
SitAC – A System for Situation-aware Access Control
Controlling Access to Sensor Data

Marc Hüffmeyer1, Pascal Hirmer2, Bernhard Mitschang2, Ulf Schreier1 and Matthias Wieland2

1Hochschule Furtwangen University, Robert-Gerwig-Platz 1, Furtwangen im Schwarzwald, Germany
2Universität Stuttgart, Universitätsstraße 38, Stuttgart, Germany

{marc.hueffmeyer, ulf.schreier}@hs-furtwangen,
{pascal.hirmer, bernhard.mitschang, matthias.wieland}@ipvs.uni-stuttgart.de

Keywords: Authorization, Attribute based Access Control, Situation-awareness, REST, Internet of Things.

Abstract: This paper addresses situation-aware access control for sensitive data produced in sensor networks. It de-
scribes how an attribute-based access control system can be combined with a situation recognition system to
create a highly flexible, well performing, and situation-aware access control system. This access control sys-
tem is capable of automatically granting or prohibiting access depending on situation occurrences and other
dynamic or static security attributes. Besides a high-level architecture, this work also describes concepts and
mechanisms that can be used to build such a system.

1 INTRODUCTION

This paper describes a situation-aware access control
system to protect various kinds of RESTful services.
The system is based on two major components: a situ-
ation recognition system and an attribute-based access
control mechanism. A situation recognition system
detects the occurrence of situations in so-called In-
ternet of Things (IoT) environments. These environ-
ments comprise a number of devices that are usually
attached with multiple sensors. Based on the sensors’
values, the state of the environment can be detected.
The aggregation of states leads to the derivation of
situations. Hence, a situation can be defined as “a
state transition in an IoT environment”. For example,
the situation “server room temperature overheated’’
can be detected once temperature sensors reach a cer-
tain threshold. SitOPT (Franco da Silva et al., 2016;
Hirmer et al., 2015; Wieland et al., 2015) is an exam-
ple for such a situation recognition system, detecting
situations through the aggregation of low-level sen-
sor data. Attribute Based Access Control (ABAC) is
an access control model that enables specifying rich
variations of access rules. The main idea of ABAC
is that any property of an entity can be used to de-
termine access. We previously introduced RestACL
(Hüffmeyer and Schreier, 2016c), an access control
language based on the ABAC model. It has been de-
signed to control access to RESTful services. The
challenge in building a situation-aware access control

system is the integration of those heterogeneous sys-
tems into one efficient and stable system.

A typical application scenario for a situation-
aware access control system is the support of ambi-
ent assisted living. In such a scenario, possible emer-
gency situations – like an elderly person falling down
– can be detected through the aggregation of data pro-
duced by several sensors (e.g., acceleration and mo-
tion sensors). In case an emergency situation arises, a
recognition system can automatically detect the sit-
uation and raise an alert to an emergency contact.
However, since situation recognition cannot provide
a completely reliable detection rate, it is good advice
to double check whether the emergency situation re-
ally occurred. Therefore, an ambient assisted living
home might be equipped with one or more cameras
that observe the living environment. There are three
different cases that target remote access to this cam-
era: 1) An anxious family member might be privi-
leged to access this camera permanently. 2) In case
of an alert, a rescue service automatically gains tem-
porary access to the camera to double check whether
an emergency situation is given. This access privi-
lege is dropped after a dedicated period of time. 3)
In contrast to the first two cases, malicious persons
must be permanently locked out. Imagine a burglar
having access to the video camera. The burglar could
easily spy out its victim, check where valuable items
are kept and wait until the resident leaves its home to
burglarize. Therefore, it is crucial to restrict access

Hüffmeyer, M., Hirmer, P., Mitschang, B., Schreier, U. and Wieland, M.
SitAC – A System for Situation-aware Access Control - Controlling Access to Sensor Data.
DOI: 10.5220/0006186501130125
In Proceedings of the 3rd International Conference on Information Systems Security and Privacy (ICISSP 2017), pages 113-125
ISBN: 978-989-758-209-7
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

113



Access Control Service 

Sensor Situation Recognition 

Firewall Internet 
Burglar 

Family Member 

Rescue Service 

Resident 

Figure 1: Scenario for situation-aware access control.

to the data produced by the camera. Figure 1 depicts
this ambient assisted living scenario. The three differ-
ent cases of access privileges (permanently granted,
temporarily granted, permanently prohibited) in this
scenario are indicated by the three mentioned users.
All of them might access remote services in the liv-
ing environment via the internet. A firewall is used
to block non-authenticated users. Authenticated users
send requests to the remote service. These requests
are inspected and possibly rejected by an access con-
trol system. A situation recognition system is used
to detect situations based on sets of sensor values. If
a situation occurs, the system sends out notifications
to registered users. For example, the family member
and the rescue service might have been subscribed to
receive notifications in case an emergency situation
occurs. Also it is absolutely necessary that the sit-
uation recognition system informs the access control
system about situation occurrences. Otherwise the ac-
cess control system cannot act situation-aware.

Note that this paper introduces our approach for
situation-aware access control based on the ambient
assisted living scenario. However, there are several
other application scenarios in which situation-aware
access control is useful like, for example, Industry 4.0
scenarios as described in (Franco da Silva et al., 2016;
Hirmer et al., 2015; Hirmer et al., 2016b).

The remainder of this paper is organized as fol-
lows: in Section 2, we describe the fundamentals of
the situation recognition system (SitOPT) and the ac-
cess control system (RestACL). In Section 3, an ar-
chitecture, its components, and an API are introduced
that enable situation-aware access control based on
those systems. Situation registration and access pro-
cedures are discussed in detail in Section 4. Evalua-

tion results are presented in Section 5. Finally, related
work is referred to in Section 6 and a summary and an
outlook to our future work are given in Section 7.

2 FOUNDATIONS

This section provides overviews over the SitOPT ap-
proach and over the RestACL access control system.

