
showed, respectively, 100% and 98.08% for precision 
and recall on the ZJU dataset and 94.7% and 99% on 
the Eyeblink8 dataset, as well as 92.42% and 81.48% 
on the “Researcher‘s night” dataset (Fogelton 
andBenesova, 2016), specifically built to address 
more challenging environments. 

In the work reported in this paper, the eye status 
detection problem has been addressed for different 
challenging environments. This includes varied 
subjects, illumination and poses as well as camera and 
head motions. For training purposes we cropped 
around 2000 eye sub-images from the Helen database 
(Le et al., 2012). These sub-images have been 
selected to represent either two “opened” and 
“closed” or three “opened, “partially-opened”, and 
“closed” classes. 
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The two classes have been used to train the SVM, 
Adaboost, and LeNET models on grey scale images 
to provide a comparative analysis. Consequently, the 
LeNET model was extended to work on a three class 
problem and RGB images. This extended model was 
subsequently used to detect blinking and tested on the 
ZJU dataset. Finally, the required specification of the 
model for real-time implementation is described. 

3 EYE STATUS DETECTION 
REQUIREMENTS 

It is difficult to design an eye status detection system 
that would perform equally well under different 
conditions (Fogelton and Benesova, 2016). Several 
authors tried to implement their algorithms for 
various circumstances (Du et al., 2008) or impose a 
specific restriction on distance, lighting etc. for their 
algorithms to work (Mohammed and Anwer, 2014) 
(Joshi et al., 2016). Others implement their systems 
to be more robust to lighting conditions with half face 
appearance (Rezaei and Klette, 2012). Generally, 
from a perspective of the practical system 
applicability, the eye status detection system should: 
• adapt to changing illumination conditions,  
• cope with varied distance from the camera, 
• be invariant, within a limit, to head pose changes, 
• be resilient to a motion blur (Sun et al., 2013), 
• be capable to operate in real-time, 
• cope with a low camera frame rate, i.e. when a full 
“blinking transition” of “open” – “partially open” – 
“close” – “partially open” – “open” states cannot be 
detected. 

4 DATASET  

In order to build a dataset for the eye status detection 
that can support a system designed to address the 
issues highlighted in previous section, the publicly 
available Helen dataset (Le et al., 2012) has been 
used. This database was designed primarily for facial 
feature extraction in the wild. The Helen dataset 
contains large number of images with subjects with 
opened and partially-opened eyes, however, the 
number of subjects with closed eyes is rather limited. 
Therefore, additional examples (both synthetic and 
real) representing “closed” eye class were added.  

The Helen database consists of facial images 
representing subjects of different age, gender and 
ethnic origin. Additionally the images are of different 
resolution and were captured at highly variable 

illumination and pose conditions. There are 2330 
images available in this dataset. From these, more 
than 1000 images of right and left eyes have been 
cropped. Same images have been augmented and 
their grey scale versions have been produced to have 
an option to train different models, with colour or 
grey scale images for performance comparison. For 
practical reasons, each eye in the image is treated 
independently rather than the pair, as in some cases 
detecting simultaneously two eyes may fail. For 
instance, for rotated face or complex unbalanced 
lighting conditions only one eye might be visible.  

In the first instance, the grey scale images, 
cropped and resized to 128x128 pixels, are grouped 
into two classes, namely “opened” and “closed”. 
These images are subsequently used for training the 
SVM, Adaboost and LeNET Convolutional Neural 
Network (CNN) methods. In the second instance, a 
similar dataset of colour images has been constructed, 
this time resized to 227x227 pixels and grouped into 
three classes, namely: “opened”, “partially-opened”, 
and “closed”. For this dataset the proposed, modified 
LeNET architecture was retrained and evaluated.  

The cropping of images in the constructed eye 
dataset was meant to be imprecise to provide 
generalization to the trained models. The eye images 
were with and without eyebrow when cropped.   

In other cases, cropped images were of subjects 
wearing glasses, with makeup, or with the eye 
partially occluded by hair. Also, the eye locations 
were different from one image to the other and could 
contain in-plane rotation between ±45o. This eye 
image variability was embedded in the constructed 
dataset on purpose. 

