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Abstract: While smartphones and its apps have a fundamental role in our lives, privacy is a critical issue. With the 
constantly growth of mobile applications, smartphones are now capable of satisfying all kinds of users’ needs, 
dealing with more private and restricted tasks by the users and gain more access to sensitive and private data. 
This issue is even worse with the current absence of methods that can notify users of possibly dangerous 
privacy leaks in mobile apps without disturbing users with apps’ legitimate privacy exposes. Previous mobile 
privacy disclosure approaches are mostly concentrated on well-defined sources controlled by smartphones. 
They do not cover all sensitive data associated with users’ privacy. Also, they cannot filter out legitimate 
privacy disclosures that are commonly found in detection results and consecutively conceal true threats. 
Sensitive user inputs through UI (User Interface), are the dominant type of sensitive data that has been almost 
ignored. Defending this kind of information cannot be accomplished automatically using existing techniques 
because it necessitates understanding of user inputs' semantics in apps, before identifying its positions. 
Moreover, eliminating legitimate privacy disclosures necessaries tracking of the related app data flows form 
these users’ inputs to various sinks. Such tracking will help to determine if this privacy disclosure is valid or 
suspicious. To address all these important issues, we propose an enhanced approach for detecting users’ inputs 
privacy disclosures that are truly suspicious. 

1 INTRODUCTION 

Smartphones are the main type of end-user devices as 
reflected in the increasing sold units over traditional 
computers. In the last few years, the use of 
smartphones for both corporate and personal goals 
has increased significantly. There are 7,377 billion 
mobile users around the world, which is equivalent to  
99.7% of the world’s population, as estimated by the 
International Telecommunication Union in 2016 
(ITU 2016). Smartphone security is an emerging area 
of rising importance and cumulative requirements, 
nevertheless its relative weaknesses regard protecting 
a user’s data privacy (Khan et al. 2015). Even though 
the mobile devices’ corporations have considered 
security issue in designing their smartphones, using 
mobile applications from the internet creates 
complicated difficulties in handling threats and 
vulnerabilities that endangers a user’s data privacy.  

Many diverse applications with widespread range 
of purposes can be accessed online from application 
stores for each mobile device. With the constantly 
growth of these applications, smartphones are now 

capable of satisfying all kinds of users’ needs, dealing 
with more private and restricted tasks by the users and 
gain more access to sensitive and private data. This 
issue is even worse with the current absence of 
methods that can notify users of possibly dangerous 
privacy leaks in mobile apps without disturbing users 
with apps’ legitimate privacy exposes. Consequently, 
this rise many concerns regard the costs of failure in 
securing user’s privacy in smartphones (i.e., 
transmitting it to remote individuals or broadcasting 
it). Although their wide abilities in satisfying users’ 
needs, protecting the privacy of user data in 
smartphones becomes an essential issue and get more 
attention in mobile security researches. Many 
approaches have been developed to detect potential 
information leaks and privacy disclosures using (1) 
the phone OS and framework APIs, such as location, 
contact, calendar…etc. (2) data-flows analysis 
mechanisms either dynamically or statically (Huang 
et al. 2015)(Lu et al. 2015).  

The former approach is based on access control 
(permission) techniques that implements fine-grained 
security strategies to deal with private user data on a 
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mobile system. These data are provided by OS and 
can be secured by utilizing related data-access APIs 
to mark the security tags for the data. These 
permission techniques relay on users’ agreement to 
access their private resources without offering 
enough information that can help them in their 
decision. Moreover, success of such techniques 
mainly assumes a users’ perception and 
understanding on the app privacy effects. In fact, this 
hypothesis is not accurate (Huang et al. 2015)(Lu et 
al. 2015). 

The latter approach is based on evaluating data-
flows in mobile apps in order to automatically reveal 
privacy leaks (Nan et al. 2015). It tracks the source of 
the privacy disclosures of user data to various sinks 
which help users to make further informed 
judgments. Furthermore, it used for identification of 
apps vulnerabilities that may accidentally expose 
such sensitive user data to public or to the attacker 
(Huang et al. 2015). 

Despite the importance of the previous 
approaches in protecting sensitive data, they do not 
cover all sensitive data associated with users’ privacy. 
Sensitive user inputs are the dominant type of 
sensitive data that has been almost ignored. It refers 
to the sensitive content entered by users in a mobile 
app through the User Interface (UI) such as financials, 
credentials and medical information. Recent research 
(Nan et al. 2015) have found that among 17,425 top 
Google-Play apps, 35.46% require users to enter their 
confidential information. Defending this kind of 
information cannot be accomplished automatically 
using existing techniques because it necessitates 
understanding of user inputs' semantics in apps, 
before identifying its positions. This is challenging 
because of the content’s lankness of fixed 
constructions that obstruct recovering them without 
semantics exploration (Huang et al. 2015) (Nan et al. 
2015). 