2.1 SitOPT

As depicted in Figure 2, the SitOPT approach (Hirmer
et al., 2015; Wieland et al., 2015) offers several com-
ponents for situation recognition. The two main com-
ponents are the Situation Recognition Service (SitRS)
and the Resource Management Platform (RMP). The
SitRS is capable of detecting situations based on so
called Situation Templates – a model for defining the
conditions for occurring situations. More precisely,
Situation Templates connect sensor values with con-
ditions, which are then aggregated using logical op-
erations such as AND, OR, or XOR. The root node
of a Situation Templates is the actual situation to be
defined. The RMP serves as gateway to the sensors
and offers several adapters to bind different kinds of
sensors and, furthermore, provides a uniform REST-
ful interface to access sensor data. The binding of de-
vices equipped with sensors is conducted as described
in (Hirmer et al., 2016b; Hirmer et al., 2016a).

A registered device can have one or more own-
ers. Initially, only the owner has access to these de-
vices. Once devices are bound, applications or users
can register for situations to get notified on their oc-
currence. To realize this, first, a Situation Template

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

114



SitOPT

RMP

Sensor Sensor Sensor

SitRS

Sit. DB

Device APISituation API

Figure 2: Architecture of SitOPT.

has to be modeled defining the situation’s conditions.
After that, it is used as input for the Situation Recog-
nition Service, which transforms it into an executable
representation (e.g., a CEP query) and executes it in
a corresponding engine. On execution, situations are
continuously monitored and registered applications or
users are notified as soon as they occur. SitOPT of-
fers two interfaces to upper-level applications. The
Situation API allows registration on situations to get
notified on their occurrence. The Device API allows
registration of new devices to be monitored by the
SitRS. In case a situation occurred, an alert is raised
to all callbacks and the situation is written into a Sit-
uation Database. The Situation Database (SitDB) is a
longterm storage for situation occurrences.

2.2 RestACL

Access control commonly answers the question
which subjects might perform what actions on what
objects (Ferraiolo et al., 2015). ABAC replaces di-
rectly referred entities like subjects or objects by at-
tributes. ABAC mechanisms use so called categories
to map attributes to entity types. For example, an at-
tribute name can be mapped to a subject type.

Definition (Attribute): We define an attribute as a
triple a := (c,d,v) consisting of a category c, a desig-
nator d and a value v. Category, designator and value
all have types like integers or character sequences.

Note that attributes are related to dedicated entities
(e.g., an attribute name with the value bob is related to
a human (the entity) with the name bob). Therefore,
an entity consists of a set of attributes.

Definition (Entity): We define an entity e :=
({a1, ...,an}) as the set of all attributes a1, ...,an with
n ∈ N belonging to the same category.

RestACL is an ABAC mechanism that targets au-
thorization for RESTful services. Figure 3 shows the
architecture of a RestACL access control system. Ac-
cess logic is determined in policies located in a Pol-
icy Repository. A policy is a logical concatenation
of expected attribute values. For example, a policy
might declare that ”access is granted if attribute a1
has value v1 and attribute a2 has value v2”. The

identification of policies is done using so called Do-
mains that describe mappings between resources and
policies. An Evaluation Engine computes access de-
cisions based on access requests derived from re-
source requests. The attributes that are required to
perform the decision computation are delivered by
one or more Attribute Providers. One kind of At-
tribute Provider stores attributes in a persistent man-
ner. That means, the evaluation engine might pass an
id attribute to an Attribute Provider and receive all
known attributes of the entity that is related with the
id. Another kind of attribute provider is needed to get
information (such as the actual time) from the envi-
ronment. A third kind is needed in order to get in-
formation from an external user identity management
system. Further details about RestACL can be found
in (Hüffmeyer and Schreier, 2016c). In (Hüffmeyer
and Schreier, 2016a) it is shown that the division of
resource-policy-mappings and the actual access con-
trol logic helps to create a much better scaling access
control systems. This is especially required for the
Internet of Things, respectively, a Network of Things
because devices are added and removed frequently.

RestACL 

Policy Repository 

Evaluation 
Engine 

Domain 

Attribute Prov. 

A
ccess A

P
I 

Figure 3: Architecture of RestACL.

An access control system that implements the lan-
guage can be set up as a RESTful Service, too, en-
abling a self-protecting access control system. In this
work, we present how such an access control system
can be set up as a RESTful service itself. Access to
web services (and the SitOPT system) is secured us-
ing access control services. These services also act as
a user management component for the SitOPT sys-
tem. Note that existing identity management solu-
tions could be integrated, but since the access control
mechanism is based on attributes, the access control
services can perform the user management as well.

3 SitAC ARCHITECTURE

To ensure a fast and appropriate reaction to dedicated
situations, users can register situations based on Situ-
ation Templates and get notified on their occurrence.
On registration, users have to provide callback infor-
mation that defines what subject is automatically in-

SitAC – A System for Situation-aware Access Control - Controlling Access to Sensor Data

115



formed once a situation occurs. In the ambient as-
sisted living scenario, for example, an elderly person
might wear a necklace (a device) that includes a gy-
roscope and an accelerometer (the sensors). Through
the aggregation of sensor data, it can be detected if
the person falls to the ground. On detection, the situa-
tion recognition system raises an alert to all registered
users. For example, if the accelerometer values show
a peak and the gyroscope values oscillate, the elderly
person might have fallen. But in some cases only the
necklace might have fallen down. This can be clas-
sified as a false-positive situation detection. In order
to double check whether an emergency situation oc-
curred, the emergency contact requires remote access
to the camera service mentioned in the scenario intro-
duction (cf. Figure 1). If the camera pictures show
the resident moving around, it is likely the case that
there is not an emergency situation. The emergency
contact can verify this with a phone call instead of
immediately sending an ambulance. To enable this,
dedicated services or sensor values, such as remotely-
accessible cameras, must be accessible dependent on
a certain situation for a limited group of people.

3.1 Requirements

An access control system for such a scenario must
be very efficient and flexible. That means, the sys-
tem must be capable to determine access decisions in
short time to ensure that a service request provides
up-to-date data. This must be guaranteed even for
large amounts of services like cameras or any other
web service. Furthermore, the system must be flexi-
ble in terms of adding and removing services, which
means that the system must easily support the cre-
ation, change, and removal of services as well as poli-
cies that restrict access to these services and the pro-
duced data. Moreover, the access control system must
be capable to express rich variations of access policies
in order to embody multiple access control require-
ments. We identified four requirements a situation-
aware access control system for RESTful services
must fulfill. If the requirements are met, the benefits
of REST are not violated and situation-aware access
control can be implemented in an efficient manner.