Since the constructed eye dataset is considered to 
be relatively small in the context of the CNN and to 
provide a reasonable measurement of the 
performance, the dataset was randomly subdivided 
into ten groups for 10-fold cross validation. Each 
group consists of 90% of data as a training set with 
the remaining 10% as a test set. 

5 EYE STATUS DETECTION  

This section introduces investigated eye status 
detection approaches. Whereas section 5.1 describes 
the SVM, Adaboost and LeNET implementations for 
a two class eye status detection, section 5.2 is focused 
on a three class problem using the CNN. 

5.1 Two-Class Problem 

As it has been already mentioned, initially three  
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models were trained on the generated dataset, 
namely: SVM, Adaboost and LeNET. For the two 
class problem, the “closed” is considered as a positive 
class, whereas the negative examples correspond to 
images of “opened” class. The images with iris 
visibility approximately between 5-50% have not 
been included in the training set. 

In the first experiment, the SVM classifier was 
trained on the Bag of Features. The implemented Bag 
of Features builds visual vocabulary of 500 visual 
words with each word corresponding to a centre of a 
cluster, obtained using K-Means clustering in a space 
of 64 SURF descriptors. 

The second tested model uses Adaboost with 100 
decision trees selected as weak classifiers. 
Concatenated, Histograms of Oriented Gradients 
(HOG) and Local Binary Patterns (LBP) descriptors, 
with overall of 203 dimensions were used as a feature 
space (Liu et al., 2012). 

Finally, the LeNET (LeCun et al., 1998) model 
was used on the same two class problem. The results 
from all experiments using these three methods are 
reported in section 6. 

5.2 Three-Class Problem 

The most common approach when detecting the eye 
status is to discriminate between two: “opened” and 
“closed” eye states. However, Du et al., 2008 argued 
to differentiate between three “opened”, “partially-
opened”, and “closed” eye states. There are a number 
of reasons for this. Sometimes the lighting conditions 
force the eye to be partially opened, even though it 
should be considered as opened. When detecting 
blinking, the eyelids can move so fast that the 
“closed” state may not be registered, especially in the 
case when a low frame-rate camera is used. Having 
“partially-opened” state could help to address both of 
these problems. For the experiments reported in this 
paper, the corresponding criteria for the image 
annotation are shown in Table 1. 

Here, the eye is said to be “opened” if there is 
more than 50% of the iris visible, “partially-opened” 
if approximately between 5% and 50% of the iris is 
visible, and “closed” if less than 5% of the iris is 
visible. 

Table 1: Classification of the eye status based on the iris 
visibility. 

Eye Status Iris Visibility % 
opened ~100-50% 
partially-opened ~50-5% 
closed ~5-0% 

Recommendation reported in (Shin et al., 2016) 
suggests equal number of the training samples 
selected from each class. However, this suggestion 
was not suitable for the case with three eye states 
considered here. When training a model with equal 
number of samples from each class, the resulting 
classifier did not perform well. The “opened” and 
“closed” states had a large number of false positives 
and false negatives, respectively. To correct this, the 
number of samples representing the “closed” class 
was increased. To augment the “closed” class, 
randomly selected images from that class were 
mirrored, resized (including some change of the 
aspect ratio), and cropped differently to alter their 
size, shape and location. After several attempts, the 
best result was obtained in the case when the number 
of samples in the “closed” class was about 10% less 
than the combined number of samples representing 
the “opened” and “partially-opened” classes. 

 

Figure 1: Proposed eye status CNN architecture, batch 
size=128, S1=2, S2=2, P2=1, S3=2, S4=2. 

The three class dataset has been utilized to train 
different CNN configurations. The underlying 
network architecture, shown in Figure 1, is derived 
from the LeNET CNN, with S and P respectively 
representing the stride and padding. All the pooling 
layers use 3x3 window with stride of 2. 

6 RESULTS 

6.1 Two-Class Problem 

The results obtained for the SVM, Adaboost and 
LeNET are summarised in this section. 