After detecting the sensitivity of the user inputs 
data, it is necessary to track the related app data-flows 
of privacy disclosures for that user inputs to various 
sinks. Such tracking will help to determine if this 
privacy disclosure is valid or suspicious. Another 
study (Lu et al. 2015) proves that more than 67% of 
app privacy exposes discovered using traditional 
approaches are actually valid (i.e., required in the 
basic functions of the apps). For example, GPS apps 
need to send user’s current location to remote servers 
to show it on the map. Also, such tracking can help to 
recognize the vulnerabilities in the apps that may 
accidentally expose sensitive user inputs to public, to 
the attacker or to third-party ad reference library. 
Nevertheless, previous data-flow analysis approaches 

are incapable of determining the validity of 
discovered data-flow privacy leak. This weakness 
regularly leads to overestimated privacy exposures 
covering numerous false warnings (e.g., benign or 
functional privacy exposures). Since these warnings 
are not true user privacy violations, they cause 
distractions and interruptions for users. Alerting all 
privacy exposures of sensitive user inputs to the user 
will seriously annoy him and reduce the usability (Lu 
et al. 2015).  

To sum up, guarding users’ privacy along with 
both deliberate and unintended disclosures requires: 
(1) automatic recognition of the private sensitive 
content the user enters into smartphone apps and 
based on it (2) distinguish only suspicious data flows 
of privacy disclosures for that user inputs to various 
sinks. This paper proposes such approach which can 
ensure appropriate protection that matches with 
users’ confidence and anticipations (Huang et al. 
2015) (Nan et al. 2015). 

In this paper, we present some application-based 
threads and propose an enhanced framework 
architecture to detect truly suspicious user-inputs 
privacy leaks in Android apps that harmfully impact 
end-users. Malware detection is described in existing 
works (Gorla et al. 2014), (Pandita et al. 2013) and is 
out of scope of this paper. Recent research (Khan et 
al. 2015) indicates wide ranges of threats and 
vulnerabilities on smartphones that cyber criminals 
are now concentrating more and more on them. 
Attackers utilize the huge diversity of smartphone 
applications on the internet in order to terminate 
safety mechanisms, increase threats and expand 
vulnerabilities. This trend emphasizes the need for 
further security enhancements on application level of 
smartphones, as well as more flexible, better security 
solutions and policies for mobile applications. Some 
important mobile applications-based threats to user 
privacy are presented as follows. 

2 APPLICATION-BASED 
THREATS 

Adversaries can take advantage of the weaknesses 
inside current protection techniques in order to steal 
sensitive user inputs. For instance, fake banking apps 
can be designed with very similarity UIs for stealing 
user’s financial credentials. Moreover, some 
developers unintentionally reveal sensitive user data. 
For example, eavesdropping attack is exposed to the 
apps that transmits content as plaintext across public 
networks.   (Nan   et   al.   2015).   Therefore,   privacy  
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Figure 1: Application-Based Threads. 

violations can have resulted from mobile apps that 
store or transmit sensitive user input without any 
protection (figure 1).  

Mobile applications, either benign or malicious, 
can be downloaded online which introduces 
numerous security threats on both types; applications 
explicitly designed to be malicious as well as useful 
applications that can be misused for malicious drives. 
The greatest concern rises when the application is 
malicious, fake or bogus (Khan et al. 2015)(Sujithra 
2012). Accordingly, applications-based threats can be 
classified into benign app threads, malicious app 
threads or even combination of them. 

2.1 Benign App Threads 

Although, mobile application can be found benign, 
useful and valuable, it can disclose the user privacy 
accidentally or be exploited for malicious purposes. 
Applications that reveal privacy threats are not 
essentially malicious, but collects or uses more 
sensitive information that users are unwilling to 
expose to the public. For example, the global 
positioning system (GPS) can provide information 
about any location a user goes to. Any leak of this 
information can lead to serious problems. 
Additionally, benign applications may contain 
software faults or vulnerabilities which can be 
utilized for malicious intent. These permit attackers 
to access sensitive information, accomplish unwanted 
actions, halt a service from running correctly, and 
consequently download further applications without 
user agreement. Mobile app vulnerability is a safety 
disclosure that outcomes from an app weakness that 
the application developer did not anticipate to present 
and will fix after it is revealed. Vulnerability in 
mobile apps contains three elements; app flaw or 
weakness, accessibility to it, and malicious 

mechanism able of exploits that the flaw and attack it 
(Khan et al. 2015) (Sujithra 2012). 

