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Abstract: Ensuring the compliance of developed software with security requirements is a challenging task due to im-
precision on the security guidelines definition, and to the lack of automatic and formal means to lead this
verification. In this paper, we present our approach that aims at integrating the formal specification and veri-
fication of security guidelines in early stages of the development life cycle by combining the model checking
together with information flow analysis. We formally specify security guidelines that involve dependent infor-
mation flows as a basis to lead formal verification through model checking, and provide precise feedback to
the developer.

1 INTRODUCTION

Security guidelines are mainly meant to specify bad
as well as good programming practices that can pro-
vide guidance and support to the developer in ensur-
ing the quality of his developed software with respect
to security, and consequently, to reduce the program
exposure to vulnerabilities when delivered and run-
ning in the execution environment. Security guide-
lines are defined by the security expert(s) in theRe-
quirementsphase of the development lifecycle, and
include essential elements (Chen, 2011) such as the
object or the asset to be protected (user private in-
formation for example), the goal (required security
property), and the security mechanisms to be applied
in order to ensure the requirement satisfiability. Se-
curity guidelines have also been defined by different
organizations such as CERT Coding Standard (CERT,
b) and OWASP (OWASP, c) (OWASP, b). They intro-
duce good programming practices to be followed by
developers to ensure the security of sensitive assets.
However, guidelines suffer from ambiguities and the
lack of precision (Zhioua et al., 2016), and are usually
presented in an informal and imprecise way. Huge ef-
fort was carried out to build the guidelines catalogs,
but to provide the means allowing the automatic ver-
ification of the adherence to those guidelines that re-

quire security expertise to interpret, implement and
verify them.

We propose in this paper our approach that pro-
vides the means to formally specify the security
guidelines, and to verify their satisfiability using for-
mal proofs.

The paper is organized as follows; Section 2 pro-
vides the motivation behind this work. In Section 3,
we depict our approach and present its main phases.
Section 4 illustrates the enhancements we carried out
on the Program Dependence Graph construction. In
Section 5, we formalize a security guideline in MCL
Formalism (Model Checking Language), and we val-
idate our formal specification and verification on a
concrete example. Section 6 discusses some limita-
tions of our approach, followed by a discussion on
existing approaches that dealt with guidelines specifi-
cation. Section 8 concludes the paper.

2 MOTIVATION

2.1 Information Flow Analysis

Different security mechanisms, such as access con-
trol and encryption allow to protect sensitive data, but
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they fall short in providing assurance about where and
how the data will propagate, where it will be stored,
or where it will be sent or processed. This entails
the need for controlling information flow using static
code analysis. This same idea is emphasized by An-
drei Sabelfeld, and Andrew C. Myers (Sabelfeld and
Sands, 2009), who deem necessary to analyze how
the information flows through the program. The main
objective of information flow analysis (Denning and
Denning, 1977) is to verify that the program satisfies
data confidentiality and integrity policies.

2.2 Security Guidelines

The OWASP Foundation (OWASP, a) introduces a
set of guidelines and rules to be followed in order
to protect data at rest. However, the guidelines are
presented in an informal style, and their interpreta-
tion and implementation require security expertise,
as stressed in (Zhioua et al., 2016). In the OWASP
Storage Cheat Sheet (OWASP, b), OWASP introduces
the guideline ”Store unencrypted keys away from the
encrypted data”1 explaining the encountered risks
when the encryption key is stored in the same loca-
tion as encrypted data. This guideline recommends
to store encryption key and the encrypted data in dif-
ferent locations. As the reader can see, the guide-
line involves 2 information flows (encryption key and
encrypted data) that are dependent. Their specifica-
tion and identification on the code level require an ad-
vanced information flow analysis capable of handling
complex information flows, such is the case for this
guideline. OWASP provides a set of security guide-
lines that should be met by developers, but does not
provide the means to ensure their correct implementa-
tion. We aim at covering this gap through the formal
specification of security guidelines and their formal
verification using formal proofs.

