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Abstract: Data stream clustering is becoming an active research area in big data. It refers to group constantly arriving 

new data records in large chunks to enable dynamic analysis/updating of information patterns conveyed by 

the existing clusters, the outliers, and the newly arriving data chunk. Prototype-based algorithms for solving 

the problem have their promises for simplicity and efficiency. However, existing implementations have 

limitations in relation to quality of clusters, ability to discover outliers, and little consideration of possible 

new patterns in different chunks. In this paper, a new incremental algorithm called Enhanced Incremental 

K-Means (EINCKM) is developed. The algorithm is designed to detect new clusters in an incoming data 

chunk, merge new clusters and existing outliers to the currently existing clusters, and generate modified 

clusters and outliers ready for the next round. The algorithm applies a heuristic-based method to estimate 

the number of clusters (K), a radius-based technique to determine and merge overlapped clusters and a 

variance-based mechanism to discover the outliers. The algorithm was evaluated on synthetic and real-life 

datasets. The experimental results indicate improved clustering correctness with a comparable time 

complexity to existing methods dealing with the same kind of problems.    

1 INTRODUCTION 

Recent advances in information and networking 

technologies have led to a rapidly growing flux of 

massive data interaction that has led to the 

emergence of Big Data witnessed in almost every 

sector of life ranging from the stock market, online 

shopping, banking, social media, and healthcare 

systems (Liu et al., 2013). Despite numerous 

attempts at defining the term, big data fundamentally 

refers to a huge volume of data that are generated by 

various applications and stored in different sources 

and locations. Big data requires frequent updating 

and analysis with the aim of the enhanced 

competitiveness and improved performance of 

organizations (Olshannikova et al., 2014).  

Velocity is one of the known characteristics of 

big data. It means that data arrive and require 

processing at different speeds. While for some 

applications, the arrival and processing of data can 

be performed in batch analysis style, other analytics 

applications require continuous and real-time 

analyses of incoming data chunks (Islam, 2013). 

Data stream clustering is defined as the grouping of 

new data that frequently arrive in chunks with the 

objective of gaining understanding about underlying 

grouping patterns that may change over time in the 

data streams (Yogita and Toshniwal, 2012). 

Most existing data stream clustering solutions 

follow the path of adapting existing static data 

clustering approaches and methods to the dynamic 

data stream scenarios, attempting to accommodate 

the capability of two-phase processing, i.e. offline-

online or online-offline (Aggarwal et al., 2003) 

(Bhatia and Louis, 2004). There are mainly three 

schools of thoughts in data stream clustering, i.e. 

prototype-based, density-based, and model-based 

(Yogita and Toshniwal, 2012; Nguyen et al., 2015; 

Silva et al., 2013). Prototype-based algorithms 

initially divide data objects into imprecise prototype 

clusters and then iteratively refine the prototypes 

into final clusters (e.g. K-Means (MacQueen, 

1967)). Density-based algorithms look for dense 

regions in each of which there is a high 

concentration of data points, and then the dense 

regions form clusters of similar data objects (e.g. 

DBSCAN (Ester et al., 1996)). Model-based 

algorithms consider the data points as the results of a 

statistical modeling process. Finding clusters of 

similar data points is equivalent to finding the 
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distributions of the statistical model (e.g. 

Expectation Maximization (Dempster et al., 1977)). 

Prototype-based methods are favored due to their 

promises of simplicity, ease of implementation, and 

efficiency. However, most, if not all, prototype-

based methods have their limitations, such as 

requiring the advanced setting of a number of 

clusters (K), lack of capability in discovering 

outliers, etc. The aim of our research is to develop 

an efficient dynamic clustering solution that 

improves existing prototype-based algorithms.  

In this paper, a new algorithm called Enhanced 

Incremental K-Means (EINCKM) is presented. At 

any incremental round, the inputs of the algorithm 

consist of a newly arrived data chunk, summary of 

the current set of clusters, and a list of outliers from 

the previous iteration. The outputs of the algorithm 

include the summary of a set of modified clusters 

and a new list of outliers. The EINCKM algorithm 

applies a simple heuristic-based method to estimate 

the number (K) of new clusters to be constructed 

from the new chunk. In addition, a radius-based 

technique is used to decide how to merge 

overlapping new and existing clusters. Moreover, 

the algorithm utilizes a variance-based mechanism 

to discover the output outliers. The algorithm was 

evaluated on both synthetic and real-life datasets. 

The experimental results show that the proposed 

algorithm improves clustering correctness with a 

comparable time complexity to the existing methods 

of the same type. The structure of the algorithm is 

designed to be modular for easy accommodation of 

any further improvements. 

