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Abstract: We present a text-dependent speaker verification system based on unsupervised data-driven Hidden Markov
Models (HMMs) in order to take into account the temporal information of speech data. The originality of
our proposal is to train unsupervised HMMs with only raw speech without transcriptions, that provide pseudo
phonetic segmentation of speech data. The proposed text-dependent system is composed of the following
steps. First, generic unsupervised HMMs are trained. Then the enrollment speech data for each target speaker
is segmented with the generic models, and further processing is done in order to obtain speaker and text
adapted HMMs, that will represent each speaker. During the test phase, in order to verify the claimed identity
of the speaker, the test speech is segmented with the genericand the speaker dependent HMMs. Finally, two
approaches based on log-likelihood ratio and concurrent scoring are proposed to compute the score between
the test utterance and the speaker’s model. The system is evaluated on Part1 of the RSR2015 database with
Equal Error Rate (EER) on the development set, and Half TotalError Rate (HTER) on the evaluation set. An
average EER of 1.29% is achieved on the development set, while for the evaluation part the average HTER is
equal to 1.32%.

1 INTRODUCTION

The speaker verification task is to decide if a person,
who claims to be the target speaker, is or is not that
speaker. The decision is either an acceptance or a re-
jection. Relative to the spoken utterance, speaker ver-
ification systems are classified into three categories:

• text-independent: the speaker can speak freely
during the enrollment and testing phases. A text
independent system can recognize a speaker inde-
pendently of what she/he is saying;

• text-dependent: the speaker should reproduce,
during the test, the same words or sentences,
called pass-phrase, that were pronounced during
the enrollment. We are interested in this category.
The main challenge of a text-dependent system is
to model the speaker characteristics together with
the lexical content of the verification utterance.

• text-prompted: the speaker should pronounce,
during the test, words and sentences proposed by
the system. These words or sentences are differ-
ent from those pronounced during the enrollment

phase and can change in each new test.

Text-independent speaker verification, received
more attention than the text-dependent task. This
could be explained by the international evalua-
tion framework organized by the National Institute
of Standards and Technology (NIST) (Martin and
Greenberg, 2010). NIST organizes yearly evaluation
campaigns for text-independent speaker verification
and provides a large amount of speech data, push-
ing the scientific community to focus more on this
task. Moreover, the text-independent scenario corre-
sponds to many applications such as forensic, speaker
diarization or speaker tracking.

However, with emerging mobile applications that
require identity verification of the speaker, the text-
dependent scenario is more appropriate. For such ap-
plications, with the assumption of cooperative users,
they can be asked to pronounce the same text dur-
ing both enrollment and test phases. This constraint
reduces both the effects of lexical and duration mis-
match. Contrary to text-independent speaker veri-
fication that requires at least one minute of speech
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to reach high accuracy, text-dependent verification
can be done with shorter duration utterances. Re-
ducing the duration and lexical variability improves
significantly the performance of text-dependent sys-
tems (Hébert, 2008).

Text-dependent speaker verification can be done
using Hidden Markov Models (HMMs), dynamic
programming or methods adapted from the text-
independent systems (Larcher et al., 2014). However,
systems based on HMMs are the most common ap-
proach for this task. The granularity of the units mod-
eled by the HMM depends on the level of textual tran-
scriptions of the training data. A phonetic-level tran-
scription offers the finest representation of the acous-
tic space and could be used to train a precise and ro-
bust set of HMM models. On the other hand, word-
or sentence-level models are limited to a specific lexi-
cal content. Moreover, the need of transcribed speech
data to develop such systems, could be a major prob-
lem, especially for under-resourced languages.

In this paper, a text-dependent speaker verification
system based on unsupervised HMM modeling (with
no need of transcribed speech data) is proposed. First,
a set of generic HMM models is acquired . Then, the
acquired models are used to segment the enrollment
data of target speakers. Then the enrollment speech
data for each target speaker is segmented with the
generic models, and further processing is done in or-
der to obtain speaker and text adapted HMMs, that
will represent each speaker. During the test phase,
in order to verify the claimed identity of the speaker,
the test speech is segmented with the generic and the
speaker dependent HMMs. Finally, two approaches
based on log-likelihood ratio and concurrent scoring
are proposed to compute the score between the test
utterance and the speaker’s model.