2.3 Sample Code

Let’s analyze the sample code in Figure 1 to ver-
ify whether the guideline ”Store unencrypted keys
away from the encrypted data” is met or not. The
developer Bob encrypts the secret data credit card
number, and stores the cipher text into a file. At
line 115, Bob creates a byte arrayy used as param-
eter for the instantiation of a SecretKeySpec named
k (line 116). At line 119, Bob stores keyk in a
file, through the invocation of methodsaveto file

1https://www.owasp.org/index.php/Cryptographic
Storage CheatSheet#RuleStoreunencrypted
keys away from the encrypteddata

(Figure 2). Once created, keyk is provided as pa-
rameter to the methodsaveto file(String data, String
file) (Figure 2) Bob then encrypts the secret vari-
able creditCardNumber using methodprivate static
byte[] encrypt(Key k, String text)which uses keyk
as parameter. The encrypted data is then stored us-
ing methodsaveto file(String data, String file)(Fig-
ure 2). As the reader can see, the data keyk and
encryptedcc are stored respectively in filekeys.txt
andencrypted cards.txt. One may conclude that the
guideline is met, as keyk andencyptedcc are stored
in separate files. However, the two files are located in
the same file system, which constitutes a violation of
the guideline. The specification and identification of
the dependent information flows between keyk, en-
cryptedcc and file location is a challenging task that
we could achieve through the framework we propose
in this paper.

Figure 1: Sample code.

Figure 2: saveto file method.

3 APPROACH

We propose our framework that enables the formal-
ization of security guidelines and the exploitation of
this specification in the implementation and Verifica-
tion&Validation phases of the engineering process.
Our framework is based on formal proofs for the
translation of security requirements into good pro-
gramming practices. We focus mainly on verifying
whether those good programming practices are met or
not. Figure 3 illustrates our approach and highlights
the relevant phases for the transformation of security
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guidelines from natural language into exploitable for-
mulas that can be automatically verified over the pro-
gram to analyze.

We aim at separating the duties and make the dis-
tinction between the main stakeholders in our frame-
work; thesecurity expert(s)and thedeveloper.

In a preliminary phase, thesecurity expert(s)car-
ries out the translation of security guidelines from nat-
ural language into a formal way (Section 3.1). This
phase results in generic security guidelines that can
be instantiated on different programs logics.

The developer writes the code and invokes the
framework that verifies whether the rules specified by
the security expert are correctly applied in his soft-
ware. First, the framework constructs the program
model (Section 3.2), that is used as a basis to lead the
formal verification of the security guidelines (Section
3.3). We stress that the developer does not have to
deal with the specified formulas.

We aim at reducing the intervention of the secu-
rity expert for the identification on the code of the
critical data that are at the heart of the security guide-
lines, such as encryption key in our example. How-
ever, in some other cases, the identification of sensi-
tive data requires knowledge and awareness about the
code logic and semantics.

One crucial step of the work is the explicit
mapping between abstract security guidelines formal
specification, and concrete statements on the code.
This is handled in the Security Knowledge Base (Sec-
tion 3.4). In our framework, we do not aim at prov-
ing the program correct, but to verify that it adheres
to specific security guidelines written, formulated and
formalized by security expert(s).

The proposed framework is depicted in Figure 3:

3.1 Step 1: Formal Specification of
Security Guidelines

We make the strong assumption that thesecurity ex-
pert formally specifies the security guidelines by ex-
tracting the key elements (the labels), and builds upon
them the formulas/patterns based on formalism. The
built formulas can be supported by standard model
checking tools. One crucial operation in this phase
is the specification of simple as well as dependent in-
formation flows, such is the case for the guideline we
consider in this paper. The outcome of this phase is
generic security guidelines that can be instantiated on
different codes. For instance, the action labelsave,
which defines the operation of saving a given data in
a specific location, can be instantiated on saveto DB,
saveto file, saveto array, etc, depending on the in-
voked instruction and its parameters. This instantia-

tion operation is also handled in our Security Knowl-
edge Base (Section 3.4).