Table 2 shows confusion matrixes calculated from 
5 out of 10 randomly selected experiments and the 
overall results for all 10 experiments for the SVM 
classifier. The model provides eye status detection of 
87% accuracy, 85% precision, and 87% recall. 
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Table 2: Confusion Matrixes shown for 5 out of 10 
experiments and the overall Confusion Matrix calculated 
from all 10 experiments, obtained for SVM classifier 
operating on a Bag of Features with the visual features 
constructed using SURF descriptors. In each experiment 
900 images were used for training and different 100 images 
for testing. The mean (µ) and the standard deviation (σ) 
statistics calculated from all the 10 experiments for TP and 
TN are as follows: µTP = 86.7, σTP = 8.1, µTN = 85, σTN =11.5. 

 Ground Truth   
Exp. No. (+) (-)   

1 
90 
10 

 

13 
87 

 

(+) 

D
etected R

esult 

(-) 

2 
81 
19 

 

7 
93 

 

(+) 
(-) 

3 
81 
19 

 

8 
92 

 

(+) 
(-) 

4 
82 
18 

 

08 
92 

 

(+) 
(-) 

5 
89 
11 

 

21 
79 

 

(+) 
(-) 

Overall 
867 
133 

 

150 
850 

 

(+) 
(-) 

Table 3: Confusion Matrixes reported for 5 out of 10 
experiments and the overall Confusion Matrix calculated 
from all 10 experiments, obtained for AdaBoost classifier 
constructed from 100 decision trees and operating on 
feature space of concatenated HOG and LBP descriptors. In 
each experiment 900 images were used for training and 
different 100 images for testing. The corresponding 
statistics are: µTP = 92.7, σTP = 4.9, µTN = 93, σTN =3.7. 

 Ground Truth   
Exp. No. (+) (-)   

1 
87 
13 

 

4 
96 

 

(+) 

D
etected R

esult 

(-) 

2 
90 
10 

 

5 
95 

 

(+) 
(-) 

3 
93 
7 

 

6 
94 

 

(+) 
(-) 

4 
95 
5 

 

5 
95 

 

(+) 
(-) 

5 
87 
13 

 

10 
90 

 

(+) 
(-) 

Overall 
927 
73 

 

70 
930 

 

(+) 
(-) 

Table 3 shows the results obtained for the 
Adaboost model. In this case the model provides an 
overall estimated accuracy of 93%, with precision 
and recall both estimated at 93%.  
     Finally, the LeNET model results are shown in 
Table 4, with overall accuracy: 97%, precision: 96% 
and recall: 98%. 

Table 4: Confusion Matrixes, obtained for the LeNET 
model. The remaining details are the same as for the results 
reported in Tables (2) & (3). The corresponding statistics 
are: µTP = 97.5, σTP = 2.6, µTN = 96.1, σTN =3.57. 

 Ground Truth   
Exp. No. (+) (-)   

1 
99      
1      

 

0 
100 

 

(+) 

D
etected R

esult 

(-) 

2 
95 
5 

 

3 
97 

 

(+) 
(-) 

3 
98 
2     

 

3 
97 

 

(+) 
(-) 

4 
95 
5 

 

1 
99 

 

(+) 
(-) 

5 
92 
8 

 

3 
97 

 

(+) 
(-) 

Overall 
975 
25 

 

39 
961 

 

(+) 
(-) 

6.2 Three-Class Problem  

Table 5 shows a sample from the tested CNNs and 
their corresponding overall performance on the 10-
fold tests. It can be seen that changing the network 
parameters only slightly affected the classification 
performance, with Net1 only marginally better 
(precision and recall) than the other two networks.  

Table 5: Results for selected configurations of the tested 
CNNs, with KS and NFM representing respectively the 
kernel size and number of feature maps for each 
convolutional layer. The numbers provided for the fully 
connected layers F1 and F2 represent the number of 
neurons in the corresponding layers. 