(R1) Request-Based Authorization: If authoriza-
tion is not done on a request base, for example, if
access is granted or prohibited using tokens or along
sessions, this might lead to access decisions that are
not conform to the actual security policy. Imagine,
a resource changes its state between two access re-
quests from the same subject in a manner that the
second request is denied while the first access was
granted. Especially in a situation-aware context, the

access rights might change if a dedicated situation oc-
curs. If the second request is not independently evalu-
ated to the first one, a (temporarily) unauthorized ac-
cess might be the result or access might be prohibited
even if the actual context would grant access. There-
fore, authorization has to be done on a request base
from the client perspective.

(R2) Quick reaction: The states of devices, sen-
sors and other resources including their access rights
can change frequently depending on the contextual
environment (the situation). Hence, the access con-
trol system must be capable to quickly react to those
changes. Imagine, a device or a sensor changes its
state (e.g., a sensor value changes) and an access re-
quest is performed immediately after the state change.
The system must respond with an access decision that
belongs to the new state of the resource. Therefore,
the system must support a tight integration of the sit-
uational context. In addition, a fast application of
changes to the security policy and the given attributes
must be guaranteed.

(R3) Expressive strength: A situation-aware ac-
cess control system must enable high flexibility and
fine-grained access control. As we can see from the
ambient assisted living example, situation-dependent
and situation-independent policies might coexist in
the same context. Both types of policies must be sup-
ported by the access control system. Therefore, the
access control system must support the application of
rich variations of access rules based on various at-
tributes of situation, subject, resource, environment
or similar entities.

(R4) Integration and administration: The
situation-aware access control system must support
a tight integration of new devices, sensors, and
Situation Templates as well as flexible administration
of existing ones. Therefore, a carefully chosen set
of initial policies and attributes must be created
during the registration process. In addition, a highly
structured and well-designed administration interface
is required that enables access to management actions
for humans as well as for automated systems.

3.2 SitAC Modeling with ABAC

Because ABAC is an ideal candidate for a flexible ac-
cess control model, a situation-aware access control
system can rely on the ABAC model. In situation-
aware access control, a situation becomes an own cat-
egory similar to subjects or resources. Entities of
that category have dedicated attributes. For example,
the SitOPT system notifies the Access Control Sys-
tem in case a situation has occurred and also in case
a situation is no longer occurring. Therefore, a sit-

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

116



uation has occurred and time attributes that indicate
whether a situation is currently occurring and the time
at which the last change to the occurrence has hap-
pened. These attributes are delivered from the SitRS
to the RestACL system. The RestACL system passes
the attributes to its Attribute Providers to store them.

Because the SitAC system must be capable to
grant access for a dedicated period of time after the
occurrence of a situation, a situation also requires an
accessInterval attribute. For example, during the sit-
uation registration process (cf. Section 4.3), a subject
might create a policy that grants access if an emer-
gency situation has occurred within the previous 20
minutes. The accessInterval attribute can be inter-
preted as a sort of counter that expires after a ded-
icated time period (measured from the moment the
situation occurred). Once this timer is expired, ac-
cess is not further granted or respectively prohibited.
The accessInterval attribute is initially created during
the registration process for a Situation Template but
can be manipulated by the subject that registered the
Situation Template at any time. Using the occurred
attribute enables to revoke access rights before the ac-
cessInterval expires. For example, if the SitOPT sys-
tem sends a notification that the emergency situation
is no longer given, the occurred attribute is set to false
and the situation-dependent access is revoked. That
means, the decision whether a member of the rescue
service can access the video camera depends, among
others, on the attributes occurred, time, and access-
Interval of the situation. For example, the following
attributes are given.

Table 1: Situation Entity Example.

Att. Category Designator Value
a1 situation id 123
a2 situation occurred true

a3 situation time 12:00:00
01.01.2017

a4 situation accessInterval 1200000 ms

Note that a situation entity always must have the
three attributes occurred, time and accessInterval.
Otherwise, a situation-aware computation of access
decisions is not possible. In addition, the time the ac-
cess request arrives is required, too. The actual time
is an attribute of the environment context. For exam-
ple, if a request arrives at 12:10:00 01.01.2017 the
environment time attribute is:

Table 2: Environment Attribute Example.

Att. Category Designator Value

a5 environment time 12:10:00
01.01.2017

Note that access not only depends on the presence
of dedicated attributes. Attribute values can also be
related to each other. For example, the environment
time attribute must provide a value that is between the
situation time and the situation time plus the access-
Interval. Access is granted right at the moment the
situation occurred (indicated by the situation’s time
attribute). For example, we can say that:

va2 = true (1)

and
va3 < va5 < va3 + va4 (2)

must be fulfilled in order to grant access. In Section
4.3, a detailed example is given how these attributes
and the relations are expressed within a policy.

3.3 Architecture

Figure 4 depicts the components that are required to
combine the access control and situation recognition
systems into a situation-aware access control system.
The architecture is divided into three layers that are
built on top of physical and environmental objects in
the real world: a service layer, a security layer, and
a client layer. Every layer provides RESTful services
to the upper layer, respectively, to the public.

The service layer covers the services that need to
be protected. For example, in the ambient assisted
living scenario, the camera service is located in the
service layer. In general, the service layer carries any
type of RESTful services that requires permanent or
situation-dependent protection. Note that the SitRS
provides various services to manage situation recog-
nition. For example, these services include sensor
or Situation Template registration as well as access
to the RESTful services provided by the RMP to ac-
cess devices. These are located on the service layer as
well. As described previously, situations can be reg-
istered including contact information (callbacks) that
describe which subjects need to be informed in case of
a situation occurrence. The SitRS periodically moni-
tors whether the situation occurred.

The security layer is responsible for guarantee-
ing that only privileged subjects have access to the
general services and the SitOPT system. Therefore,
Enforcement points inspect every incoming request
to the general services as well as the SitOPT sys-
tem and consult the RestACL system whether the re-
quest can be permitted. Therefore, an Enforcement
point formulates an access request and passes it to
the Access API of the RestACL system. The ac-
cess request contains at least the resource and subject
identifiers and optionally a situation identifier. The
RestACL system then identifies the policies that need

SitAC – A System for Situation-aware Access Control - Controlling Access to Sensor Data

117



Client Client Client 

Camera 

RestACL 

Device 

Access/Situation Admin. API 

Security 
Layer 

Service 
Layer 

Client 
Layer 

Real 
World 

Camera API 

Camera API 

Enforce. 