2.2 Malicious App Threads 

Malware, short of malicious applications is any type 
of aggressive, intrusive, or irritating software (e.g. 
Trojan, rootkit, virus, worm…etc.) aimed to achieve 
malicious actions after installation in a user’s 
smartphone without the user’s consent. It can be used 
to gather private and personal information from user 
smartphones that could result in theft or financial 
scam. Spyware is another kind of malware that aims 
to accumulate personal and private information 
without a user’s knowledge or agreement. Targeted 
data in spyware usually contains phone contact list, 
call and browser history, location, and camera images 
(Khan et al. 2015)(Sujithra 2012)(La Polla et al. 
2013). 

3 RELATED WORK  

In order to detect sensitive user inputs in 
smartphones’ applications, analyzing the context and 
semantics of UIs is required (Nan et al. 2015). A 
direct approach is to consider all user inputs are 
sensitive (Arzt et al. 2014), which is obviously will 
cause overload, more false positives and impartially 
poor results due to combining sensitive user inputs 
that we emphasis on with a plenty of additional 
sources we do not care.  

To the best of our knowledge, there is no in-depth 
study of user inputs privacy discourses on Android 
phones that alert only suspicious discourses. Thus, the 
discussion of related work is divided into three types: 
taint analysis, text analysis and privacy source 
detection approaches. 

3.1 Taint Analysis approaches 

There are a lot of researches on identifying, 
understanding and evaluating privacy disclosures 
which focus on predefined sensitive data sources on 
several mobile OS. From technical point of view, 
there are two main approaches for identifying data-
flows of privacy disclosures within an app; static 
(Arzt et al. 2014)(Huang et al. 2014)(Fahl et al. 2012), 
(Gibler et al. 2012) and dynamic taint analysis. 

The first approach is static taint analysis which 
emphases on finding the potential privacy leak route 
based on tracking analysis and program slicing. It can 
analyze large numbers of applications. Besides, they 
can detect malware or vulnerabilities in Android 
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apps. FlowDroid (Arzt et al. 2014) is one of pioneer 
works in static analysis that only offer alternatives to 
taint all user inputs as sensitive sources and offers a 
limited form of sensitive input fields (password 
fields). AsDroid (Huang et al. 2014) includes static 
analysis tool that link the app behaviour from API call 
sites to a top level function through related UI to 
detect malicious behaviour. Mallodroid (Fahl et al. 
2012) is a static analysis tool aimed to detect apps that 
potentially use SSL/TLS inadequately or incorrectly 
and thus are potentially vulnerable to Man-in-the-
Middle attacks. The static analysis can separate input 
data from app UI and finds vulnerable elements in the 
program code of an application (Nan et al. 2015). 
Using this approach in detecting sensitive user inputs 
will lead to mark all the user inputs are sensitive 
which is not acceptable because it introduces a lot of 
false positives and cannot differentiate if the 
operations are intended or not by users due to the 
lacking of user intention and context information. 
Furthermore, as ssmartphones have limited ability in 
handling and storing data, protecting all user inputs 
will take more time and resources on smartphones 
which is obviously overkill (Yang et al. 2013).  

The second approach is dynamic taint analysis 
such as TaintDroid (Enck et al. 2010) and AppIntent 
(Yang et al. 2013) which can track sensitive data at 
runtime. In another word, they can capture the context 
of runtime environment such as configuration 
variables and user input. More significantly, code 
may be obscured to hinder static analysis, either 
deliberately or accidentally. The issues are either 
reducing overhead in deployments, or increasing code 
coverage in dynamic testing (Rastogi et al. 
2013)(Yang et al. 2013). TaintDroid (Enck et al. 
2010) is one of the innovator researches which uses 
dynamic taint analysis to identify privacy leaks by 
tracking the flow of sensitive data over third-party 
applications. AppIntent (Yang et al. 2013) is another 
dynamic program analysis aimed to discriminate 
user-intended sensitive data transmissions from other 
transmissions to improve identifying privacy leaks. 
However, dynamic taint approaches cannot be 
applied in marketplaces for detecting privacy leaks in 
marketplaces because they report a leak only if such 
risky transmission occurs in the execution time 
(Rastogi et al. 2013).  