3.2 Step 2: Construction of Augmented
Program Dependence Graph

We aim at constructing a data structure enabling the
representation and the extraction of multiple informa-
tion flows at the same time. The outcome of this step
is a Program Dependence Graph (PDG) augmented
with information and details obtained from deep de-
pendency analysis on the program. The standard PDG
contains both control and data dependencies between
program instructions, and has the ability to represent
information flows in the program.

We make use of the JOANA IFC tool (Graf et al.,
2013) (Graf et al., 2015) to construct the standard
PDG. The generated PDG is then augmented with de-
tails and information extracted from the verification
of security guidelines formulas and patterns.

In our framework, we carry out the information
flow analysis using the JOANA tool (Graf et al.,
2013) to capture the explicit as well as the implicit
dependencies that can be source of covert channels,
and may constitute source of sensitive information
leakage. JOANA analyzes java byte code for the
non-interference property, which demands that pub-
lic events should not be influenced by secret data.
The analysis performed was formally proven using Is-
abelle (Wasserrab et al., 2009).

Information Flow Analysis aims at capturing the
different dependencies that may occur between the
different PDG nodes, hence, augmenting the gener-
ated standard PDG with relevant details, such as an-
notations mapping the PDG nodes to abstract labels of
the security guidelines. Possible mappings between
Java APIs and abstract labels are handled in theSecu-
rity Knowledge Base(Section 3.4).

3.3 Step 3: Formal Verification

This step aims at constructing from the augmented
PDG a formal graph that is accepted by model
checking tools: Security Labeled Transition System
SecLTS, which is an augmented LTS (Labeled Tran-
sition System) accepted by a model checking tool.
This step is depicted in details in Section 5.2. As pre-
viously mentioned, security guidelines will be mod-
eled in the form of sequence of atomic propositions
or statements representing the behavior of the system.
The security guidelines will then be verified over the
SecurityLTS program representation model through
model checking.

Tracking Dependent Information Flows
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Figure 3: End-to-end Approach.

The verification phase can have the following out-
comes:

• The security guideline is valid over all the feasible
paths.

• The security guideline is violated, and the viola-
tion traces are returned.

The first case can be advanced further, meaning
that the verification can provide more details to the
developer (or the tester) about circumstances under
which the security guideline is valid. In the second
case, recommendations to make the necessary correc-
tions on the program can then be proposed.

3.4 Security Knowledge Base

Security Knowledge Baseis a centralized repository
gathering the labels of the formulas mapped to APIs,
instructions, libraries or programs. This will help the
automatic detection of labels on the system model.
We designed theSecurity Knowledge Basein a way
allowing to represent the different relationships be-
tween Java methods and the abstract labels used to
compose the security guidelines formulas by the se-
curity expert. We populated theSecurity Knowledge
Baseusing a Java classes parser that we developed2;
for the different Java classes used in the program to
analyze, we launch programmatically the parsing of

2https://github.com/zeineb/Java-classes-parser

this given class (html code, javadoc), and we extract
all the relevant details, such as the description, the at-
tributes, the constructors, the methods signatures and
their parameters. Then is performed a semi-automatic
semantic analysis to detect key elements from the
Java methods details (return type, method description,
etc.), such as the key-wordsecure, key, print, input,
etc. Then, the security expert establishes the map-
ping of those key words used to build the formulas to
the possible Java language instructions. For example,
the method (the constructor)SecretKeySpec(byte[]
key, String algorithm) that constructs a secret key
from a byte array, will be mapped to the abstract la-
bel ”createkey”; this label is described in ourSecu-
rity Knowledge Baseas ”encryption key”, a sensitive
information that should be kept secret. TheSecurity
Knowledge Basecan also be perceived as an exten-
sible dictionary gathering the labels with respect to
their semantics and to the concepts they represent. For
instance, the label ”createkey” can also be mapped
to the method invocationgenerateKey()of the Java
classKeyGeneratorthat allows to generate a secret
key. In ourSecurity Knowledge Base, we offer a wide
range of labels that can be used to build the security
guidelines formulas. The set of labels can be extended
by the security expert if new security concepts are in-
troduced.