Situation Callback API 

Device API Situation API 

Situation 

A
ccess A

P
I 

A
ccess A

P
I 

Device API 

Enforce. 

SitOPT 

1 3 

2 4 

5 

6 
6 

7 

9 

8 

Figure 4: Architecture for situation-aware access control.

to be evaluated. During the evaluation process, the
RestACL system uses the identifiers from the access
request to load a list of attributes for each entity from
its Attribute Providers. The actual access decision
is computed based on the identified policies and the
given attributes. This decision is returned back to the
Enforcement points. That means, the Enforcement
points provide the same service interface as their re-
lated web services. They only add the execution of
access control logic to these services. The Enforce-
ment points either rejects or forwards a request.

If a client registers devices, sensors or Situation
Templates using the Access/Situation Administration
API, the security layer checks if the client is allowed
to perform this action (e.g., register a sensor for a
dedicated device). If the client has the permission
to perform the action, the RestACL system forwards
the request to the SitOPT system. In order to pro-
vide situation-aware access decisions, the RestACL
system registers itself as a situation callback for any
situation. That means, the SitRS informs not only
dedicated clients about all changes in the occurrence
of a situation but also the RestACL system. The
RestACL system then updates the related situation en-
tities stored in its Attribute Providers and once an ac-
cess request arrives, the RestACL system can perform
a situation-aware policy evaluation.

As depicted in Figure 4, the situation-aware ac-
cess control system works as follows: 1) A client reg-
isters devices (including sensors) at the Access/Situ-
ation Administration API. The RestACL system cre-
ates initial attributes for these devices and sensors (cf.
4). 2) The RestACL system forwards the creation re-
quest to the SitOPT system. 3) A client registers a

Situation Template at the Access/Situation Adminis-
tration API. The RestACL system creates a situation
entity for this Situation Template. 4) The RestACL
system forwards the Situation Template creation re-
quest to the SitOPT system and registers itself as a
callback. 5) The SitOPT system monitors the devices
(respectively their sensors). 6) If the situation occurs,
the SitRS informs all callbacks (clients as well as the
RestACL system) about the occurrence. 7) A client
tries to access a device or another resource like the
camera. 8) The related Enforcement point creates an
access request and sends it to the RestACL system.
9) Depending on the result, the Enforcement point ei-
ther forwards the request to the resource or rejects the
client’s request.

As part of the integration work for the two sys-
tems, an administration component is required that
enables various types of clients to control policies, at-
tributes and their assignments to devices and sensors.
For example, human users might want to register de-
vices and manage their access rights through a web
application while other machines might want to regis-
ter or deregister devices in an automated fashion using
basic REST calls. The Access and Situation Admin-
istration component creates initial policies, attributes
and resource assignments during the registration pro-
cedure for devices, sensors or Situation Templates. In
addition, this component offers an API for policy, at-
tribute and situation administration. Note that this
component is not part of the generic ABAC system
but is rather tailored for the situation-aware system.
Details about the registration procedure are described
in Section 4.

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

118



Table 3: SitAC services.

Action API Description
Register situation Situation Clients want to describe situations in which they are called back.
Deregister situation Situation Clients want to deregister situations in which they are called back.
Register device Situation Clients want to register devices.
Deregister device Situation Clients want to deregister devices.
Register sensor Situation Clients want to register sensors associated with a device.
Deregister sensor Situation Clients want to deregister dedicated sensors.
Access sensor values Device Clients want to access sensors resp. a snapshot of the actual values

produced by the sensor.
Access services Service Clients want to access (read, update or delete) services like the camera

for which situation-aware access is granted.
Register services Access Clients want to register services for which situation-aware access

should be granted.
Register user Access Clients want to register themselves.
Create attributes Access Clients want to create attributes for themselves as well as attributes for

the devices, sensors and services that they own.
Update, delete attributes Access Clients want to update or delete attributes that are used to determine

access to devices and sensors.
Create policies Access Clients want to create policies that are used to determine access to

devices and sensors. The policies contain the actual access logic for
dedicated sensors.

Update, delete policies Access Clients want to update or delete policies that are used to determine
access to devices and sensors.

Assign policies Access Clients want to change the mapping between policies and devices or
sensors. Note that policies can be assigned to many devices, sensors
or services while attributes are related to exactly one entity.

3.4 SitAC Services

Since the situation-aware access control system offers
multiple RESTful services, a client can perform sev-
eral actions in such an environment. Firstly, the client
can perform situation recognition related operations
like the registration of devices, sensors, or situations.
Of course, the client must only perform those actions
the subject is privileged for. Secondly, besides these
situation recognition related operations, the client can
also perform a set of access control related actions.
Finally, the client can access the web services in case
that the subject is privileged. Table 3 lists the different
types of operations that can be performed by a client.

Services with the Situation type are offered by
the SitOPT system. The security layer intercepts re-
quests to those services and adds the execution of ac-
cess control logic. If a client wants to perform one
of those operations and the access control system per-
mits the execution, the client’s request is forwarded
to the SitOPT system. Note that the RMP offers addi-
tional operations to update sensor values. Those oper-
ations are only accessible for the sensors but not from
public. Therefore, the access control system does not
mirror these operations to the public. Since one re-

source is directly mapped to one sensor and must only
be updated by this sensor, there is no need for a fine-
grained access control mechanism.

Actions with type Access are provided on the se-
curity layer. A client can change access restrictions to
a user’s devices, sensors or services/resources. There-
fore, the client might assign new attributes to its
own devices, sensors or services/resources using a
/attributes subresource that is created for every
resource. For example, a client might add a new at-
tribute location to a device and refer this attribute in
an access policy. In addition, the client can create new
policies and assign those policies to the devices, sen-
sors and services. Therefore, another subresource is
created for each resource: the /access subresource.

Finally, actions of type Service are application
service related operations and enable users to regis-
ter services/resources that require situation-dependent
access protection.

The access control system offers a REST interface
that provides the aforementioned actions. Because
the access control system is based on the RestACL
language, which is designed to protect RESTful Ser-
vices, the access control services can not only protect
the SitOPT system and the web services, but also their

SitAC – A System for Situation-aware Access Control - Controlling Access to Sensor Data

119



own REST API.