However, most research works in such dynamic 
approaches often  (Arzt et al. 2014), (Enck et al. 
2010), (Yang et al. 2013), (Xu et al. 2012) manually 
identify the contents that need protection in the apps. 
They depend on users, developers or designer i.e. 
necessitates human interference which is not suitable 
for evaluating privacy threads on large-scale apps’ 

analysis. Moreover, they cannot differentiate if the 
operations are valid or not from systematic point of 
view without relying on human factor. 

Moreover, all the above-mentioned taint analysis 
approaches do not try to analyze or to understand 
whether the detected privacy disclosures has any 
relationship with the app’s functionality. Instead, the 
security experts or the users have to understand such 
relationship manually. Our approach utilizes peer 
voting mechanism (Lu et al. 2015) to identify 
suspicious privacy disclosures and benefit the users in 
selecting more traditional and safe applications.  

3.2 Text Analysis in Android Apps 

Diverse researches exploit UI text analysis for various 
security goals. AsDroid (Huang et al. 2014) detects 
tricky behaviors in Android applications by checking 
conflicts between program behavior and anticipated 
behavior through analyzing UI textual. However, 
their UI analysis is based on few textual keywords, 
which could be insufficient. CHABADA (Gorla et al. 
2014) checks application behaviors against 
application descriptions through Natural Language 
Processing (NLP) approach called “topic modelling”. 
It aimed to detect malicious behaviours in Android 
applications by collecting applications that are alike 
to each other in their textual descriptions. Then 
detects application which used APIs differently from 
the regular use of the APIs in the same collection. 
CHABADA cannot exactly detect privacy 
disclosures as it only recognizes sensitive APIs 
without tracking the data-flows among their sources 
and sinks. Our approach identifies suspicious privacy 
disclosures and benefit the users in selecting more 
traditional and safe applications.  
 Whyper (Pandita et al. 2013) take advantages of a 
NLP technique (Stanford Parser) to check if the 
application description justifies the permission usage. 
Although our approach provides an enhanced 
complementary approach in assessing the validity of 
privacy disclosure, we might possibly leverage their 
methods to produce more comprehensive privacy-
related texts for identifying user inputs data.  

3.3 Privacy Source Detection 

Some studies concentrate on mapping between 
Android permissions and APIs such as PScout (Wain 
et al. 2012). It gets the specific permissions from the 
Android OS source code to accomplish permission-
to-API mapping through static analysis.  Cashtags 
(Mitchell et al. 2015) protects users sensitive inputs 
that are displayed on the screen by and replacing them 
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with non-sensitive data elements. It aims to prevent 
shoulder surfing threats but it simply gathers all 
sensitive data in one data repository without any 
protection techniques. 

SUPOR (Huang et al. 2015) and UIpicker (Nan et 
al. 2015) are the most related works addressing the 
problem of our paper. They intend to automatically 
identify sensitive user inputs in android application. 
They present different approaches to cover user 
inputs that are not protected with smartphone OS and 
APIs access permissions. UIpicker take advantage of 
supervised learning approach to train a classifier 
based on the extracted features from the UI elements’ 
texts and layout descriptions. It furthermore considers 
the texts of the sibling elements in the layout file.  

SUPOR detects sensitive user inputs using UI 
rendering, geometrical layout analysis and NLP 
techniques. Since UIPicker rely on sibling elements 
in the layout file to associate the description text for a  

 UI field, this could simply include unrelated texts 
as features. SUPOR eliminate such problems by 
selecting only the text labels that are actually close to 
input fields in the monitor, imitating how users look 
at the UI, and uses the labels’ text to determine the 
sensitiveness of the input fields. SUPOR focuses on a 
definite type of UI elements (EditText) whereas 
UIPicker includes more UI elements such as 
dropdown lists (Spinners), RadioButton, CheckBox 
besides (EditText). However, UIPicker techniques in 
extracting privacy-related texts could complement  

 

Table 1: Comparison between Sensitive Users’ Inputs Detection Systems. 

 SUPOR UIPicker 

Data scope Identity, account, personal, credential, financial 
and health information 

Account credentials and user Profiles, location (plain 
text format) and financial data 

Contribution Propose SUPOR, first static mobile app analysis 
tool for detecting sensitive user inputs in 
Android apps that are not permission protected, 
and evaluate its performance. 

Measure the spreading of private user input data based 
on 17,425 applications, propose UIPicker framwork 
for automatic identification of user inputs data in large 
scale within Android apps and offer runtime security 
improvement based on UIPicker. 

Benchmark First research in this field First large-scale analysis of apps’ privacy risks. 