The rest of this paper is organized as follows: 

Section 2 presents the state of the art of the related 

work on data stream clustering algorithms in the 

current literature. Section 3 explains the proposed 

algorithm. Section 4 presents a systematic evaluation 

of the performance of the algorithm and compares it 

with a selected number of existing algorithms 

through theoretical analysis and practical 

experiments using the synthesized and real-life 

datasets. A number of further issues regarding the 

proposed algorithm will be discussed in Section 5. 

Section 6 concludes the work and outlines the 

possible future directions of this research. 

2 RELATED WORK 

2.1 Existing Approaches for Clustering 
Data Streams 

From a computation point of view, there are two 

approaches for data stream mining: incremental-

learning and two-phase-learning (Nguyen et al., 

2015). Both approaches of mining can be adopted 

for clustering purposes. Figure 1 illustrates the 

principles of the two approaches. In the incremental-

learning approach, a model of clusters continuously 

evolves to fit changes made by incoming data 

chunks (Guha et al., 2000). On the other hand, the 

basic principle of the two-phase-learning approach is 

to split the clustering process into two phases. The 

first phase summarizes the data points into “pseudo” 

clusters, i.e. not finalized clusters. In the second 

phase, i.e. whenever a query about the clustering 

results is raised, the pseudo-clusters are modified to 

produce the finalized clusters (Aggarwal et al., 2003; 

Silva et al., 2013). 

2.2 Existing Algorithms 

Several prototype-based algorithms using the 

traditional K-Means clustering principles have been 

developed. The Adapt.KM algorithm (Bhatia and 

Louis, 2004) first finds K clusters in an initial 

dataset using the K-Means method. It then takes the 

minimum distance among the centroids of the 

clusters as a threshold. When a new data point 

arrives, if the distance between the data point and 

the centroid of its closest cluster is below the 

threshold, the data point is then added to the cluster.  

 

 

Figure 1: Computational approaches of data stream clustering (Nguyen et al., 2015). 
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The cluster centroid, as well as the threshold, are 

subsequently updated. If the distance is greater than 

the threshold, a new cluster is created for this new 

data point and the two closest existing clusters are 

merged followed by updating the centroid of the 

merged cluster and the threshold. The main 

limitation of this algorithm is its merging strategy. If 

there are a lot of outliers then clustering results will 

become meaningless.  

Chakraborty and Nagwani later suggested an 

improvement, known as Inc.KM (Chakraborty and 

Nagwani, 2011), that uses the average distance 

between centroids as the threshold and ignores the 

data point with a distance greater than the threshold 

as an outlier. The drawback of this algorithm is that 

it ignores the outliers which may create a new 

cluster(s).  

Guha, et al. (Guha et al., 2000) presented the 

STREAM algorithm. In the first phase, the algorithm 

evenly divides the stream into D chunks of equal 

size, finds S clusters in each chunk using the K-

Median algorithm, and the centroids of the S clusters 

are weighted by the number of data points in each. 

After that, only the weighted centroids of all clusters 

are kept and treated as “data points” when a buffer 

of size m prototypes is accumulated. In the second 

phase, these m prototypes are further clustered into 

K cluster representations. The main shortcoming of 

STREAM is that it is unable to adapt to the 

evolution concept of data, i.e. merge, split, add, and 

delete clusters. 

2.3 Merging Strategies for Overlapped 
Clusters 

Merging overlapped clusters that may emerge during 

the updating phase is one of the most important steps 

in data stream clustering algorithms. It has an effect 

on the correctness of the resulting clusters. There 

exist three main strategies of merging clusters: 

matching, the conditional probability of intersection 

area, and cluster radius. 

Spiliopoulou et al. (Ntoutsi et al., 2009) 

presented MONIC+ (Modeling and Monitoring 

Cluster Transitions) framework that computes the 

matching between clusters to capture their evolution. 

Clusters are only merged if they share at least a half 

of their memberships. Oliveira and Gama (Oliveira 

and Gama, 2012) produced MEC (Monitoring 

Clusters’ Transitions) framework which relies on the 

conditional probability and a predefined merging 

threshold of 0.5. Conditional probabilities are 

computed for every pair clusters obtained at the 

consecutive time. The weakness of (Ntoutsi et al., 

2009) and (Oliveira and Gama, 2012) is that 

information about the data points must be kept for 

each cluster, which is very expensive to maintain.  