The rest of the paper is organized as follows. In
Section 2, an overview of text-dependent systems is
presented. The proposed approach is described in
Section 3. Database, experimental setup and results
are given in Section 4. Conclusions and perspectives
can be found in Section 5.1

2 RELATED RESEARCH

In the last decade, the scientific community focused
on text-dependent systems due to its commercial po-
tential. In fact, the fixed-text required by the sys-
tem and the short duration of enrollment and testing
are well suited for commercial applications (Wagner

1This paper presents work done while Houssemeddine
Khemiri was a post-doctoral researcher at Télécom Sud-
Paris

et al., 2006). However, obtaining high accuracy with
short enrollment and test utterances, represents scien-
tific and technical challenges.

Text-dependent systems should be able to extract
relevant information related to both speaker and lexi-
cal content. Three major families for text-dependent
speaker verification systems are found in the litera-
ture.

The first family is inspired from the text-
independent systems. State-of-the-art text-
independent systems, based on Gaussian Mixture
Models/Universal Background Model (GMM/UBM)
and i-vectors, have proven their efficiency. These
systems are adapted to take advantages of the lexical
information required by text-dependent speaker ver-
ification, such as the GMM/UBM system proposed
in (Boies et al., 2004), the i-vector system proposed
in (Stafylakis et al., 2013) and the joint factor analysis
system proposed in (Stafylakis et al., 2016). Other
systems based on text-independent scenarios are pro-
posed to model the temporal structure of the speech
signal, such as support vector machines (Aronowitz,
2012), artificial neural networks (Woo et al., 2000),
and deep neural networks (Variani et al., 2014).

The second family is based on dynamic program-
ming, where speaker and lexical information are ex-
tracted at the frame level. In (Furui, 1981), a speaker
verification system based on distance computed be-
tween cepstrum coefficients of enrollment and testing
utterances using dynamic time warping is proposed.
In (Dutta, 2008), a system based on spectrogram seg-
mentation and template matching is developed. In ad-
dition, vector quantization is combined with dynamic
time warping to improve the accuracy of the system
in (Bahaghighat et al., 2012). Systems based on dy-
namic programming are capable of precise modeling
of the temporal structure of the pass-phrases. How-
ever, the accuracy of these methods is highly affected
by the intra-speaker variability. Multiple templates
for each of the words of the pass-phrase (Ramasub-
ramanian et al., 2006) can partially sove this problem.

The last family relies on probabilistic approaches
where HMMs are exploited to capture the temporal
information of the speech signal. HMMs are inher-
ently more robust to intra-speaker variability and al-
low the modeling of the temporal structure of the
speech utterances. Phone-based (Matsui and Furui,
1993), word-based, and sentence-based (Kato and
Shimizu, 2003), and (Subramanya et al., 2007) HMM
models are proposed in the literature to represent the
pass-phrases. Phone-based modeling benefits from
the progress achieved in the field of speech recogni-
tion and enables precise modeling of the pass-phrases.
However phonetic transcriptions are required to ob-
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Figure 1: Unsupervised training of HMM models.

tain such models, which are not always available.
Word and sentence transcriptions are more easy to
acquire, but their HMM models lack generalization
power since they are restrained to a limited lexical
content.

There are also hybrid systems that combine the
GMM/UBM architecture followed by HMM model-
ing, proposed in (Larcher et al., 2014). This system,
referred as HiLAM, consists of a hierarchical three-
layer modeling. The first two layers are based on a
GMM/UBM approach. The third layer is based on
HMM modeling to incorporate the temporal structure
information into the speaker model.

In this paper, a pseudo-phone modeling using
unsupervised HMM is exploited to develop a text-
dependent speaker verification system. The proposed
system has the advantage of HMMs, and due to
its unsupervised nature does not rely on transcribed
speech data. This system is evaluated on Part1 of
the RSR2015 database, and is compared to a classi-
cal GMM/UBM approach and the HiLAM system.

3 PROPOSED SYSTEM

The proposed system is mainly composed of three
steps: unsupervised HMM training, adaptation and
scoring. In the first phase, a set of generic HMM
models is trained using raw speech data without tex-
tual transcriptions. Then an adaptation process is per-
formed to build the target model. In this step speaker-
dependent followed by text-dependent adaptation is
done. The scoring phase consists on computing a
similarity score between a test utterance and the tar-
get model. Two similarity scores, based on Log-
Likelihood Ratio (LLR) and concurrent scoring, are
developed.