Result Detect 355 apps with false positive rate 8.7% 
from 16,000 popular Android apps  

Detect 6,179 (35.46%) of 17,425 popular Android apps 

Manual 
Evaluation 

Based on 40 randomly selected apps   
(Precision: 97.3% & Recall: 97.3%) 

Based on 200 randomly selected apps   
(Precision: 93.6% & Recall: 90.1%) 

System 
Components 

Layout analysis, UI sensitiveness analysis and 
UI – code Binding. 

Pre-processing, Privacy text analysis, Classifier and 
Program behaviour filtering 

Strength  Boarder detection converge in user text 
fields using synonyms and Google 
Translate. 

 Better scalability (shorter time analysis) 

 Boarder detection converge in many types of user 
inputs. 

 Secure user data inputs by preventing sending them 
as plaintext and checking SSL risks using 
integration with MalloDroid 

 Dynamic generation of privacy features to expand 
private semantic data using a few privacy-related 
seeds. 

Weaknesses  Fixed privacy related dataset besides 
excluding address from their dataset. 

 Insufficient context to identify sensitive 
keywords 

 Deal with one specific type of UI elements 
(EditText) 

 Cannot differentiate between valid and 
suspicious privacy disclosers 

 Limitation in privacy feature extraction 
mechanisms that introduces false positive and 
false negative results. 

 Cannot differentiate between valid and suspicious 
privacy disclosers  
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NLP techniques in SUPOR for enhancing the 
construction of keyword dataset. Table 1 provides a 
comparison between these related approaches. 
However, SUPOR and UIPicker cannot distinguish 
between valid and suspicious privacy disclosers 
which we focus on in this paper.  

 Several research works (Arzt et al. 2014), (Enck 
et al. 2010), (Yang et al. 2013)(Han et al. 
2013)(Gibler et al. 2012), (Mitchell et al. 2015) 
emphasis on smartphone privacy disclosure of 
sensitive data sources. Our approach identifies 
legitimate (valid) sensitive user inputs and may 
enable most of the current privacy researches to be 
functional on sensitive user inputs. Therefore, our 
research compliments the existing works. 

4 PROBLEM STATEMENT 

In this section, we first display a motivating example 
of users’ sensitive inputs in a UI screen, then we 
examine challenges in recognizing such data and 
clarify our data scope of users’ input.  

4.1 Motivating Example 

Figure 2 displays a UI of mobile app that hold some 
vital sensitive information that is often required in a 
many shopping apps. The user has to input the credit 
card records to complete the payment process. As the 
developers might be unaware of the possible threats 
on the exposes of such sensitive information, the 
credit card credentials are sent in plain text over an 
insecure channel which accidentally compromises 
users’ privacy. Several apps in smartphones 
necessitates sensitive information for many 
functional goals. This information is mostly private 
and personal which users are not comfortable in 
revealing them without proper security. 

 

Figure 2: Example of sensitive user inputs in UI. 

Sensitive user inputs are the dominant type of 
sensitive data that has been almost ignored in 
previous researches. Even though user inputs can be 
greatly security-sensitive and have risky 
consequences once it is exposed, little has been done 
so far to detect them at a large-scale (Nan et al. 2015). 

The main issue here is how to automatically 
discriminate sensitive user inputs from other inputs in 
UIs. This is challenging because of the content’s 
lankness of fixed constructions that obstruct 
recovering them without semantics exploration. 
Another issue is to determine if the privacy disclosure 
of the identified sensitive user inputs is valid or 
suspicious.  

Previous privacy disclosure analysis approaches 
often limit the options to mark all user inputs as 
sensitive sources and cannot determine the validity of 
discovered data-flow privacy leak i.e. whether it is 
caused by functional privacy exposures in benign app 
or not. Exploring in this method would produce 
absolutely bad results dues to combining sensitive 
user inputs that we emphasis on with a plenty of 
additional sources we do not care and due to 
combining valid and invalid data-flow privacy leaks. 
Furthermore, such approaches obviously will cause 
more overload; more false positives in detecting 
theses sensitive user inputs and overestimated privacy 
exposures covering numerous false warnings (e.g., 
benign or functional privacy exposures).  

Similar problem also occurs in runtime user input 
protection. For example, if an app is trying to transmit 
sensitive user inputs outside the mobile, an 
appropriate defence method is to inform users to 
prevent such transmitting. It is overkill to alarm users 
of all inputs whether it is sensitive or not, including 
their valid and suspicious privacy exposures. Since 
these warnings are not true user privacy violations, 
they cause distractions and interruptions which will 
greatly annoy users. Moreover, this will reduce the 
usability since (1) many usual inputs do not require to 
be treated as sensitive inputs and (2) most privacy 
exposures of sensitive user inputs are valid and do not 
require to annoy user with it. 