  Net1 Net2 Net3 
C1 KS 15x15 15x15 11x11 

NFM 4 4 8 
C2 KS 11x11 11x11 5x5 

NFM 16 16 16 
C3 KS 7x7 7x7 3x3 

NFM 32 16 32 
C4 KS 3x3 3x3 3x3 

NFM 16 16 16 
F1  32 32 64 
F2  512 512 512 
Precision  96.36% 95.54% 94.6% 
Recall  95.11% 95.06% 94.03% 
 
To investigate the Net1 configuration in more 

detail, different kernel sizes for C1 layer had been 
exploited with all other parameters of the Net1 
network configuration unchanged. The results of the 
experiments using the 10-fold tests are shown in 
Table 6. It can be seen that the size of the C1 kernel 
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does not influence significantly the performance of 
the classifier. Indeed it can be observed (by looking 
at the reported accuracy result for each experiment) 
that the performance of the network strongly depends 
on the specific data subset used for training. 

Table 6: Performance of the Net1 network configuration for 
different sizes of the kernel in C1 layer (all other network 
parameters are unchanged). Table reports the accuracy 
result for each 10 fold test, as well as overall accuracy, 
precision and recall. 

                     C1 

Experiment 
9x9 11x11 13x13 15x15

1 96.88 94.79 96.35 96.35 

2 97.4 97.4 95.83 96.35 

3 93.23 98.96 95.83 94.79 

4 96.88 93.75 97.40 95.31 

5 95.83 96.35 96.88 98.44 

6 96.88 98.44 98.96 97.40 

7 100 97.92 98.44 98.44 

8 97.4 97.40 95.83 97.40 

9 95.83 97.92 98.44 97.40 

10 93.97 94.27 92.19 91.67 

Overall Precision % 96.82 96.53 96.33 96.07 

Overall Recall % 95.99 96.38 96.27 95.79 

Overall Accuracy % 96.46 96.72 96.62 96.35 
 

 
 
 
 
 
 

 
 
 
 
 
 

 
 
 
 
 
 

Figure 2: Image reconstruction from the single strongest 
feature selected at last pooling layer (bottom row), with 
respect to different eye state class (top row). 

To check what type of image features are 
represented by the extracted “deep” network features, 
the Deep Visualization Tool (Yosinski et al., 2015) 
was used to reconstruct eye images. Figure 2 shows 
“deconvolution” results using a single feature from 
the last max-pooling layer, preformed for a simulated 
exemplar image from each class. In the experiment, 
only the feature with the strongest response was kept 
with all other features removed. It can be seen, that 
the reconstructed images depict reasonably well an 
eye silhouette of the corresponding original image. 

Table 7: First layer kernels learned for each network 
described in Table 5. 

Network Net1 Net2 Net3 
Kernel  15x15 15x15 11x11 

First 
kernel 
C1 

   

Table 8: Networks responses (predictions) for simulated 
image exemplars representing different eye states (C: 
“closed”, O: “opened”, P: “partially opened”). 

Table 7 shows the kernels learned in the C1 layer 
of each network described in Table 5. It can be seen 
that although the performance of the three 
configurations are very similar, the learned kernels 
are somewhat different. They all seem to perform a 
similar tasks aiming at extracting simple point and 
edge features. For example it can be seen that some 
of the kernels resemble the typical characteristics of 
the Laplacian of Gaussian (LoG) filter, when others 
resemble oriented edge detection filters. 

Table 8 shows the networks responses to sample 
images, with the Net1 providing the highest decisions 
confidence. 

7 EYE BLINK DETECTION 

As it has been mentioned, the eye status classification 
and motion detection of the eyelids had been 
frequently utilized before for a blink detection. Often, 
these methods use a prior knowledge derived from the 
test sets (in a simple case this could be a threshold 
value) to be able to run the estimator (Fogelton, 
Benesova, 2016). This may limit the applications of 
such methods in a real environment. In the case of the 
proposed approach the training data set is not linked 
in any way with the data used for tests. Indeed 
different databases were used for training (Helen) and 
for testing (ZJU and Talking Face). This can make the 

 
 
 
 

 
 
 

 
 
 