Zhang et al. (Zhang et al., 1996) presented 

BIRCH (Balanced Iterative Reducing and Clustering 

using Hierarchies) algorithm. To decide whether to 

add a new data point into the previous clusters or 

not, BIRCH depends on the radius (i.e. the average 

distance from memberships to the centroid of the 

cluster). Cao et al. (Cao et al., 2006) produced 

Denstream algorithm which relies on the radius ravg, 

which is the average distance from the points in a 

micro-cluster to the centroid. The radius is then used 

to determine the merge of two closest micro-

clusters. Although calculating radius in these two 

algorithms gives a very high probability for data 

points to belong to a cluster, they may consider 

some data points as outliers instead of members.  

3 THE PROPOSED ALGORITHM 

3.1 The Algorithm Framework 

The general framework of the proposed EINCKM 

algorithm is depicted in Figure 2. The algorithm 

consists of the following main steps. Firstly, the 

outliers from the previous iteration are added into 

the incoming data chunk (step 1) in order to generate 

the K new clusters. The number K of new clusters is 

determined by an estimation function (step 2), which 

currently uses some heuristic rules to determine the 

value of K, but can be improved into a learning 

function to learn the best possible number of clusters 

for the new chunk. An Enhanced K-Means (EKM) 

algorithm is applied to the new data chunk (step 3) 

to discover the K new clusters. After that, a merging 

strategy is applied to the overlapped new and 

existing clusters of the last round using a radius-

based technique to derive a set of modified clusters 

(steps 4, 5). Finally, data points that are currently 

members of the modified clusters are filtered using a 

variance-based mechanism to determine the outliers 

among them (step 6). 

Figure 3 shows the pseudo-code of the EINCKM 

algorithm. The inputs are a data chunk of size M, a 

pool of outliers, the minimum number of data points 

per cluster, and a set of existing clusters summary. 

Each cluster summary is a tuple (N, LS, LSS, µ, R), 

where N is a number of data points, LS is the linear 

sum of the data points, LSS is the sum of squared 

data points, µ is the centroid, R is the radius. The 

outputs are K clusters and outliers. 
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Figure 2: Main steps of the EINCKM algorithm. 

EINCKM Algorithm: 
Inputs:  

  𝐶𝐻 : Data chunk of size 𝑀. Initially CH = {} 

  𝐶𝐹: Set of clusters summary (𝑁, 𝐿𝑆, 𝐿𝑆𝑆, 𝜇, 𝑅); //Previous clustering 

           summary of T clusters. Initially, CF = {} 

  𝑃𝑜: Pool of outliers; //Previous Pool of W outliers. Initially, Po = {}.  

  𝑀𝑖𝑛𝑃𝑡𝑠: Minimum number of data points per cluster. 

Outputs:  

  𝐶𝐹`: Modified 𝐶𝐹; 

  𝑃𝑜`: Modified 𝑃𝑜; 

Algorithm Steps: 

  1. 𝐶𝐻 = 𝐶𝐻 ∪ 𝑃𝑜; 
  2. 〈𝐾, 𝐼𝑛𝑖〉 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒(𝐶𝐻, 𝐶𝐹); //Estimate K and the initial centroids  

  3. 𝑐𝑓 = 𝐸𝐾𝑀(𝐶𝐻, 𝐾, 𝐼𝑛𝑖);//cf is a structure contains cf.member as cluster 

       members & cf.summary as cluster summary.  

  4. 𝐹𝑜𝑟 𝑖 = 1 𝑡𝑜 𝐾 //Find the cluster summary of new clusters.     

   Calculate 𝜇𝑖 𝑎𝑛𝑑  𝜎𝑖 𝑜𝑓 𝑆𝑖; //𝑆𝑖 is a cluster in cf. 

    Set 𝑅𝑖 as (2 ∗ 𝜎𝑖) from 𝜇𝑖; 

    Calculate cluster summary for 𝑆𝑖 //i.e. N, LS, L SS. 

  5. 𝐶𝐹 = 𝑀𝑒𝑟𝑔𝑒(𝐶𝐹, 𝑐𝑓);  //Merge overlapping clusters. 

  6. 〈𝐶𝐹, 𝑃𝑜〉 = 𝐹𝑖𝑙𝑡𝑒𝑟(𝐶𝐹, 𝑐𝑓, 𝑀𝑖𝑛𝑃𝑡𝑠); //Filter outliers 

Figure 3: Pseudo-code of the proposed algorithm. 

3.2 Main Functions of the Algorithm 

We intend to keep the Estimate function simple and 

hence it determines the number of clusters 𝐾 and 

initial centroids 𝐼𝑛𝑖 using heuristics (see Figure 4). 