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

182



4 AUGMENTED PDG

The starting key element for this step is the stan-
dard PDG generated by the JOANA tool (Graf et al.,
2015) from the program bytecode. In this PDG, con-
trol and (explicit/implicit) data dependencies are cap-
tured, which constitutes a strong basis to perform a
precise analysis. However, we tested JOANA on dif-
ferent sample codes presenting implicit violations, but
JOANA failed to capture some of them. For instance,
We noticed that there are implicit dependencies that
are not captured (such as Java Reflection dependen-
cies), and they constitute the source of the undetected
violations, such is the case for storage location we
consider in this paper. We carried out the effort of
enhancing the PDG and capturing the missing depen-
dencies that we translate into edges on the PDG.

4.1 Automatic Annotations

The JOANA tool proposes two kinds of annota-
tions together with their security levels specifying the
source (SOURCE) and the target (SINK) of the infor-
mation flow, in addition to theDECLASSannotation
allowing to reduce the security level of the annotated
node. We made modifications on the source code of
JOANA tool, and added customized annotations re-
ferring to the abstract labels such ashash, userInput,
isPassword, encrypt, save, etc. in addition to the pre-
defined annotationsSOURCEandSINK.

As a second step, the automatic detection of the
labels on the PDG is performed, and here we re-
fer to the Security Knowledge Base(Section 3.4)
that already contains the concrete possible mappings
between known APIs, methods, methods parameters
mapped to the abstract labels of the security guide-
lines specification. For instance, theSecretKeySpec
objectk is instantiated at line 116. The constructor
SecretKeySpec(byte[],String)stands out in our Secu-
rity Knowledge Base as method invocation mapped
to the abstract labelcreatekey. Hence, the variablek
(line 116) is annotatedcreate key. In the sample code
of Figure 1, the methodsencryptandsaveto file are
implemented by the developer. Hence, the automatic
annotations on those methods will fail, as this oper-
ation requires an advanced semantic knowledge base
and a semantic analysis to be performed over the code
in order to determine the method names matching en-
cryption operation or storage. The semantic analy-
sis is not in the scope of this paper. We can also be
faced with the case where the methods are declared
with insignificant names, which makes the automatic
annotations unfeasible. In Figure 3, we provide the
method saveto file. As the reader can see, at line 148,

Figure 4: Augmented Program Dependence Graph for the
sample code. Strong edges represent the control flows, the
dashed edges refer to explicit and implicit data flows. Nodes
are labeled with their corresponding instructions line num-
bers.

Bob invokes the methodPrintWriter.print(String)that
is mapped in the Security Knowledge Base to the la-
bel savetofile. The augmented PDG is represented in
Figure 4.

For a developer or a tester who is not aware about
the semantics of methods performing security oper-
ations, detecting possible sources (resp. sinks) and
their respective sinks (resp. sources) appears tedious.

4.2 Multiple Annotations on the Same
Node

JOANA tool offers the possibility to annotate a node
with one single kind of annotations:SOURCE, SINK
or DECLASS. We added the possibility of having mul-
tiple annotations on the same node; this will appear
to be useful in different cases where for example the
same data (the same node) is at the heart of more than
one guideline.
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4.3 Annotation Propagation

We augmented the PDG using the propagation of an-
notations when already annotated data are copied or
concatenated. For example, if keyk (annotated as
createkey) was assigned to another variableg, then
g will also be annotated ascreatekey. This will en-
able to provide precise feedback on data propagation
to the developer, and to extend the analysis of guide-
lines on dependent data.