4 WALKTHROUGH OF THE
EXAMPLE SCENARIO

To be able to perform authorization, it is essential to
know the involved entities. In a resource-oriented en-
vironment, there are at least two involved entities: the
requested resource and the requesting subject. While
the resource can be identified using its URI, the re-
questing subject must authenticate itself to the Access
Control Services.

4.1 Authentication

Authentication can be done using standardized HTTP
authentication methods like basic or digest authenti-
cation or any other authentication method. Note that
authentication is not required for every API call be-
cause some operations like the registration of a new
device are not restricted to dedicated user. In case
the subject does not authenticate itself and the oper-
ation requires authentication, the Firewall will return
a HTTP 401 response. Note that user name and pass-
word do not need a special treatment in the access
control system. They are regular attributes assigned
to a dedicated subject. Once a user has authenticated
him/herself, the access control system executes the
access logic to determine whether the requested op-
eration (e.g., read sensor data or update sensor ac-
cess) must be performed. Therefore, the Access Con-
trol Enforcement point creates an access request con-
taining the address of the requested resource (e.g.,
/devices/1/sensors/accelerometer), the access
method (e.g., GET), and a subject identifier (e.g.,
/users/1). The access control system uses these
properties to load various attributes from the Attribute
Provider that are used in the evaluation process for an
access request. For example, a subject might have an
attribute type with the value rescue or a sensor (a re-
source) might have an attribute location. Given the
identifier of the sensor and the identifier of the user,
both can be uniquely identified and attributes like the
previously mentioned ones can be loaded from an At-
tribute Provider. Note that the Access Control Ser-
vices can employ multiple Attribute Providers for one
request. Even external attribute sources like an exter-
nal identity management are possible.

4.2 Thing, Sensor and Service
Registration

If a user decides to create a new device composi-
tion that should be monitored for dedicated situations,
the user must first register all devices and their sen-
sors (cf. Figure 4 - Message 1). Therefore, the user
sends exactly one registration request for each de-
vice to the access control system. This is done us-
ing a HTTP POST request as indicated below. The
request must contain a unique device identifier, a list
of device owners and optionally a device description.
The RestACL system creates a new policy and lim-
its access to the subjects of the owner list. After that,
the system creates several new entries for the device
within the Domain. Besides an entry for the device
itself, the same policy is used to ensure that only one
of the owners can register new sensors with that de-
vice or register new attributes. Finally, another entry
ensures that only the owners can change the access
rights for that device. In addition to the Domain en-
tries, an owner list attribute is assigned to the device
at the Attribute Provider. Note that a user can regis-
ter multiple owners for one device. In such a case, all
owners have access to the device and can change the
access policies. Note that all these operations are exe-
cuted within the RestACL system. Once the device is
created at the RestACL system, the system forwards
the creation request to the SitOPT system (cf. Figure
4 - Message 2).

For example, the elderly person from the ambi-
ent assisted living scenario might want to register its
necklace at the SitOPT system. This can either be
done by an expert or in an automated fashion. Note
that an automated registration has not been imple-
mented yet but is part of our future work. The person
might be identified with the id 1 and therefore might
be addressed using the path /users/1. The registra-
tion application needs to send a POST request to the
RestACL system containing a unique device id and an
owner list in the payload of the POST request (Mes-
sage 1). Note that in this example the elderly person
is the device owner.
POST /devices HTTP/1.1

{
"deviceId" : "1234",
"deviceDescription" : "necklace with sensor",
"deviceOwners" : ["/users/1"]

}

When the request arrives, the RestACL system
creates a new access policy (as indicated below) that
grants access in case that the requesting subject is one
of the subjects from the owner list. This policy is
stored in the Policy Repository.

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

120



{
"id": "P1",
"effect": "Permit",
"priority": "1",
"condition": {
"function": "equal",
"arguments": [{
"category": "subject",
"designator": "uri"

},{
"value": "/users/1"

}]
}

}

In a second step, this policy is assigned to the new
device (the necklace). Therefore, the RestACL sys-
tem creates a new Domain entry (as indicated below)
and stores the entry to its Domain database.
{
"path": "/devices/1234",
"access": [{
"methods": ["GET"],
"policies": ["P1"]

}]
}

As a third step, the same policy is assigned to
the /sensor subresource path of the necklace, too
(as indicated below). The sensor subresource (e.g
/devices/1234/sensors) must be used to register
sensors like the accelerometer or the gyroscope with
the necklace.
{
"path": "/devices/1234/sensors",
"access": [{
"methods": ["POST"],
"policies": ["P1"]

}]
}

The same policy is also assigned to the
/attributes subresource of the new device (e.g,
/devices/1234/attributes). This subresource en-
ables clients to store new attributes or to update at-
tribute values at the Attribute Provider. In case that
only external Attribute Providers are used, the binding
between the attribute registration path and the policy
is not required. But since the reference implementa-
tion uses its own Attribute Provider, clients need an
API to update their own attributes as well as their de-
vices’ and sensors’ attributes. Access to this API must
be limited, too. Therefore, the binding is required.

In the fifth step, the policy is assigned to
the /access subresource of the new device (e.g.
/devices/1234/access). This subresource enables
clients to assign new access policies to the device. For
example, if the elderly person wants to grant access to
the rescue service, a new policy for the device must be
set using this URI.

Lastly, the new device gets an owner attribute.
This attribute must be stored together with all other at-
tributes of the device (like the mandatory id attribute)
at the Attribute Provider.

{
{
"category" : "resource",
"designator" : "id",
"value" : "/devices/1234"
},
{
"category" : "resource",
"designator" : "deviceOwners",
"value" : ["/users/1"]

}
}

The service registration and the sensor registration
procedures are very similar to the device registration
procedure and therefore are not discussed in detail.
But there is one big difference that should be noted:
sensors are associated with devices and therefore can
only be registered if the access policies for the asso-
ciated device are fulfilled. Sensor registration is done
using a POST request to the sensor list of a device
(e.g., /devices/1234/sensors). The RestACL sys-
tem checks whether access to the sensor list is per-
mitted (checking the policies that have been assigned
as described above). Note that during the device reg-
istration, an initial assignment is created (step 3) that
restricts access to that sensor list to the device owners.
Therefore, the owners can determine who might regis-
ter new sensors for that device. Besides the execution
of access logic, the registration process for devices
and sensors is the same. That means, also for sensors
a new policy is created that initially restricts access to
the device owners and this policy is assigned to the
sensor resource itself as well as to the /attributes
and /access subresources of the sensor.