For the first iteration, the number of clusters is set to 

𝐾 = √𝑁/2 where N is the number of data points in 

the new chunk plus the number of outliers in the 

previous pool. For the later iterations, 𝐾 is set to the 

𝐾 value of the previous iteration (in Section 4.1 we 

will explain why we select K in this way). Parameter 

𝐼𝑛𝑖 refers to the collection of the initial centroids. 

For the first iteration, the initial centroids are 

assigned as randomly selected data points in the data 

collection, but for later iterations, the centroids of 

the clusters of the previous iteration are taken as the 

initial centroids for the current round. The EKM 

function is an enhanced K-Means method that uses 

𝐾 and 𝐼𝑛𝑖 determined by the Estimate function. The 

intension is to minimize the nondeterministic results 

of clustering caused by different random seeds.  

  Estimate Function:  
〈𝐾, 𝐼𝑛𝑖〉 = 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒(𝐶𝐻, 𝐶𝐹)  

   𝐼𝑓 (𝐾𝑜𝑙𝑑 =  ∅) then//𝐾𝑜𝑙𝑑 is the number of clusters in 𝐶𝐹  

 { 

    𝐾 = 𝑆𝑄𝑅𝑇(size(𝐶𝐻)/2);  
    𝐼𝑛𝑖 = 𝑟𝑎𝑛𝑑(𝐾, 𝐶𝐻);  
  } 

  𝐸𝑙𝑠𝑒  

  { 

     𝐾 = 𝐾𝑜𝑙𝑑; 
     𝐼𝑛𝑖 = { 𝜇𝑖};//𝜇𝑖 in 𝐶𝐹 

    }     

Figure 4: Pseudo-code for the Estimate Function. 

The Merge function (see Figure 5) first creates a 

pairwise centroid distance matrix 𝐷 for all clusters. 

It then locates a pair of closest clusters with the 

minimum distance. If the distance is less than or 

equal to the radius of the smaller cluster, then the 

two clusters are merged into a single cluster with 

updated cluster summary and memberships for the 

data points involved. One row and one column of 

the matrix 𝐷 need to be updated to modify the 

distances of the newly merged cluster with the other 

clusters. The process is repeated until this criterion 

cannot be satisfied by any pair of clusters in the 

matrix 𝐷. 

Merge Function:              
𝐶𝐹 = 𝑀𝑒𝑟𝑔𝑒(𝐶𝐹, 𝑐𝑓)  

   1. 𝐶𝐹 = 𝐶𝐹 ∪ 𝑐𝑓. 𝑠𝑢𝑚𝑚𝑎𝑟𝑦; 
   2. Calculate the pairwise distance matrix 𝐷 for distances between 

  𝜇𝑖 𝑎𝑛𝑑 𝜇𝑗 in 𝐶𝐹;//  (𝑖 ≠ 𝑗)                                                                                                 

   3. Repeat   

(A) Locate 𝑆𝑖, 𝑆𝑗 in 𝐶𝐹 where𝐷𝑖𝑠𝑡_𝑐𝑚𝑖𝑛(𝜇𝑖, 𝜇𝑗) = 𝑎𝑟𝑔𝑚𝑖𝑛(𝐷) 

(B) Find 𝑅𝑚𝑖𝑛 = 𝑎𝑟𝑔𝑚𝑖𝑛(𝑅𝑖, 𝑅𝑗) 

(C) 𝐼𝑓 𝐷𝑖𝑠𝑡_𝑐𝑚𝑖𝑛 <= 𝑅𝑚𝑖𝑛 then     

         {                     

            (a) 𝑆𝑖 = 𝑆𝑖 + 𝑆𝑗;//  Merging two clusters and reassigned the 

                  memberships            

            (b) Calculate 𝜇𝑖 , 𝜎𝑖 for cluster 𝑆𝑖 in 𝐶𝐹; 

            (c) Set 𝑅𝑖 as (2 ∗ 𝜎𝑖) from 𝐶𝑛𝑖 

              (d) Modify 𝐷 

             (e) Update cluster summary for 𝑆𝑖 

           } 

  Until no more merge clusters  

Figure 5: Pseudo-code for the Merge Function. 