4.4 File Location Dependency Detection

In the guidelineStore unencrypted keys away from
encrypted data, we encounter the imprecise and im-
plicit notion of location that can be expressed in
different manners such as file location, insert in
database, add to an array, etc. We worked to-
wards closing this gap through the arrangement of
labels into classes. For example, the setsavecon-
tains labels such assaveto file, saveto database,
saveto array, etc. We performed advanced infor-
mation flow analysis with the objective of capturing
the implicit file location dependency; we captured
the parameters (file names) of the specific method
PrintWriter.print(String) invocations, and we com-
pared their values. This comparison indicated that
the two files are in the same file system. This results
in the creation of a new edge of kindDEPEND be-
tween the nodes matching the invocations ofPrint-
Writer.print(String). The new edge is represented as
red dashed edge on the augmented PDG in Figure 4.

5 FORMAL VERIFICATION

With the objective of proposing a framework that pro-
vides help and guidance to developer in verifying that
his program satisfies given security guidelines, we
translate java programs into a formal description (e.g.,
finite state machines, process algebra, etc.), which is
precise in meaning and amenable to formal analysis.
As our main objective is to automatically verify pro-
grams, we need to construct from the augmented PDG
a model that is accepted by a model checking tool,
and that can be verified automatically through model
checking techniques. Indeed, model checking is an
automatic technique for verifying behavioral proper-
ties of a system model by an exhaustive enumerating
of its states. In order to carry out this operation, we
need first to express security guidelines in the suitable
formalism.

5.1 Formal Specification of Security
Guidelines

For expressing the properties, we use MCL logic
(Mateescu and Thivolle, 2008). MCL (Model Check-
ing Language) is an extension of the alternation-free
regular µ-calculus with facilities for manipulating
data in a manner consistent with their usage in the
system definition. The MCL formula are logical
formula built over regular expressions using boolean
operators, modalities operators (necessity operator
denoted by[ ] and the possibility operator denoted by
〈 〉) and maximal fixed point operator (denoted byµ).

For instance, the guideline”Store unencrypted
keys away from the encrypted data”will be encoded
directly by the following formula MCL:

[true*.{create_key ?key:String}.true*.
({save !key ?loc1:String}.true*.
{encrypt ?data:String !key}.true*.
{save !data ?loc2:String}.true*.
{depend !loc1 !loc2}
|
{encrypt ?data:String !key}.true*.
{save !key ?loc1:String}.true*.
{save !data ?loc2:String}.true*
.{depend !loc1 !loc2})] false

This formula presents five actions: the action
{createkey ?key:String} denoting encryption keykey
(of type String) is created, the actions{save !key
?loc1:String}, {save !data ?loc2:String}, {encrypt
?data:String !key} denoting respectively the storage
of the correspondingkey in location loc1, the stor-
age of the correspondingdata in location loc2, the
encryption ofdata using key, and the particular ac-
tion true denoting any arbitrary action. Note that ac-
tions involving data variables are enclosed in braces
({ }). Another particular action that we make use of in
this formula is{depend !loc1 !loc2}, denoting the im-
plicit dependency between the file locationsloc1 and
loc2; we captured this implicit dependency through
advanced information flow analysis on the code.

This formula means that for all execution traces,
undesirable behavior never occurs (false). The unex-
pected behavior is expressed by this sequence of ac-
tions: if encryption keyk is saved inloc1, andk is
used to encryptdatathat is afterwords stored inloc2,
then if loc1 and loc2 are dependent, the guideline is
violated. The second undesirable behavior, expressed
in the second sequence of the formula, means that if
encryption of data usingk occurs before the storage
of k in loc1, and if loc1 andloc2 are dependent, then
the guideline is violated.
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5.2 From Program Dependence Graph
to Labeled Transition System

We focus in this section on the transformation of aug-
mented PDG into a formal model allowing to proceed
to the formal verification using model checking tech-
niques.

As usual in the setting of distributed and concur-
rent applications, we give behavioral semantics of an-
alyzed programs in terms of a set of interacting finite
state machines, called LTS (Arnold, 1994).

Definition 1 (Labeled Transition System). A La-
beled Transition System (LTS for short) is a 4-tuple
〈Q,q0,L,→〉 where

• Q is a finite set of states;
• q0 ∈ Q is the initial state;

• L is a countable set of labels;
• →⊆ Q×L×Q is the transition relation.