4.3 Situation Policy Example

If a subject wants to restrict access to a dedicated ser-
vice in a situation-aware fashion, the subject must reg-
ister a Situation Template. To do so, the subject must
have the permission to read any of the sensor values
defined in the template, otherwise the situation can-
not be registered. During the registration process, the
RestACL system creates a situation entity (and stores
it to its Attribute Provider). This entity is used to store
situation-aware access information. For example, the
entity stores the information if the situation has oc-
curred and the point of time it has occurred. These
information can be taken into account during the eval-
uation procedure of an access request. For example,
the RestACL policy shown below is used in the am-

SitAC – A System for Situation-aware Access Control - Controlling Access to Sensor Data

121



bient assisted living scenario to protect access to the
camera service.

{
"id": "PEmergency",
"description": "A policy that grants access

in case of a emergency situation. The policy
can be applied to the camera resource."
"effect": "Permit",
"priority": "2" ,
"compositeCondition": {
"operation": "AND",
"conditions": [{
"function": "equal",
"arguments": [{
"category": "subject",
"designator": "type"

} ,{
"value": "rescue"

}]
},{
"function": "equal",
"arguments": [{
"category": "situation",
"designator": "occurred"

},{
"value": "true"

}]
},{
"function": "between" ,
"arguments": [{
"category": "situation",
"designator": "time"

},{
"category": "environment",
"designator": "time"

},{
"function": "add",
"arguments": [{
"category": "situation",
"designator": "time"

},{
"category": "situation",
"designator": "accessInterval"

}]
}]

}
}

The policy grants access in case that three con-
ditions are fulfilled: 1) The requesting subject must
have a type attribute with the value rescue indicating
that the subject is a member of an emergency service.
2) the situation must have occurred. That means, the
situation recognition service has informed the Access
Control Services that the actual sensor value compo-
sition can be interpreted as the emergency situation.
3) The time the request arrived (indicated by the en-
vironment time attribute) must be in between the time
at which the situation occurred and the time of the
occurrence (indicated by the situation time attribute)
plus the situation’s accessInterval attribute.

The second and third condition require that situ-
ation attributes must be up-to-date. Therefore it is
crucial that the SitRS informs the RestACL system
in case that the occurrence of a situation has changed
(either the situation occurred attribute value switches
from false to true or vice versa). The SitRS is capable
of informing one or more callback receivers in case
that the situation occurs. In order to provide up-to-
date situation attributes, the RestACL system registers
itself as a callback for each situation. If a situation oc-
curs, the SitRS informs the RestACL system, which
forwards the updated situation entity information to
the Attribute Provider.

4.4 Service Access

In the above mentioned scenario, standardized REST
clients can be used to request service data from de-
fault web services. Those web services are protected
by an upstream Enforcement Point. That means, the
client performs a resource request , e.g., a HTTP
GET) request to the camera service and the Enforce-
ment Point intercepts it (cf. Figure 4 - Message 7).
After a successful authentication procedure, the En-
forcement Point executes access logic by sending an
access request to the RestACL system and enforcing
the access decision (cf. Figure 4 - Message 8). The
access request is derived from the resource request
and enriched with attributes stored at the Attribute
Provider. The enforcement is done by either forward-
ing the resource request to the web service (cf. Figure
4 - Message 9) or rejecting the initial resource request
(e.g., returning a HTTP 403 response). Forwarding
or rejection of the resource requests depends on the
actual access decision of the RestACL system. This
procedure allows to treat every request individually
in terms of access control. This ensures that require-
ment (R1) is fulfilled and proper access decisions can
be guaranteed in a situation-aware fashion.

5 EVALUATION

We used two methods to evaluate our approach: 1) We
evaluated whether our system meets the requirements
described in Section 3.1. 2) We did a non-formal
verification that the system produces the expected re-
sults. Therefore, the system has been used to evaluate
the ambient assisted living scenario. The interested
reader is referred to (Hüffmeyer and Schreier, 2016a)
for further performance evaluations of the RestACL
system for increasing numbers of resources.

The situation-aware access control system is capa-
ble of handling each service/resource request individ-

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

122



Table 4: Access types.

Access Type s1 s2 s3 s4
Permanently grant permit permit permit permit
Permanently forbid deny deny deny deny
Temporary grant deny permit deny deny
Temporary forbid permit deny permit permit

ually. Every single remote request is forwarded to the
access control system to ensure that the system can-
not be bypassed. Because the system does not employ
concepts like tokens, we can ensure that every request
is evaluated individually by the access control system
as required in (R1). This suits with the stateless com-
munication principles of REST and of the situation-
aware context very well.

For validation purposes both, the situation recog-
nition system and the attribute-based access control
system have been set up on the same computer. Run-
ning both systems on the same computer offers the
benefit that network runtimes can be eliminated. That
means, there is no additional delay between the time
a situation occurred and the time access is granted.
Therefore, granting and revoking access permissions
can be reduced to setting attribute values. This can be
performed in less than 1 ms, because it is a very ba-
sic operation. This ensures that proper access rights
are assigned immediately after a situation occurrence
and before a situation related access request can ar-
rive. Therefore, we can see (R2) as fulfilled.

We created a solution that allows the coexistence
of situation-dependent and situation-independent ac-
cess policies. Both types of policies are not limited
to a dedicated area, because they can also include any
type of attributes. This enables a very flexible access
control system that can be used in various fields like
ambient assisted living, Industry 4.0, smart cities or
any event-driven environment. Attributes and their
categories can be freely selected and logically com-
bined to express rich variations of access rights as re-
quired in (R3).

Section 4 describes the registration procedure in
detail. Using this procedure guarantees that devices
and sensors are never accessible without any access
control inspections as required by (R4).

In Section 1, we mentioned that there are differ-
ent types of access cases. Access decisions are ei-
ther permanently or temporary and access decisions
either grant or prohibit access. That means, we con-
ducted several tests that proved whether the system
works properly. For each access type (permanently
granted, permanently forbidden, temporarily granted,
temporarily forbidden), it must be guaranteed that the
system computes the right access decision before a

situation has occurred (s1), after the situation has oc-
curred (s2), after the access end has arrived (s3) and
after the situation occurrence has switched back (s4).
Table 4 lists the expected access decision for each test
case. We could successfully verify that the system
works properly with these test cases.