Extracting the outliers from the final clusters is 

done by calling the Filter function (see Figure 6) 

which uses the variance of each cluster and MinPts 

threshold to distinguish outliers. It scans the data 

points in each final cluster and compares their 

distance to the centroid with the radius of that 

cluster. If the distance is greater than the radius, the 

data point is considered as an outlier. 
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Filter Function:  
〈𝐶𝐹, 𝑃𝑜〉 = 𝐹𝑖𝑙𝑡𝑒𝑟 (𝐶𝐹, 𝑐𝑓, 𝑀𝑖𝑛𝑃𝑡𝑠)  

𝐹𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑠𝑖𝑧𝑒(𝑐𝑓)  

   { 

      𝐹𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑠𝑖𝑧𝑒(𝑆𝑖)// cf.member 

          { 

             𝐷 = 𝑑𝑖𝑠𝑡(𝑝(𝑗), 𝜇𝑖);// p is a data point in 𝑆𝑖  

             𝐼𝑓 𝐷 > 𝑅𝑖 then 𝑃𝑜 = 𝑃𝑜 ∪ 𝑝(𝑗); 
           } 

      𝐼𝑓 𝑠𝑖𝑧𝑒 (𝑆𝑖) < 𝑀𝑖𝑛𝑃𝑡𝑠 then 𝑃𝑜 = 𝑃𝑜 ∪ 𝑆𝑖; 
       Update cluster summary for 𝑆𝑖 

      } 

Figure 6: Pseudo-code for the Filter Function. 

4 EVALUATION OF EINCKM 

4.1 Logical Evaluation 

Our evaluation of correctness focuses on the three 

main functions of the algorithm. The Estimate 

function only approximates the value of K and initial 

centroids. Since the number of clusters is normally 

smaller than the number of data points, using the 

square root of half of the data points as suggested in 

(Kodinariya and Makwana, 2013) is sensible as the 

initial estimate.  

The Merge function depends on the general 

characteristics of the normal distribution to calculate 

the cluster radius. The cautious merge strategy 

ensures that the centroid of the smaller cluster not 

only belongs to the big cluster, but also close to the 

centroid of the big cluster. The Filter function 

extracts the outliers from the final clusters using 

their variance. Using the understanding of the 

normal distribution, the function excludes some data 

points outside the radius as an outlier, ensuring the 

high quality of the clusters. 

The number of clusters in each iteration is 

affected by the Estimate and Merge functions. It 

could be increased or decreased at one round of 

clustering. In other words, the number of clusters is 

determined after each round of clustering. 

Regarding completeness, unlike Inc.KM, the 

proposed algorithm does not lose any data point 

during the clustering process. If a data point does not 

belong to any clusters, it will be kept in the pool as 

outliers. If the outliers kept in the pool are 

considered belonging to a default cluster, the 

proposed algorithm is complete.  

The time complexity of EINCKM is determined 

by the time complexity of its main functions. First, 

the time complexity of EKM algorithm is estimated 

as O(NKI) where N is the total number of data points 

in a chunk plus the outliers in the input pool, K is the 

number of clusters, and I is the number of iterations 

until the clusters converge. The estimated time 

complexity of the Merge function is O((T+k)2) 

where T is the number of clusters of previous 

iteration and k is the number of clusters from a new 

chunk. The estimated time complexity of Filter 

function is O(N) because each data point within the 

chunk and the previous pool is determined as a 

cluster member or an outlier. Therefore, the time 

complexity of EINCKM is estimated as 

O(M(NKI)+(T+k)2+N), where M is the chunk size.  

The time complexity of the Adapt.KM algorithm 

is estimated as O(M(NKI+k(k-1)+N(K+1))). The 

time complexity of the Inc.KM algorithm is 

estimated as O(M(NKI+k(k-1)+NK)). The time 

complexity of STREAM is estimated as 

O(M(NKI)+2k+N). Comparing the Big O notations 

across the different algorithms shows that STREAM 

is the fastest among the algorithms. The proposed 

EINCKM algorithm time complexity depends on 

(T+k)2 whereas the Inc.KM and the Adapt.KM 

algorithms depend on MK2 and M(K2+1). Since in 

most cases, the number of clusters is much fewer 

than the number of data points within a chunk, the 

proposed algorithm should be marginally faster than 

Inc.KM and Adapt.KM but slower than STREAM.   

4.2 Empirical Evaluation 

Different approaches to evaluate clustering 

algorithm performance exist in the literature 

(Kremer et al., 2011). In order to evaluate the 

correctness of the proposed algorithm, we have 

decided to use the evaluation by the reference 

method, i.e. to find if the algorithm can return the 

known clusters in a given ground truth. To do so, we 

generated three synthetic datasets (DS1, DS2, and 

DS3) of 10000, 30000, and 50000 data points 

respectively of two dimensions. The DS1 contains 

six clusters; DS2 contains fifteen clusters, and DS3 

contains thirty clusters. Clusters in each of the three 

datasets have different sizes. Each cluster is 

generated randomly by following a normal 

distribution of a different mean and variance. Figure 

7 (a, b, c) shows the scatterplots of the three 

datasets. The details of the normal distributions used 

for generating the datasets are given in Appendix1.  