An LTS is a structure consisting of states with
transitions, labeled with actions between them. The
states model the program states; the transitions en-
code the actions that a program can perform at a given
state. We distinguish two types of actions: actions en-
coding sequential program (representing standard se-
quential instructions, including branching and assign-
ment) and a call to the method (local or remote), and
actions encoding the result of tracking of explicit and
implicit dependencies between variables within pro-
gram.

The LTS labels can mainly be of three types: ac-
tions, data and dependencies.

• Actions: they refer mainly to all program instruc-
tions, representing standard sequential instruc-
tions, including branching and method invoca-
tions.

• Value passing: as performed analysis involves
data, generated LTSs are parametrized, i.e, tran-
sitions are labeled by actions containing data val-
ues.

• Dependencies: in addition to program instruc-
tions, we added transitions that bring (implicit and
explicit) data dependencies between two state-
ments with the objective of tracking data flows.
Indeed, transitions on LTS show the dependencies
between the variables in the code. We label this
kind of transition bydepend var1 var2wherevar1
andvar2are two dependent variables.

It is important to note that the augmented PDG
and the LTS are isomorphic, in a sense that both
graphs have the same number of edges and the same
number of nodes. LTS is similar to the augmented

PDG, except that the LTS labels are on edges (tran-
sitions) and not on nodes. The same actions (instruc-
tions) on the PDG nodes are translated into transitions
on the LTS, which is a faithful representation of the
captured dependencies translated into edges between
nodes. This property is of paramount importance due
to the capability it offers for faithfulness of the anal-
ysis support, and also to export the analysis results
(violating traces) on the PDG built from the source
code. Figure 5 represents the LTS corresponding to
the augmented PDG of Figure 4.

Figure 5: Labeled Transition System for the sample code
given in Figure 1.
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5.3 Model Checking

We can carry out the model-checking analysis directly
on the LTS. For the sake of simplicity,hiding and
renamingare used to compute a minimized Labeled
Transition System, which is an ”operable” model (see
Figure 6). First, some irrelevant actions (for the an-
alyzed properties) are ”hidden”;they are replaced by
τ actions (denotedi in Figure 6). Second, we rename
the actions by their synonyms (entry points) in the Se-
curity Knowledge Base.

Figure 6: Minimized Labeled Transition System for the
sample code given in Figure 1.

We made use of the checker EVALUATOR of the
CADP toolsuite (Lang et al., 2002) to verify the prop-
erty we formalized in Section 5.1.

The verification result is false, indicating that the
guideline is violated due to the implicit file location
dependency indicating that the two file locations are
in the same file system. In addition to a false, the
model checker produces a trace illustrating the viola-
tion from the initial state, as shown in Figure 7.

We are able to track all variables within our model,
in fact even if variable changes name in the code we
can from original guideline generate automatically an
appropriate formula to check the properties with the
new name. For instance, the property can be formal-
ized in MCL as follows:

[true*.{create_key ?key:String}.true*.
(({save !key ?loc1:String}.true*.
{encrypt ?data:String !key}.true*.
{save !data ?loc2:String}.true*.
{depend !loc1 !loc2}

|{depend !key ?key1:String}.{save !key1
?loc1:String}.true*.{encrypt ?data:String
!key1}.true*.{save !data ?loc2:String}.
true*.{depend !loc1 !loc2})
|

({encrypt ?data:String !key}.true*.
{save !key?loc1:String}.true*.
{save !data ?loc2:String}.true*.
{depend !loc1 !loc2}
| {depend !key ?key1:String}.
{encrypt ?data:String !key1}.

true*.{save !key1 ?loc1:String}.true*.
{save !data ?loc2:String}.true*.
{depend !loc1 !loc2}))] false

This MCL formula encodes the same guideline
”Store unencrypted keys away from the encrypted
data”. It allows to specify further dependencies and
their combinations; it checks also the case where key
k is renamed (by introducing the instructionString x
= k.toString() between line 116 and 118, and renam-
ing k by x in the rest of the code).