4.2 Challenges 

Sensitive users’ input data can be simply identified by 
human but it is very challenging for the machine to 
automatically recognize this data on large-scale using 
existing approaches. These sensitive input data 
cannot be recognized during runtime checking 
because they are extremely unstructured which make 
it very difficult to use predefined expressions for 
matching when users input them. Moreover, private 
user inputs, similar to any usual inputs, are spread in 
several UIs in a particular app. Mostly such UIs 
require login or composite trigger situations which 
makes it very challenging for automatic testing tools 
to navigate such interfaces comprehensively without 
manual interference. It also impractical to detect these 
data by static analysis approaches because, within 
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program code’s, there is no clear difference between 
sensitive user input and other inputs. Apps accept all 
these input data, then transferred out or kept in local 
storage in an identical way, which makes it hard to 
differentiate them using static analysis approaches 
(Nan et al. 2015).  

Another issue is to determine if the privacy 
disclosure of the identified sensitive user inputs is 
valid or not. This requires to track the related data 
flows of these inputs privacy disclosures to various 
sinks which help users make further informed 
judgments. Many existing privacy exposes detection 
approaches were designed to expose apps’ activities 
that trace confidential data (source) to a confidential 
channel (sink), but this might be not expressive 
enough to users or developers (Lu et al. 2015). 
Current taint analysis approaches alert users regard 
any app privacy violations even if it is part of the 
app’s core functions. Thus, whenever evaluating a 
valid navigation app or a doubtful calculator app with 
a 3rd-party library tracing users, current approaches 
alert users with the identical kind of reports that show 
possible privacy exposes. 

This paper proposes enhanced approach for 
suspicious privacy disclosure detection of users’ 
inputs in smartphones. which includes: (1) automatic 
recognition of the private sensitive content the user 
enters into smartphone apps and based on it (2) 
distinguish only suspicious data flows of privacy 
disclosures for that user inputs to various sinks. Our 
goal is primarily to detect sensitive data in benign 
apps. The results can be also used for security 
analysis or protection of such data. Instead of 
focusing on malicious privacy leakages that 
intentionally avoid detection, our approach targets 
efficient large-scale examination of apps, some of 
which might not appreciate user privacy and 
aggressively misuse user privacy in exchange of 
profits. Malware detection is out of scope of this 
paper. There are many works for detecting malware 
apps (Gorla et al. 2014; Pandita et al. 2013), however, 
our approach do not deal with malicious apps that 
deliberately avoid our analysis (Nan et al. 2015), e.g., 
malware that creates its layout dynamically or uses 
images as labels to prompt users to input their 
sensitive data. 

Our approach is designed to discover concealed 
privacy leakage user-inputs data flows in a specific 
Android app that could not be explained by the 
common functions of the app in order to maintain low 
false positive rate.  

 

Figure 3: Overall Architecture of our Approach. 

5 IDENTIFICATION APPROACH 

In this section, we provide a summary of our 
approach and describe the key units that we propose 
in our identification framework. 

5.1 Overview 

Figure 3 shows the overall workflow of our approach. 
It is made up of six key units to identify suspicious 
leaks of data-flows which contain sensitive users’ 
inputs.  These key units are: layout analysis, privacy 
textual creator, sensitive users’ inputs detection, 
privacy disclosure analysis, binding and peer voting. 
They can be split into two stages: private users’ inputs 
identification and privacy leaks recognition.   

In the first stage (Step 1,2,3,4), our approach takes 
a set of apps to identify sensitive user inputs from 
their textual semantics and associated field location in 
GUI. In the second stage (Step 5,6), peer voted 
mechanism (Lu et al. 2015) scans the resulted privacy 
disclosures from both the primary app and peers apps 
(Step 5) to identify truly suspicious privacy 
disclosures (Step 6). 

During the private users’ inputs identification 
stage, the layout analysis unit takes an app in a form 
of APK file, deconstructs the layout files within this 
APK file, and delivers the layout files holding input 
fields. Then sensitive users’ inputs detection unit 
combines text labels with input fields inside the 
resulted layout files in order to prepare for the 
discovery of private user inputs. Privacy textual 
creator extracts privacy textual elements from a 
subset of specific layouts in peer (similar) apps to 
generate keywords dataset. Based on the resulted 
sensitive keywords (from step 2), the words of the 
text labels (from step 3) is compared to determine the 
privacy of the input fields. The binding unit then 
examines the primary app’s source code to find the 
variables associated with the value of the sensitive 
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input fields. After variable binding, the second stage 
initiates the process of privacy leak recognition.  