For real-life dataset, we selected the Network 

Intrusion Detection (NID) dataset from the KDD 

Cup’99 repository. This dataset contains TCP 

connection logs for 14 days of local network traffic 

(494,021 data points). Each data point corresponds 

to a normal connection or attack. The attacks split 

into four main types and 22 more specific classes: 

denial-of-service (DOS), unauthorized access from a 
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remote machine (R2L), unauthorized access to local 

user privileges (U2R), and surveillance (PROBING). 

We used all 34 continuous attributes as in (Aggarwal 

et al., 2003) and (Cao et al., 2006). 

 

(a) Scatterplot of dataset DS1. 

 

(b) Scatterplot for dataset DS2. 

 

(c) Scatterplot for dataset DS3. 

Figure 7: Overview of synthesized datasets. 

To evaluate correctness, we used three 

commonly used evaluators: purity, entropy, and the 

sum of squared errors (SSE). Purity was used in 

(Cao et al., 2006), entropy in (Karypis and George, 

2001), and SSE in (Aggarwal et al., 2003). Purity 

refers to the proportion of the data points belonging 

to a known cluster that are assigned as members of a 

cluster by the algorithm. The higher the proportion 

of purity (between [0, 1]) is, the more certain that 

the algorithm has found the original clusters and the 

better the algorithm is (Silva et al., 2013).  Entropy 

reflects the number of the data points from different 

known clusters in the original dataset that are 

assigned to a cluster by the algorithm. The value of 

this measure is between [0, 𝐿𝑜𝑔2𝑁] where N is the 

number of known clusters involved. The smaller 

value of the entropy is, the fewer members of the 

known clusters are mixed in the clusters discovered 

by the algorithm, and the better the clustering 

algorithm is (Nguyen et al., 2015). SSE is a 

commonly used cluster quality measure. It evaluates 

the compactness of the resulting clusters. Low 

scores of SSE indicates better clustering results as 

the clusters contain less internal variations (Silva et 

al., 2013). The efficiency of an algorithm was 

measured by the amount of time in seconds taken for 

the algorithm in completing the clustering task. 

MATLAB was used to build an implementation 

of the EINCKM algorithm and the experiment 

framework. For the Adapt.KM and Inc.KM 

algorithms, we split a given dataset into two parts: 

the dynamic arriving data chunks of a certain size 

and the initial dataset before the arrival of the first 

dynamic data chunk. We randomly selected (e.g. 

DS1) an initial collection of 1000 data points as the 

initial dataset and the remaining 9000 were 

randomly selected as data points in the dynamic 

chunks. Our proposed algorithm does not treat the 

initial dataset and later arrived chunks differently, 

and hence an empty set of existing clusters and an 

empty set of outliers were assumed as the inputs 

when the first chunk is processed. For STREAM and 

EINCKM algorithms, we randomly selected all the 

chunks with size 100 data points. The idea behind 

the random selection of the data points is to 

investigate the behavior of the algorithms when 

there is no control on the sequence of data points, 

i.e. we did not select specific data points from 

specific groups in the original datasets. No 

assumption was made that the initial data chunk 

represents the entire data domain. In order to 

minimize the effect of random choice of data points, 

the experiments were repeated 100 times, and the 

average is calculated.  

Figure 8 shows the details of comparison results 

between the known clusters and the output clusters 

from the Inc.KM, Adapt.KM, STREAM, and 

EINCKM algorithms respectively. EINCKM has the 

highest purity. This is the result of the stringent 

merge strategy deployed and the exclusion of some 

data points as outliers. Inc.KM also has good purity 

by ignoring the outliers, but this strategy denies the 

opportunity for some ignored outliers to become 

members of some clusters at a later stage. Adapt.KM 

has the poorer purity because of its merging strategy, 

i.e. combining two closest clusters could belong to 

different clusters in the original dataset. STREAM 

ICPRAM 2017 - 6th International Conference on Pattern Recognition Applications and Methods

178



has the lowest purity because it selects randomly 

initial centroids as one property of K-Median and 

this leads to clusters contain data points belong to 

different clusters in the original dataset. 

 

Figure 8: The purity measurement. 

As shown by Figure 9, Inc.KM has the lowest 

entropy because it deletes all the outliers. EINCKM 

has the second lowest level because adding the 

outliers to the new data chunk may group them into 

different clusters comparing with original dataset. 