5.4 Feedback to the Developer

One crucial step in our framework is the feedback rep-
resentation to the developer in a way that allows him
to understand the source of the violation, and to be
able to make the needed corrections to fix it. It is then
necessary to export the model checking output on the
PDG built from the source code, as it is the closest
representation of the program code.

JOANA tool generates the PDG from the Java byte
code, and performs the analysis on the PDG. How-
ever, interpreting the results on the byte code level
is not straightforward, neither is its mapping to the
source code. With the objective of covering this short-
coming, we built a PDG from the program source
code, and we made possible the bidirectional map-
ping between the PDG source code and the PDG byte
code. The two graphs are augmented as explained in
Section 4.

The verification carried out on the SecLTS re-
turns the trace(s) violating the security guideline;
those results are then returned on the PDG we con-
structed from the source code to provide more details
to the developer about where and why the violation
occurred. The returned trace (Figure 7) shows the ex-
act path where the guideline violation occurred.

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

186



Figure 7: Violation trace.

6 LIMITATION

The framework we proposed in this paper constitutes
a proof-of-concept regarding the feasibility of our ap-
proach. However, our framework falls short in spec-
ifying guidelines involving imprecise and ambigu-
ous notions such as guideline IDS15-J:Do not allow
sensitive information to leak outside a trust bound-
ary (CERT, a) from CERT Coding Standard source
(CERT, b). The notion oftrust boundaryrequires well
defined system boundaries, which is not trivial when
it comes to distributed applications.

Other guidelines involve quantitative information
flow theories, and this is also some other limitation of
the formal specification we cover in our framework.
For instance, the guidelineLimit quantity of data en-
crypted with one key recommends the use a new en-
cryption key when the amount of encrypted data goes
beyond a certain threshold. It is obvious to the reader
than our specification and verification method falls
short in covering this guideline for the dynamic as-
pect it involves, and that can’t be captured statically.

For the guidelines involving the semantic aspect,
such as password security rules, the automatic detec-
tion of the password data on the program cannot be
performed automatically. The annotation of the pass-
word requires a deep knowledge on the program logic,
and the intervention of the developer/security expert
to annotate the password is required.

7 RELATED WORK

The specification and verification of security guide-
lines have also been addressed in the literature.

In the technical report (Aderhold et al., 2010) of
the joint work between TU Darmstadt and Siemens
AG, the authors provide formalizations of secure cod-
ing guidelines with the objective of providing precise
reference points. The authors make use of the LTL
formalism to specify the guidelines; however, LTL
leverage events and actions to model security policies,
and puts more focus on actions rather than data. The
mapping between the labels of LTL formulas and the
program instructions is performed by the developer,
which is an overhead to developers.

SecureDIS (Akeel et al., 2016) makes use of
model checking together with theorem-proving to

verify and generate the proofs. The authors adopt
the Event-B method, an extension of the B-Method,
to specify the system and the security policies. The
authors do not make clear how the policies param-
eters are mapped to the system assets, and they do
not extend the policy verification and enforcement at
the program level. The work targets one specific sys-
tem type (Data Integration System), and is more fo-
cused on access control enforcement policies, speci-
fying the subject, the permissions and the object of the
policy. However, access control mechanisms are not
sufficient for the confidentiality property, as they can’t
provide assurance about where and how the data will
propagate, where it will be stored, or where it will be
sent or processed. The authors target system design-
ers rather than developers or testers, and consider a
specific category of policies focused on data leakage
only.

GraphMatch (Wilander and Fak, 2005) (Wilander
and Fak, ),is a code analysis tool/prototype for secu-
rity policy violation detection. GraphMatch considers
examples of security properties covering both posi-
tive and negative ones, that meet good and bad pro-
gramming practices. GraphMatch is more focused on
control-flow security properties and mainly on the or-
der and sequence of instructions, based on the map-
ping with security patterns. However, it doesn’t seem
to consider implicit information flows that can be the
source of back-doors and secret variables leakage.