Throughout the privacy leak recognition stage, 
existing research efforts in detecting privacy 
disclosure (step5) of smartphones’ sensitive data 
sources can be utilized for sensitive user inputs. Thus 
privacy disclosure analysis generates data-flows 
report of users’ inputs privacy disclosures using any 
static taint analysis tool such as flowDroid (Arzt et al. 
2014). After that, peer voted mechanism detects the 
exposes of sensitive user inputs that are truly 
suspicious. Next we describe each unit in detail. 

5.2 Architecture Units 

This section describes the key units in our 
identification architecture that detects truly 
suspicious user inputs privacy leaks in Android apps 
that harmfully impact end-users. 

5.2.1 Layout Analysis 

This unit aims to provide user inputs fields of a 
primary app, and obtain the details of input fields 
such as types, hints, and coordinates. Such details are 
used for the users’ inputs detection unit (step 3) for 
detecting sensitiveness of user inputs fields. Based on 
the user perception, text label must be physically 
close to the input field in the UI. Thus layout analysis 
unit extracts the users’ inputs fields from layout files 
imitating how users see the UI. Then it computes the 
distances between text labels and input fields based 
on their coordinates to find the finest expressive text 
label for every input field (Huang et al. 2015).  

5.2.2 Privacy Textual Creator 

Our approach leverages NLP methodologies used in 
related work (Huang et al. 2015) (Nan et al. 2015) to 
enhance the privacy textual keywords dataset 
construction method. As a start, all texts in the 
resource files of all similar (peer) apps, including the 
primary one, is gathered in a form of a list of noun 
phrases. Then we extract words in this list to create a 
list of words and sort both lists based on their 
frequency. We can adapt Stanford parser as NLP 
technique to extract nouns and noun phrases from the 
top frequent text. As privacy textual words show 
together in specific layouts, they are semantically 
related to users’ sensitive data. Such layouts can be 
utilized to extract privacy textual keywords. 
Therefore, another NLP technique (chi-Square test) 
extracts sensitive keywords from a subset of specific 
layouts. It tests whether a particular word in the user-
input layout is sensitive or not according to its 
occurrences in keyword dataset. Also, we can enlarge 

the keyword dataset by refining the known words and 
leverage WordNet(Princeton 2010) as well as Google 
Translate to include synonyms and translated 
keywords in several language. The outcome of this 
unit is privacy textual dataset that contain sensitive 
keywords. 

5.2.3 Sensitive Users’ Inputs Detection 

The privacy determination of an input field is based 
on three levels: its type, hint or text label that were 
collected in the layout analysis (step 1). At first, the 
type of user inputs field is tested to find whether it is 
a password type. If not, the second test compares the 
hint of input field with the privacy-related keywords 
dataset to check if is sensitive or not. If not, the third 
test compares text label of input field with the 
privacy-related keywords dataset to check if is 
sensitive or not but this test requires finding the 
related text label that expresses the goal of the input 
field.  

We can leverage SUPOR correlation scores 
algorithm to associate a text label to each input field 
based on their distances and relative positions (Huang 
et al. 2015). The outcome of this unit is a list of 
sensitive user inputs fields in the primary app. 

5.2.4 Binding 

This step aims to bind the sensitive input fields that 
were detected earlier with related variables that store 
their values in the primary application source code. 
The binding unit do this using context-sensitive 
analysis which identifies each sensitive input field 
with a contextual ID. In order to distinguish the 
variables’ names in many layouts within the same 
application, each contextual ID contains layout ID 
and input field ID to reference any input field on 
application level. Such binding mechanism enables 
the initiation of privacy leak recognition (Huang et al. 
2015) (Nan et al. 2015).  

5.2.5 Privacy Disclosure Analysis 

To assist users in making more informed decisions, 
this unit was built to discover apps' behaviours that 
propagate user sensitive input data (i.e., source) to a 
sensitive channel (i.e., sink). The privacy disclosure 
analysis unit generates privacy disclosure reports for 
all potential users’ inputs flows inside a specific app 
as well as the related similar apps since they all have 
similar privacy disclosures. These flows include both 
valid and invalid privacy leakages for similar apps 
which are included to expand the scope of detecting 
sensitive data flows for the next step 6.  In order to 
achieve high coverage and scalability, we will use 
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static taint analysis tool which primarily aim to 
discover all data-flows from the sensitive users’ 
inputs data (sources) to the defined channels (sinks). 
Such static analysis tool can achieve high 
performance as well as high coverage capacity to 
detect more complete privacy disclosure data-flows. 
The outcome of this unit includes all kinds of data-
flow privacy leakages that originate from users' 
inputs fields in similar mobile applications. 