STREAM has the third level because the random 

initial centroids could lead to getting output clusters 

including some data points from other clusters. 

Adapt.KM has the highest level of entropy because 

its merging approach is getting output clusters 

contain many data points belong to different clusters 

in the original dataset.  

 

Figure 9: The entropy measurement. 

The EINCKM has the lowest SSE because it 

produces compact and more stable clusters as a 

result of merging criterion and keeps the outliers 

separately (see Figure 10). In.KM has the second 

level because it gives us almost balanced clusters. 

STREAM has the third level because it presents 

different cluster sizes every time. Adapt.KM has the 

highest level because it produces bigger clusters 

during the merging process. 

 

Figure 10: The SSE measurement. 

Test results are shown in Figure 11 (a, b) confirm 

the logical analysis on efficiency: the STREAM 

algorithm has the minimum execution time followed 

by the EINCKM algorithm which in turn is better 

than both Inc.KM and Adapt.KM. The pattern is 

consistent across the synthesized and the real-life 

datasets. 

 

(a) The efficiency measurement for synthesized dataset. 

 

(b) The efficiency measurement for real-life dataset. 

Figure 11: The efficiency measurement. 
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5 DISCUSSIONS 

5.1 Adaptive Number of Clusters K by 
EINCKM 

Our algorithm determines the number of clusters K 

automatically whereas the others require a 

predefined K. The empirical study results presented 

in the previous section compared those algorithms 

against the proposed algorithm when they were 

using the appropriate K values. However, those 

algorithms would have performed much worse if 

inappropriate K values were used. Figure 12 (a, b, c) 

shows the purity differences of the existing 

algorithms from the proposed algorithm when 

different K values were chosen. The results clearly 

demonstrate that the proposed algorithm outperform 

the others. 

 

(a) Different values of K for DS1 dataset. 

 

(b) Different values of K for DS2 dataset. 

 

(c) Different values of K for DS3 dataset. 

Figure 12: The purity measurements of the algorithms for 

synthesized datasets when different values of K were used. 

Figure 13 (a, b, c) shows the differences between 

the algorithms for the entropy correctness metric 

over the synthesized datasets. We have also tested 

the performances on SSE and performances on the 

real-life dataset NID, but will not present the results 

here due to space constraint. All test results indicate 

the same performance gaps between the proposed 

algorithm and the existing ones. 

 

(a) Different values of K for DS1 dataset. 

 

(b) Different values of K for DS2 dataset. 

 

(c) Different values of K for DS3 dataset. 

Figure 13: The entropy measurements of the algorithms 

for synthesized datasets when different values of K were 

used. 

5.2 Refinements of EINCKM 

One advantage of the EINCKM algorithm is its 

highly modular structure where the essential 

operations of the algorithm, i.e. estimating the value 

of K, the K-Means performed on the new data 

chunk, the merge operation, and the filter operation, 

are designated to functions. This means that we can 

continuously improve each function without 

changing the structure of the algorithm. 

As for the further improvement of each function 

within the algorithm, first we do realize that using a 

heuristic estimation at the start of the algorithm may 
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be too trivial, and may not guarantee optimal results. 

We have noted the work presented in (Pio et al., 

2014) that used the principal component analysis 

(PCA) to estimate the value of K before the K-

Means clustering is conducted on the newly arrived 

data chunk, and consider adopting the method in the 

future improved version of the algorithm. Besides, 

machine learning solutions may be investigated to 

predict a more suitable value for K based on past 

clustering history on the previous chunks. 

Besides, both the merge strategy and filtering 

scheme are currently quite simply in order to limit 

the amount of processing time. In fact, both the 

merging strategy and the filtering scheme may be 

further improved through learning. This is one area 

for future research that we intend to investigate. 

5.3 Adaptation of EINCKM to Concept 
Drift 

Concept Drift has been recognized as one major 

issue in data stream clustering and classification 

(Nguyen et al., 2015). In clustering, concept drift 

refers to the evolutionary changes to cluster models 

over time. Static data clustering only has one 

concept: the global model of clusters whereas data 

stream clustering may have multiple concepts that 

evolve over time. We identified concept drift at two 

levels: the adaptation level and change monitoring 

level.  

At the adaptation level, our algorithm, by 

following the incremental approach of data stream 

clustering, always refines the existing model of 

clusters in light of the newly arrived data chunk, and 

hence always adapts to the changes reflected by new 

clusters added into the model or modification to the 

existing clusters via merging.  