The Jif (Myers and Liskov, 2000) language im-
plements type-checking that makes use of Decentral-
ized Label Model (DLM) (Myers and Liskov, 1997);
it allows to define a set of rules to be followed by
programs to prevent information leakage. Jif pro-
grams are type-checked at compile-time, which en-
sures type-safety as well as that rules are applied.
However, the labels, which define policies for use of
the data, apply only to a single data value, and are not
checked at run-time.

Dimitrova et al. (Dimitrova et al., 2012) proposed
an approach that integrates the dynamic analysis into
the monitoring of information flow properties. The
authors proposed an extension to LTLSecLTLtak-
ing into account the information flow properties such
as non-interference and declassification.SecLTLwas
then used as a specification for model checking. The
authors assume that secret data is provided as in-
put, however, sensitive data can originate from other
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sources such as reading from a database. In addition,
there might be the case where multiple sensitive data
are provided as input, the monitoring of multiple sets
of traces is then required, which can turn to be too
expensive, and may lead to loss of precision.

In their work ”Detecting Temporal Logic Pred-
icates in Distributed Programs Using Computation
Slicing” (Sen and Garg, 2003), Alper Sen and Vijay
K.Grag adopted an approach that models the possible
executions of the program in finite traces of events,
and performs ”computational slicing”, that is, slicing
with respect to a global predicate. Their approach is
based on the dynamic behavior of the program, which
requires a sufficient number of test cases and is quite
time-consuming, yet it cannot ensure a verification of
the entire set of paths of the program to analyze.

Aoraı̈ plugin (Stouls and Prevosto, ) provides the
means to automatically annotate C programs with
LTL formulas that translate required properties. The
tool provides the proofs that the C program behav-
ior can be described by an automaton. The mapping
between states and code instructions is made based on
the transition properties that keep track of the pre- and
post- conditions of the methods invocation; those con-
ditions refer to the set of authorized states respectively
before and after the method call. The tool is only fo-
cused on the control dependencies between method
calls, and the analysis is not extended to the data level.

PIDGIN (Andrew et al., 2015) introduces an ap-
proach similar to our work. The authors propose the
use of PDGs to verify security guidelines. The speci-
fication and verification of security properties rely on
a custom PDG query language that serves to express
the policies and to explore the PDG and verify satisfi-
ability of the policies. The parameters of the queries
are labels of PDG, which supposes that the developer
is fully aware of the complex structure of PDGs, iden-
tify the sensitive information and the possible sinks
they might leak to. PIDGIN limits the verification to
the paths between sinks and sources, however, there
might be information leakage that occurs outside this
limited search graph. The authors do not provide the
proof that their specification is formally valid. It is not
also explained how the feedback will be presented to
the developer, or how we might be guided through the
correction phase.

8 CONCLUSION AND FUTURE
WORK

We presented in this paper a first proof-of-concept re-
garding the feasibility of our approach that aims at ex-
tending the guidelines verification and validation on

the different phases of the software development life-
cycle. We proposed a first attempt to fill the gap of
the formal verification of guidelines provided in in-
formal way. We stressed the difficulty encountered
when the security guideline involves dependent infor-
mation flows that can’t be specified separately. This
requires security expertise to specify the dependent
information flows. We make the strong assumption
that the security expert extracts the key concepts from
the guidelines textual descriptions and builds upon
them the formulas using the MCL formalism. Our
framework makes use of this specification to carry out
the model checking on the Labeled Transition System
we built from the Program Dependence Graph that we
have augmented with details such as the customized
annotations and the implicit dependencies.

The verification phase output indicates whether
the guideline is met, or it is violated, and the viola-
tion traces are returned. Using this output, we will be
able to provide a precise and useful feedback to the
developer to understand the source of the violation,
and possibly how to fix it. Future work includes the
representation of the model checking output on the
Program Dependence Graph, and on the code level
in the Integrated Development Environment. We aim
also at covering a wider range of security guidelines,
hence to extend the Security Knowledge Base in or-
der to capture more security concepts, and possibly,
to cover different programming languages.
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