6 RELATED WORK

Situation-aware access control is a topic that has only
been rarely discussed. However, there are a few pub-
lications that are associated.

A specialized Situation-Aware Access Control
model is described in (Peleg et al., 2008; Beimel
and Peleg, 2011). In this work, a health-care ori-
ented model is presented. They describe a situation
schema that is used to compute an access decision.
The schema contains for example Patients, Data-
Requesters or Health Records. Access is granted de-
pending on several contextual factors rather than only
depending on the role of the Data-Requester. They
describe a specialized solution in medical environ-
ments, which extends the role-based access control
model to include a medical context. So, this work
presents a specialized solution rather than a generic
approach for situation-aware access control.

Situation-aware Access Control for autonomous
decentralized systems is described in (Yau et al.,
2005). In this approach, a role-based access con-
trol model is used to enforce access control in dy-
namic and large scale information systems. The au-
thors extend the hierarchical role-based model de-
scribed in (Ahn and Sandhu, 2000). They introduce
situation constraints that are applied to the relation
between Users and Roles as well as the relations be-
tween Roles and Permissions. However, role-based
access control requires careful role engineering and
might lead to role over-engineering if a great diver-
sity of access conditions must be expressed (Jin et al.,
2012; Yuan and Tong, 2005).

The eXtensible Access Control Markup Language
(XACML) is an OASIS standard that describes one
way to apply ABAC. XACML policies are arranged
in tree structures and XACML engines have to tra-
verse multiple branches of that tree for every access

SitAC – A System for Situation-aware Access Control - Controlling Access to Sensor Data

123



request. While XACML can be seen as a composi-
tional approach that computes the union of several
access rules that can be applied to a request (Ramli
et al., 2012), RestACL divides the security policy of
an application into access control logic on the one
side and the identification of policies on the other
side. RestACL was designed to fit the characteristics
of RESTful Services such as unique identifiers, a uni-
form interface for resources and hypermedia as the
engine of application state (HATEOAS) (Hüffmeyer
and Schreier, 2016a; Hüffmeyer and Schreier, 2016b).
Therefore, RestACL supports the requirements of the
application scenario in a much more natural fashion
when compared with XACML.

Glombiewski et al. (Glombiewski et al., 2013)
present an approach similar to the situation recogni-
tion system of SitOPT by integrating context from a
wide range of sources for situation recognition. How-
ever, they do not provide any abstraction for situa-
tion modeling, i.e., situations need to be defined us-
ing complex CEP queries. This proves difficult, es-
pecially for domain experts, e.g., in ambient living
scenarios, who do not have extensive computer sci-
ence knowledge. Furthermore, (Hasan et al., 2011)
propose to use CEP along with a dynamic enrichment
of sensor data in order to realize situation-awareness.
In this approach, the situations of interest are di-
rectly defined in the CEP engine, i.e., the user formu-
lates the situations of interest using CEP query lan-
guages (Hasan et al., 2011). A dynamic enrichment
component processes and enriches the sensor data be-
fore the CEP engine evaluates them against the situa-
tions of interest. In the SitOPT approach, we provide
an abstraction by Situation Templates (Häussermann
et al., 2010) and a graphical interface (Franco da Silva
et al., 2016) for situation modeling.

Many similar approaches exist that use ontologies
for situation recognition (Wang et al., 2004). How-
ever, these approaches are either focused on specific
use case scenarios (Brumitt et al., 2000) or cannot
provide the efficiency required by real-time critical
scenarios (Wang et al., 2004; Dargie et al., 2013),
e.g., in the ambient assisted living scenario where sit-
uations need to be recognized timely. These limita-
tions regarding efficiency occur in machine learning
approaches (Attard et al., 2013), too. In contrast, the
SitOPT approach offers high efficiency by recogniz-
ing situations in milliseconds (Franco da Silva et al.,
2016) instead of seconds or even minutes as reported
in (Wang et al., 2004; Dargie et al., 2013). This en-
ables applicability in time-critical real-world scenar-
ios in which recognition times are of vital importance.

The authors of (Yazar et al., 2014) present a low-
cost Ambient Assisted Living system using vibration

and passive infrared sensors for falling detection and
other use-cases. The system works in real-time, but
security aspects are not considered at all. On the one
hand this fall detection system could be used in our
use-case and on the other hand our SitAC approach
would improve the security of the presented system.

7 SUMMARY AND FUTURE
WORK

This work introduces a situation-aware access con-
trol system to protect sensor data and other REST-
ful services. It describes a way how situation-aware
access control can be implemented using the generic
attribute-based approach by introducing the situation
as a dedicated category. The ABAC system is loosely
coupled to a situation recognition system that pro-
vides up-to-date situation information.

The designed and implemented solution provides
situation-aware access control including request-
based authorization, the application of frequent pol-
icy and situation changes, and the expressive strength
of an attribute-based access control system. Besides
these benefits, the system performs very well in tests.
Because of its generic design based on the ABAC
model, the system can be used in different scenarios.
We described an ambient assisted living scenario, but
the application context of situation-aware access con-
trol is widely spread. As we already mentioned in
the beginning, other interesting areas are industry 4.0,
smart cities or any other event-driven environment.
We conduct a comprehensive evaluation of the SitAC
system in those environments in our future work.

In our future work, we want to ease the regis-
tration and administration processes. As we have
previously mentioned in the example scenario, ex-
perts are required to perform the registration of de-
vices and sensors. This is acceptable in machine-to-
machine scenarios, where machines are the clients of
the situation-aware access control system. Such sys-
tems are usually set up once by experts. It is not
suitable, for example, in the ambient assisted living
scenario because the clients are usually no experts.
Therefore, we want to develop mechanisms that sim-
plify the registration as well as administration pro-
cesses to better support non-expert clients. The sim-
plification of those processes must also target the task
of policy management to enable clients to easily man-
age the access policies of their resources. Besides
that, we want to have more detailed analysis of other
scenarios like Industry 4.0 and investigate whether the
presented solution fits newly upcoming requirements.