At the change monitoring level, the proposed 

algorithm itself does not keep a history trail of the 

changed cluster models. In fact, implementation of 

the algorithm may use variable parameters to keep a 

single copy of the new model of clusters, over-

writing the previous model. However, this problem 

can be solved by adding an outer loop in the data 

streaming clustering process where the proposed 

algorithm can be called when a new chunk arrives, 

the refined new model of clusters can be recorded 

into a permanent file. Then from time to time, a 

monitoring task over the stored versions of the 

cluster model can be undertaken to identify the 

changes from one version to the next. It can be an 

interesting problem to investigate further about how 

to mine evolving patterns among the past cluster 

models. This task requires developing a new kind of 

algorithm for the “second order” discovery. 

6 CONCLUSION AND FUTURE 

WORK 

In this paper, we presented a new algorithm 

EINCKM for data stream clustering. The algorithm 

emphasizes on simplicity, modularity, and 

adaptivity. The key ideas of the algorithm are to 

estimate the number of clusters (K) using heuristics, 

merge the overlapped clusters using a radius-based 

technique based on statistical information, and to 

filter outlier using a variance-based mechanism. The 

algorithm addressed two significant problems of 

prototype-based methods: using a fixed predefined 

value of K and produce clusters as well as outliers. 

The evaluation on some synthesized datasets and 

real dataset has shown that the algorithm produces 

correct and good quality clusters with low time 

complexity.  

Our future work will focus on enhancing the 

algorithm. Since the algorithm is modular, those 

enhancement efforts can focus on the main functions 

within the algorithm. The Estimate function can be 

improved with learning capability to more 

accurately estimate the value of K for later rounds of 

calling the algorithm. A more adaptive strategy 

based on learning of mixture models of Gaussians 

can be developed for the Merge function, and a 

fuzzy and shape based cluster radius could be 

embedded into the Filter function to identify real 

outliers.  
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APPENDIX 1 

The following tables show the details and specify 

the distribution of each of the three synthesized 

datasets. 

Table 1: Parameters details of DS1. 

  K 
Mean STD 

SZ 
   X  Y   X   Y 

  K1    5  7   2    2 20000 

  K2   16  7   3    3 11000 

  K3    5 -7  1.5   1.5 15000 

  K4   -5  7   3    3 18000 

  K5  -16  7   1    1 5000 

  K6  -5 -7  2.5   2.5 31000 

Table 2: Parameters details of DS2. 

K 
Mean STD 

SZ 
X Y X Y 

K1 20 20 2 2 2000 

K2 5 40 1.5 1.5 2600 

K3 30 19 1.1 1.1 3400 

K4 12 40 2.5 2.5 300 

K5 25 30 2.4 2.4 3100 

K6 -15 37 3.5 3.5 1600 

K7 -25 43 1.8 1.8 2100 

K8 1 67 1.2 1.2 1500 

K9 15 55 2.9 2.9 1700 

K10 -2 54 2.3 2.3 4000 

K11 -20 55 3.9 3.9 1300 

K12 15 75 3.8 3.8 600 

K13 20 65 0.9 0.9 500 

K14 -7 80 4.1 4.1 2300 

K15 -25 75 2.7 2.7 3100 
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Table 3: Parameters details of DS3. 

K 
Mean STD 

SZ 
X Y X Y 

K1 7 7 2.5 2.5 800 

K2 30 7 3.5 3.5 110 

K3 -11 7 1.9 1.9 3500 

K4 -35 7 3.9 3.9 2900 

K5 45 7 1.1 1.1 1290 

K6 7 30 3.4 3.4 300 

K7 32 30 2.2 2.2 5000 

K8 -15 30 3.1 3.1 700 

K9 -30 30 1.2 1.2 600 

K10 50 30 3.3 3.3 1700 

K11 -15 60 1.2 1.2 900 

K12 45 60 5.9 5.9 2000 

K13 10 60 6.4 6.4 1000 

K14 -50 60 7.9 7.9 100 

K15 75 60 1.7 1.7 4300 

K16 1 105 7.5 7.5 4000 

K17 25 105 1.3 1.3 1650 

K18 -35 105 4.4 4.4 350 

K19 -60 105 2.4 2.4 400 

K20 60 105 7.7 7.7 1900 

K21 5 150 6.4 6.4 5000 

K22 30 150 0.9 0.9 1200 

K23 -30 150 4.4 4.4 800 

K24 -60 150 2.4 2.4 500 

K25 60 150 5.5 5.5 800 

K26 7 190 3.6 3.6 2500 

K27 25 190 0.8 0.8 750 

K28 -20 190 4.2 4.2 250 

K29 -50 190 2.8 2.8 350 

K30 50 190 5.6 5.6 4350 
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