3.1 Unsupervised HMM Training

Unsupervised HMM training is used for different au-
dio and speech processing fields such as very low
bit-rate speech coding (Chollet et al., 1999), text-
independent speaker verification (Hannani, 2007),
speech recognition (Deligne and Bimbot, 1997), key-
word discovery (Siu et al., 2010), topic classifica-
tion (Siu et al., 2011), and audio indexing (Khemiri
et al., 2014).

As shown in Figure 1, the set of data-driven HMM
models is automatically acquired through feature ex-
traction, spectral segmentation, clustering, and hid-
den Markov modeling. More details are available
from (Khemiri, 2013). The feature extraction is done
with Mel Frequency Cepstral Coefficients (MFCC).
Then spectral segmentation is performed to find the
stable regions of speech data. These regions repre-
sent the spectrally stable segments of the speech data.
This process is done by calculating a spectral stability
curve obtained by computing the Euclidian distance
between two successive feature vectors. The local
maxima of this curve represent the segment bound-
aries while the minima represent the stable parts of
the signal. The next step of the training process con-
sists of grouping the obtained segments intoN classes
via vector quantization (Linde et al., 1980). The re-
sult of this step is an initial labeling of the training
corpus. The final component represents the Hidden
Markov modeling, where a set ofN data-driven HMM
units are trained on the basis of the initial segmenta-
tion and labeling provided by the previous steps. It is
mainly based on Baum-Welch re-estimations (Baum
et al., 1970) and on an iterative procedure of refine-
ment of the models. The resulting set ofN HMMs,
referred as generic HMMs, are used to segment any
incoming speech data.
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Figure 2: The adaptation phase in the proposed text-dependent speaker verification system.

3.2 Adaptation

As shown in Figure 2, the adaptation process is per-
formed via speaker- and text-dependent adaptation of
the generic models with each client (target) enroll-
ment data, providing the final client specific set of
HMM representinf its enrolment pass phrase.

For the speaker-dependent adaptation of the
generic HMMs, first the enrollment speech of
each speaker is segmented with the Viterbi algo-
rithm (Viterbi, 1967) with the set of generic HMMs.
The Viterbi algorithm finds the most likely string of
symbols from the set of N Generic HMMs, given the
acoustic signal, and the corresponding speech seg-
mentation.2.Then, only HMM models that are present
in this segmentation and represented with enough
frames are taken into account in the remaining pro-
cess. A context independent re-estimation, which
adapts each HMM mean component individually, is
performed using the Maximum A Posteriori (MAP)
criterion. That means that each generic HMM found
in the enrollment data will be adapted with all the
occurrences of this segment found in the enrollment
data. The resulting speaker-dependent HMM models
will be used for the text-dependent adaptation.

After the generic HMM models are adapted to
the speaker, we continue the adaptation on order to
adapt the set of speaker dependent HMM models
to the pass phrase of the speaker, in order to have
the final speaker and text dependent HMMs, that

2Note that each time we need to decode (segment) the
speech with a set of HMMs this is done with the Viterbi al-
gorithm. This algorithm needs an input speech data and a
set of HMM models and gives as output a set of symbols
corresponding to the most likely HMM models and the cor-
responding time boundaries

will represent the speaker enrollment model.This text-
dependent adaption is based on iterative adaptation
of the speaker-dependent HMM models. First, the
enrollment speech is segmented using the speaker-
dependent models. Then a context dependent re-
estimation which adapts all models in parallel is ap-
plied using the MAP criterion and the Viterbi algo-
rithm to obtain a new segmentation using the adapted
HMM. This process is iteratively repeated until the
HMM models converge or the maximum number of
iteration is reached. During this step, the number of
HMM models could be reduced by removing those
states that are represented by few frames. At the end
of this step a set of HMMs, referred as speaker- and
text-dependent HMM, is created.

After the enrollment phase, each speaker is rep-
resented with a set of speaker-and text-dependent
HMMs that are relative to the pass phrase that is cho-
sen for enrollment. During testing, given a speech
sequenceX, and the enrollment HMMs models of the
target we propose two methods of scoring, presented
in the next paragraph. Depending on the adopted scor-
ing methods, two target models are considered. For
the method based on LLR, the target model is the text-
dependent HMM obtained after the iterative adapta-
tion. For the concurrent scoring measure, the text-
dependent HMM is grouped with the generic HMM
to form the target model.