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

124



REFERENCES

Ahn, G.-J. and Sandhu, R. (2000). Role-Based Authoriza-
tion Constraints Specification. ACM Transactions on
Information and System Security, Vol. 3, No. 4.

Attard, J., Scerri, S., Rivera, I., and Handschuh, S.
(2013). Ontology-based situation recognition for
context-aware systems. In Proceedings of the 9th In-
ternational Conference on Semantic Systems, pages
113–120. ACM.

Beimel, D. and Peleg, M. (2011). Using OWL and SWRL to
represent and reason with situation-based access con-
trol policies. Data & Knowledge Engineering, Vol.
70, Issue 6.

Brumitt, B., Meyers, B., Krumm, J., Kern, A., and Shafer,
S. (2000). EasyLiving: Technologies for Intelligent
Environments. In Handheld and Ubiquitous Comput-
ing. Springer Berlin Heidelberg.

Dargie, W., Mendez, J., Mobius, C., Rybina, K., Thost, V.,
Turhan, A.-Y., et al. (2013). Situation Recognition for
Service Management Systems Using OWL 2 Reason-
ers. In Proceedings of the 10th IEEE Workshop on
Context Modeling and Reasoning 2013, pages 31–36.
IEEE Computer Society.

Ferraiolo, D., Kuhn, R., and Hu, V. (2015). Attribute-Based
Access Control. In Computer, Vol.48. IEEE Computer
Society.

Franco da Silva, A. C., Hirmer, P., Wieland, M., and
Mitschang, B. (2016). SitRS XT – Towards Near Real
Time Situation Recognition. Journal of Information
and Data Management.

Glombiewski, N., Hoßbach, B., Morgen, A., Ritter, F., and
Seeger, B. (2013). Event Processing on your own
Database. In BTW workshops, pages 33–42.

Hasan, S., Curry, E., Banduk, M., and O’Riain, S. (2011).
Toward Situation Awareness for the Semantic Sen-
sor Web: Complex Event Processing with Dynamic
Linked Data Enrichment. SSN, 839:69–81.

Häussermann, K., Hubig, C., Levi, P., Leymann, F., Si-
moneit, O., Wieland, M., and Zweigle, O. (2010).
Understanding and designing situation-aware mobile
and ubiquitous computing systems. Proc. of intern.
Conf. on Mobile, Ubiquitous and Pervasive Comput-
ing, pages 329–339.

Hirmer, P., Wieland, M., Breitenbücher, U., and Mitschang,
B. (2016a). Automated Sensor Registration, Binding
and Sensor Data Provisioning. In Proceedings of the
CAiSE’16 Forum, at the 28th International Confer-
ence on Advanced Information Systems Engineering
(CAiSE 2016).

Hirmer, P., Wieland, M., Breitenbücher, U., and Mitschang,
B. (2016b). Dynamic Ontology-based Sensor Bind-
ing. In Advances in Databases and Information Sys-
tems. 20th East European Conference, ADBIS 2016,
Prague, Czech Republic, August 28-31, 2016, Pro-
ceedings, volume 9809 of Information Systems and
Applications, incl. Internet/Web, and HCI. Springer
International Publishing.

Hirmer, P., Wieland, M., Schwarz, H., Mitschang, B., Bre-
itenbücher, U., and Leymann, F. (2015). SitRS - A
Situation Recognition Service based on Modeling and

Executing Situation Templates. In Barzen, J., Kha-
laf, R., Leymann, F., and Mitschang, B., editors, Pro-
ceedings of the 9th Symposium and Summer School
On Service-Oriented Computing, volume RC25564 of
Technical Paper. IBM Research Report.

Hüffmeyer, M. and Schreier, U. (2016a). Analysis of an
Access Control System for RESTful Services. ICWE
’16 - International Conference on Web Engineering.

Hüffmeyer, M. and Schreier, U. (2016b). Formal Compar-
ison of an Attribute Based Access Control Language
for RESTful Services with XACML. SACMAT ’16 -
Symposium on Access Control Models and Technolo-
gies.

Hüffmeyer, M. and Schreier, U. (2016c). RestACL - An At-
tribute Based Access Control Language for RESTful
Services. ABAC ’16 - Proceedings of the 1st Workshop
on Attribute Based Access Control.

Jin, X., Krishnan, R., and Sandhu, R. (2012). A Uni-
fied Attribute-Based Access Control Model Covering
DAC, MAC and RBAC. DBSec ’12 - Proceedings of
the 26th Annual Conference on Data and Applications
Security and Privacy.

Peleg, M., Beimel, D., Dorib, D., and Denekamp, Y. (2008).
Situation-Based Access Control: Privacy manage-
ment via modeling of patient data access scenarios.
Journal of Biomedical Informatics, Vol. 41, Issue 6.

Ramli, C. D. P. K., Nielson, H. R., and Nielson, F. (2012).
The Logic of XACML. In Lecture Notes in Com-
puter Science - Formal Aspects of Component Soft-
ware. Springer.

Wang, X., Zhang, D. Q., Gu, T., and Pung, H. (2004). On-
tology Based Context Modeling and Reasoning Us-
ing OWL. In Proceedings of the Second IEEE Annual
Conference on Pervasive Computing and Communi-
cations Workshops. IEEE Computer Society.

Wieland, M., Schwarz, H., Breitenbücher, U., and Ley-
mann, F. (2015). Towards Situation-Aware Adaptive
Workflows. In Proceedings of the 13th Annual IEEE
Intl. Conference on Pervasive Computing and Com-
munications Workshops: 11th Workshop on Context
and Activity Modeling and Recognition. IEEE.

Yau, S. S., Yao, Y., and Banga, V. (2005). Situation-aware
access control for service-oriented autonomous de-
centralized systems. In Proceedings of the 2005 In-
ternational Symposium on Autonomous Decentralized
Systems, ISADS ’05.

Yazar, A., Erden, F., and Cetin, A. E. (2014). Multi-
sensor ambient assisted living system for fall detec-
tion. In Proceedings of the IEEE International Con-
ference on Acoustics, Speech, and Signal Processing
(ICASSP14), pages 1–3. Citeseer.

Yuan, E. and Tong, J. (2005). Attribute based access control
(ABAC) for Web services. ICWS ’05 - International
Conference on Web Services.

SitAC – A System for Situation-aware Access Control - Controlling Access to Sensor Data

125