Net1 
P:99.62% 
O: 0.22% 
C: 0.16% 

P:  0.04% 
O: 0.00% 
C: 99.96% 

P:  0.00% 
O:100.0% 
C: 0.00% 

Net2 
P: 90.60% 
O: 0.01% 
C: 9.40% 

P:  7.32% 
O: 0.30% 
C: 92.38% 

P: 0.00% 
O:100.0% 
C: 0.00% 

Net3 
P:71.73% 
O: 27.48% 
C: 0.79% 

P: 24.44% 
O: 0.19% 
C:75.37% 

P: 0.00% 
O:100.0% 
C: 0.00% 
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proposed approach more appropriate to work with the 
data in the wild as in the case of the blink detection 
test below. 

Here, publicly available ZJU and Talking Face 
(“Talking Face Video”) datasets, have been used for 
the evaluation of the blink detection using the 
proposed CNN model. A number of eye status 
temporal sequences have been defined to represent 
the blink action. For example, these include 
sequences: “opened” - “closed” - “opened” or 
“opened” - “partially opened” - “closed” - “opened”. 
Table 9 lists the obtained results. 

Table 9: Results obtained for blink detection using the 
proposed method. PR: Precision, RE: Recall, GT: Ground 
Truth, TP: True Positive, FP: False Positive. FN: False 
Negative. 

Dataset PR% RE% GT TP FP FN 
ZJU 98 89.8 213 190 3 23 
TF 100 100 55 55 0 0 

Another advantage of using CNN in this case is 
that the model is not sensitive to the subject motion. 
Even if the eye images are blurred, due to the motion 
of the subject as in Talking Face dataset, the model is 
able to identify the eye status and subsequently the 
blink action. 

8 ONLINE IMPLEMENTATION 

For an online implementation, the throughput of the 
model should be fast enough to process the incoming 
frames from the camera. The system that has been 
used for online testing consists of PC with 1.2GHz 3i 
CPU and 8GB memory, Nvidia GTX 960, and a 
webcam. The method may also work without GPU 
using CPU only. The processing starts with detecting 
the face and then eye regions within 640x480 image. 
This detection takes around 16ms, Table 10. When 
GPU is used it takes on average 9.61ms to recognise 
eye status, and 46.15ms if the algorithm is 
implemented on CPU. This means that a video stream 
with 15 fps can be processed in real-time on the CPU. 

Table 10: Time required to detect the eye region using 
Viola-Jones using CPU and recognise the eye status on 
GPU and CPU.  

Operation Time (ms) 
Viola-Jones (CPU) 16.00 
CNN model (GPU) 9.61 
CNN model (CPU) 46.15 

 

Figure 3 shows examples of the eye status 
detection using the setup described above. It can be 
seen that the system can predict the eye status with a 
varied distance between the subject and the camera 
and different head poses. This is because the model 
has been trained on images with varied eye 
representation, including pose and illumination. 
 

Figure 3: CNN status detection snapshots. 

9 CONCLUSIONS 

This paper reports on a novel technique for the eye 
status detection adopting convolutional neural 
network (CNN) framework. It has been shown that 
the proposed technique outperforms, on this problem, 
the SVM method with SURF descriptors Bag of 
Features and the AdaBoost with HOG and LBP 
features. The eye dataset used in the testes is derived 
from the Helen database which contains faces “in the 
wild” including challenging cases with significant 
illumination and head pose variability. Different 
CNN configurations were tested and optimised to 
show the dependence of the results on changes of 
selected parameters of the network. The proposed eye 
status detection method was further tested on the eye 
blink detection problem. It has been shown that the 
obtained results are comparable with the recently 
reported state-of-the-art results. It should be 
emphasised that the proposed method was trained on 
the data derived from the Helen database.  The 
datasets used for blink detection evaluation, namely 
ZJU and “Taking Face” were not used in any form for 
the training of the method. This gives some 
confidence that the proposed method would perform 
in a similar way on other comparable data. Last but 
not the least, it has been shown that the whole 
processing pipeline, including eye detection and eye 
status classification, can be performed in real-time.  
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