3.3 Log Likelihood and Concurent
Score Computing

Two methods are used to compute a similarity score
between a test utteranceX and the target speaker
model. The first score is based on the well known and
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widely used Log-Likelihood Ratio(LLR)as follows:

SLLR(X) = log
LTD−HMM(X)

LG−HMM(X)
(1)

where LTD−HMM(X) and LG−HMM(X) are, respec-
tively, the likelihood of the test utteranceX given the
text-dependent speaker HMM, and the likelihood of
X given the the generic HMM.

For the concurrent scoring method, text-
dependent speaker HMMs and the generic HMMs are
used concurrently in the Viterbi segmentation. The
result of this segmentation is a sequence of HMMs
symbols that belong either to the text-dependent or
to the generic model. A post processing, smoothing
procedure is applied to eliminate outliers. This
method proposes a voting scheme that uses a sliding
window on the HMM sequence. The sliding window
operates on an odd number of symbols, and with a
majority voting decides if the middle symbol needs
to be changed or not. If he middle symbol is the
same as the majority vote it is not changed. If the
middle symbol is not as the majority vote, then it is
change in order to respect the majority voting. For
example if the middle symbol belongs to the speaker
models and the two left and right neighbors belong to
the generic models, then the symbol of the middle is
changed as one belonging to the generic models. The
final decision of the concurrent scoring score is the
ratio between the duration of test segments belonging
to the target speaker HMMs and the total duration of
the test utterance.

4 EXPERIMENTAL PROTOCOLS
AND RESULTS

In this section, the database along with the experi-
mental setups and results are described. The part1
of RSR2015 database (Larcher et al., 2014) is used to
evaluate the proposed system. A comparative study is
performed with the classical UBM/GMM system and
the HiLAM system (Larcher et al., 2014).

4.1 Database and Protocols

The RSR2015 database consists of recording from
157 male and 143 female speakers in 9 sessions us-
ing mobile devices. The database is divided into three
parts according to the lexical content. Part 1 is dedi-
cated to text-dependent scenario where each speaker
records 30 sentences per session selected from the
TIMIT database (Garofolo et al., 1993), leading to
72h of audio recordings and approximately 28h of
nominal speech. Part2 consists of command control

sentences, while Part3 is dedicated to text-prompted
speaker verification. Note that only Part1 of the
database is used in this paper.

Part1 is divided into three gender-dependent sub-
sets as shown in Table 1. For each speaker of the de-
velopment and evaluation subsets, 3 sessions are used
for enrollment while the remaining sessions are left
for tests, leading to mean enrollment durations of 9
seconds.

Table 1: Number of speakers in the background, devel-
opment and evaluation subsets of Part1 of the RSR2015
database.

Subset Female Male
Background 47 50
Development 47 50
Evaluation 49 57

As mentioned before, the text-dependent speaker
verification system should be able to decide if the
speaker who pronounces the test utterance is the target
speaker and if the test utterance matches the enroll-
ment utterance. Therefore, the following four trials
are defined:

1. target-correct (tar-c): the target speaker pro-
nounces the expected pass-phrase;

2. target-wrong (tar-w) : the target speaker pro-
nounces a wrong pass-phrase (a phrase that is dif-
ferent from the enrollment one);

3. impostor-correct (imp-c): An impostor speaker
pronounces the expected pass-phrase;

4. impostor-wrong (imp-w): An impostor speaker
pronounces a wrong pass-phrase (a phrase that is
different from the enrollment one).

The first trial is the only genuine trial while the
others are considered as impostor trials, as defined
in (Larcher et al., 2014). Thetarget-wrong tri-
als simulate a scenario where and impostor is play-
ing back a recording from the target speaker. The
impostor-correct trials are more challenging than the
impostor-wrong ones, as the impostor produces the
expected pass-phrase that is used to train the target
speaker model. Based on this protocol, the number of
trials for each case is reported in Table 2.

4.2 Performance Measure

To measure the performance of the speaker verifi-
cation systems, two different criteria are used. The
Equal Error Rate (EER) is computed for both the de-
velopment and evaluation parts. The Half Total Error
Rate (HTER) is only computed on the evaluation part.
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Table 2: Number of trials for each definition on the development and evaluation subsets of Part1 of RSR2015 for female and
male.