5.2.6 Peer Voting 

After detecting privacy disclosures for a given 
primary app, suspicious privacy leakages should be 
distinguished using peer voting mechanism. Since 
applications with the identical or similar functionality 
(called peer apps) have similar privacy disclosures, 
this insight formulates the peer voting mechanism. 
The peer voting unit identifies the legitimacy of a 
particular privacy disclosure spotted in an app (called 
primary app) by asking its peer apps regard their 
profiles of privacy disclosures. Peer apps are 
expressed from the viewpoint of users, which covers 
the apps that are operational alike with the primary 
app. Thus, users can consider a peer app as a 
substitute of the primary app. In order to implement 
this unit, we need (1) a method to find operational 
similar apps as well as (2) an automated approach to 
distinguish the extremely suspicious privacy 
disclosures of user inputs (Lu et al. 2016). 

Before initiating peer voting mechanism, the peer 
apps should be selected first. There are several 
opportunities to do this such as keyword-based 
similarity, classification based on category or 
permissions, or recommendation systems.  
Recommendation systems can be either a 
fundamental property of app stores or a standalone 
service provided by third parties. Such systems return 
a list of apps that are operational similar or associated 
to the primary app. The resulted list can contain apps 
that are frequently installed or used together. To take 
advantage of users’ experience in using apps, we 
choose to utilize existing app recommendation 
systems such the one delivered by Google Play, and 
occupy a NLP method named semantic similarity to 
enhance refining similar apps. The peer apps 
generated from the existing Google Play 
recommender can produce similar apps lists drew 
from the users’ experience i.e. user views and 
installation patterns. Although the recommendation 
details are ambiguous, the resulted ranking lists offers 
useful selection regard choosing functionally similar 
apps. Then we filter out irrelevant apps (minor 
outlier) using same-category rule between a primary 
app and its peer apps and using semantic similarity on 
app descriptions which excludes apps with long 

semantical distance from the other peers (Lu et al. 
2015). 

Then peer voting mechanism takes peer apps as 
input and decides the validity of a specific privacy 
disclosure in the primary app by checking the privacy 
disclosures of the peer apps. Each peer app can vote 
for it: each peer app is checked to detect whether it 
has this privacy disclosure or not. If yes, the peer 
votes for 1; if not, vote for 0. If the majority of the 
peers has the same privacy disclosure, it is counted as 
an essential for the core functions of primary apps. 
Otherwise, the privacy disclosure is possible to be 
caused by replaceable or unpredicted element of the 
primary app, and consequently will be considered as 
a suspicious privacy leakage. However, privacy 
leakage should be measured to decide to what extent 
it can be valid. This validity can be modelled in 
equation 1 where Votes# is the number of peer apps 
who has the same privacy disclosure and Peers# in the 
number of peer apps for a specific primary app (Lu et 
al. 2015).  

Privacy Validity = Votes# / Peers#  (1) 

The privacy validity represents "how likely the 
privacy disclosure is legitimate in the primary app” 
and should not exceed the validity threshold which is 
usually set around 2% (Lu et al. 2015) (Lu et al. 
2016). If the primary app compared to the peer does 
not agree with the voting, then this unit reports a 
probable violation of use input privacy. 

6 CONCLUSION 

In this paper, we present some application-based 
threads and propose an enhanced framework 
architecture to detect truly suspicious user-inputs 
privacy leaks in Android apps that harmfully impact 
end-users. We plan to implement this framework as 
future work. Sensitive user inputs detection is 
important to improve protection but mostly ignored 
as a sensitive source in mobile apps. Our approach 
conducts specialized privacy leaks detection 
considering user inputs data source. We leverage 
NLP methodologies to enhance the privacy textual 
keywords dataset construction method. It can achieve 
significant improvements to static analysis work in 
terms of validity. By excluding the valid and 
legitimate disclosures, our approach exposes only 
suspicious privacy leaks that cannot be linked with 
apps’ core functions. As a result, privacy leaks 
detection rate can be greatly increased, and 
simultaneously, the manually works needed from 
security analysts or end-users will be decreased. 
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