Female Male
Trial development evaluation development evaluation
tar-c 8,419 8,631 8,931 10,244
tar-w 244,123 250,299 259,001 297,076
imp-c 387,230 414,249 437,631 573,664
imp-w 5,612,176 6,006,596 6,342,019 8,318,132

To compute the HTER, a thresholdθ is defined on the
development partition at the EER point. This thresh-
old is applied to the evaluation partition to obtain the
HTER as follows:

HTER=
FAR(θ,EVAL)+FRR(θ,EVAL)

2
(2)

where FAR is the False Acceptance Rate and FRR
is the False Rejection Rate. The HTER measure al-
lows checking whether the threshold defined on the
development subset at the EER point is giving a FAR
and FRR that are close to the EER on new unseen
evaluation data.

4.3 Experimental Settings

The features extraction component is common for the
proposed system and the GMM/UBM system. The
feature vector is composed of 20 MFCC coefficients
together with their first derivatives and the delta en-
ergy, leading to a vector with a dimension of 42 fea-
tures. The speech activity detector is based on three
Gaussian’s modeling of the energy of the speech data,
and is used to determine speech and silence frames.
The feature vectors belonging to speech part are nor-
malized to fit a zero-mean and an unit variance dis-
tribution.The non-speech feature vectors are used to
train a silence HMM model.

Regarding the UBM/GMM system, gender-
dependent UBM models are trained with 1024 Gaus-
sians. Then, each target model is created by adapt-
ing the mean of the UBM to the enrollment speech
data, using the MAP criterion. The score is com-
puted by the log-likelihood ratio between the test fea-
ture vector and the target model and the UBM model.
Note that only the 10 best Gaussian components are
considered for the calculation of the score. The AL-
IZE 3.0 (Larcher et al., 2013) and SPRO4.0 (Gravier,
2003) toolkits are used to develop the UBM/GMM
system.

For the proposed system, gender-dependent data-
driven HMM models are trained on the background
subset of the RSR2015 database. Each model is pre-
sented by a left-right HMM having three emitting

states with no skips. The number of HMM models
is empirically fixed to 16 on the development sub-
set of RSR2015. This number is reduced when the
speaker- and text-dependent adaptations are applied.
The adaptation process is performed on the mean pa-
rameters of HMMs using the HTK toolkit (Young
et al., 2006). For the system based on concurrent scor-
ing the size of the smoothing window is equal to 5.

4.4 Results

In order to exploit the temporal information of speech
data, we propose to use data-driven HMM training,
with no need of transcribed speech data. For this pur-
pose, two systems based on LLR scoring and concur-
rent scoring are developed. All the experiences are
done following the experimental protocol explained
in (Larcher et al., 2014). Table 3 and 4 show, re-
spectively, the EER on the development subset and
the EER, and HTER on the evaluation subsets for the
two systems. Note that the 90% confidence interval
of the EER varies between 0.17% and 0.22%.

The system based on concurrent scoring outper-
forms the LLR-based method for all trials for de-
velopment and evaluation subsets. This is explained
by the post-processing performed on the segmenta-
tion provided by the combined data-driven HMM
models to eliminate the outliers that could occur in
that segmentation. In fact, the absolute improvement
achieved in terms of EER by introducing the smooth-
ing post-processing varies between 1% and 2%. On
the other hand, the threshold fixed on the development
set at the EER point, does not provide the optimal per-
formances on the evaluation subset. In fact the differ-
ence between the EER and HTER could reach 2.5%.
This could be explained by the mismatch between
the development and evaluation subsets. In addition,
the results show that for both methods, the system
can discriminate better a target speaker pronouncing
a wrong sentence than an impostor who pronounces
the correct pass-phrase. This shows that the acoustic
characteristics related to the lexical content are more
represented in the text-dependent speaker model than
those related to the speaker.

The next step is to compare the best system based
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Table 3: Performance of the data-driven HMM systems based onthe LLR and the concurrent scoring on thedevelopment
subset in terms of EER for thetarget-correct (tar-c), target-wrong (tar-w) , impostor-correct (imp-c) andimpostor-wrong
(imp-w) trials.

Female Male
LLR Concurrent Scoring LLR Concurrent scoring

tar-c/tar-w 2.48 1.25 3.12 1.63
tar-c/imp-c 3.58 1.54 4.28 2.26
tar-c/imp-w 1.22 0.52 1.53 0.55

Table 4: Performance of the data-driven HMM systems based onthe LLR and the concurrent scoring on theevaluation
subset in terms of EER, and HTER for thetarget-correct (tar-c), target-wrong (tar-w) , impostor-correct (imp-c) and
impostor-wrong (imp-w) trials.

Female Male
LLR Concurrent Scoring LLR Concurrent Scoring

EER HTER EER HTER EER HTER EER HTER
tar-c/tar-w 1.27 1.77 0.77 1.58 1.04 1.11 0.81 0.9
tar-c/imp-c 2.53 4.95 1.16 2.15 3.58 6.37 1.66 2.36
tar-c/imp-w 0.98 1.56 0.27 0.48 0.88 1.23 0.20 0.45

Table 5: Performance of proposed system, the UBM/GMM and HiLAM systems (Larcher et al., 2014) on thedevelopment
subset in terms of EER for thetarget-correct (tar-c), target-wrong (tar-w) , impostor-correct (imp-c) andimpostor-wrong
(imp-w) trials.

Female Male
UBM/GMM HiLAM Proposed System UBM/GMM HiLAM Proposed System

tar-c/tar-w 2.31 1.77 1.25 3.17 1.66 1.63
tar-c/imp-c 3.00 3.24 1.54 3.59 3.69 2.26
tar-c/imp-w 0.33 0.45 0.52 0.62 0.49 0.55

Table 6: Performance of proposed system, the UBM/GMM and HiLAM systems (Larcher et al., 2014) on theevaluation
subset in terms of EER for thetarget-correct (tar-c), target-wrong (tar-w) , impostor-correct (imp-c) andimpostor-wrong
(imp-w) trials.

Female Male
UBM/GMM HiLAM Proposed System UBM/GMM HiLAM Proposed System

tar-c/tar-w 1.59 0.61 0.77 2.21 0.82 0.81
tar-c/imp-c 1.55 2.96 1.16 2.16 2.47 1.66
tar-c/imp-w 0.20 0.14 0.27 0.28 0.19 0.20

on concurrent scoring with a baseline GMM/UBM
system, that we implemented, and with the published
results related to the HiLAM system (Larcher et al.,
2014). Table 5 and 6 give the results of the data-
driven HMM system using the concurrent scoring
method, the UBM/GMM and HiLAM systems on the
development and evaluation subsets, in terms of EER.
These results show that the classical UBM/GMM
system gives better results than the HiLAM system in
the case where the impostor pronounces the correct
pass-phrase. In addition, the proposed system outper-
forms both UBM/GMM and HiLAM systems for the
majority of trials. In fact, a significant improvement,
reaching 1.5% in terms of EER, could be seen espe-
cially in the case oftar-c/imp-c. It is important to

note that the HiLAM system, as presented in (Larcher
et al., 2014), exploits all the enrollment data (30 X
3 sentences) to obtain the text-independent speaker
model. While for the data-driven HMM system only
the enrolment sequences related to the pass-phrase (3
sentences) are exploited. These results show the effi-
ciency of the proposed system to embed the temporal
information of the pass-phrase, even if the amount of
enrollment data is limited. Furthermore, since only
the HMMs that are significantly represented in the
pass-phrase are kept to model the speaker and lexicon
information, the text-dependent speaker model is
more robust and provides a precise modeling of the
temporal structure of the pass-phrase.

Regarding the computational time, the
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UBM/GMM system needs 0.03 second to pro-
cess 1 second of data in the adaptation phase and 0.01
second in the scoring phase. While for the proposed
HMM system, the time needed for the adaptation
to process 1 second of data is 1.2 second. For the
scoring part, the LLR and the concurrent scoring
methods require, respectively, 0.07 second and 0.6
second to process 1 second of data.

5 CONCLUSIONS AND
PERSPECTIVES

In this paper, a data-driven HMM modeling is pro-
posed for text-dependent speaker verification to ex-
ploit the temporal information of speech data. The
data-driven models are trained on raw speech data
to obtain a set of generic HMMs. This set is then
adapted to the target speaker and lexical content of
the pass-phrase. Two systems based on log-likelihood
radio and concurrent scoring are introduced. The sys-
tems are evaluated on Part1 of RSR2015 database.
This evaluation shows that concurrent scoring sys-
tem is more accurate than the one based on the log-
likelihood ratio. Moreover, the results show the rele-
vance of the proposed method when compared with
an UBM/GMM and the HiLAM systems. Future
works will be dedicated on the evaluation of the
proposed system on Part2 and 3 of the RSR2015
database. In addition, the concurrent scoring method
should be accelerated in case of integration on a mo-
bile device.
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