
Enhanced Identification of Sensitive User Inputs in Mobile
Applications

Mashael Aldayel and Mohammad Alhussain
Information System Department, College of Computer & Information Sciences, King Saud University, Riyadh, Saudi Arabia

{maldayel, alhussein}@ksu.edu.sa

Keywords: User Input, Sensitive, Privacy Leak, Disclosure, Data-flaw Analysis.

Abstract: While smartphones and its apps have a fundamental role in our lives, privacy is a critical issue. With the
constantly growth of mobile applications, smartphones are now capable of satisfying all kinds of users’ needs,
dealing with more private and restricted tasks by the users and gain more access to sensitive and private data.
This issue is even worse with the current absence of methods that can notify users of possibly dangerous
privacy leaks in mobile apps without disturbing users with apps’ legitimate privacy exposes. Previous mobile
privacy disclosure approaches are mostly concentrated on well-defined sources controlled by smartphones.
They do not cover all sensitive data associated with users’ privacy. Also, they cannot filter out legitimate
privacy disclosures that are commonly found in detection results and consecutively conceal true threats.
Sensitive user inputs through UI (User Interface), are the dominant type of sensitive data that has been almost
ignored. Defending this kind of information cannot be accomplished automatically using existing techniques
because it necessitates understanding of user inputs' semantics in apps, before identifying its positions.
Moreover, eliminating legitimate privacy disclosures necessaries tracking of the related app data flows form
these users’ inputs to various sinks. Such tracking will help to determine if this privacy disclosure is valid or
suspicious. To address all these important issues, we propose an enhanced approach for detecting users’ inputs
privacy disclosures that are truly suspicious.

1 INTRODUCTION

Smartphones are the main type of end-user devices as
reflected in the increasing sold units over traditional
computers. In the last few years, the use of
smartphones for both corporate and personal goals
has increased significantly. There are 7,377 billion
mobile users around the world, which is equivalent to
99.7% of the world’s population, as estimated by the
International Telecommunication Union in 2016
(ITU 2016). Smartphone security is an emerging area
of rising importance and cumulative requirements,
nevertheless its relative weaknesses regard protecting
a user’s data privacy (Khan et al. 2015). Even though
the mobile devices’ corporations have considered
security issue in designing their smartphones, using
mobile applications from the internet creates
complicated difficulties in handling threats and
vulnerabilities that endangers a user’s data privacy.

Many diverse applications with widespread range
of purposes can be accessed online from application
stores for each mobile device. With the constantly
growth of these applications, smartphones are now

capable of satisfying all kinds of users’ needs, dealing
with more private and restricted tasks by the users and
gain more access to sensitive and private data. This
issue is even worse with the current absence of
methods that can notify users of possibly dangerous
privacy leaks in mobile apps without disturbing users
with apps’ legitimate privacy exposes. Consequently,
this rise many concerns regard the costs of failure in
securing user’s privacy in smartphones (i.e.,
transmitting it to remote individuals or broadcasting
it). Although their wide abilities in satisfying users’
needs, protecting the privacy of user data in
smartphones becomes an essential issue and get more
attention in mobile security researches. Many
approaches have been developed to detect potential
information leaks and privacy disclosures using (1)
the phone OS and framework APIs, such as location,
contact, calendar…etc. (2) data-flows analysis
mechanisms either dynamically or statically (Huang
et al. 2015)(Lu et al. 2015).

The former approach is based on access control
(permission) techniques that implements fine-grained
security strategies to deal with private user data on a

506
Aldayel, M. and Alhussain, M.
Enhanced Identification of Sensitive User Inputs in Mobile Applications.
DOI: 10.5220/0006238405060515
In Proceedings of the 3rd International Conference on Information Systems Security and Privacy (ICISSP 2017), pages 506-515
ISBN: 978-989-758-209-7
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

mobile system. These data are provided by OS and
can be secured by utilizing related data-access APIs
to mark the security tags for the data. These
permission techniques relay on users’ agreement to
access their private resources without offering
enough information that can help them in their
decision. Moreover, success of such techniques
mainly assumes a users’ perception and
understanding on the app privacy effects. In fact, this
hypothesis is not accurate (Huang et al. 2015)(Lu et
al. 2015).

The latter approach is based on evaluating data-
flows in mobile apps in order to automatically reveal
privacy leaks (Nan et al. 2015). It tracks the source of
the privacy disclosures of user data to various sinks
which help users to make further informed
judgments. Furthermore, it used for identification of
apps vulnerabilities that may accidentally expose
such sensitive user data to public or to the attacker
(Huang et al. 2015).

Despite the importance of the previous
approaches in protecting sensitive data, they do not
cover all sensitive data associated with users’ privacy.
Sensitive user inputs are the dominant type of
sensitive data that has been almost ignored. It refers
to the sensitive content entered by users in a mobile
app through the User Interface (UI) such as financials,
credentials and medical information. Recent research
(Nan et al. 2015) have found that among 17,425 top
Google-Play apps, 35.46% require users to enter their
confidential information. Defending this kind of
information cannot be accomplished automatically
using existing techniques because it necessitates
understanding of user inputs' semantics in apps,
before identifying its positions. This is challenging
because of the content’s lankness of fixed
constructions that obstruct recovering them without
semantics exploration (Huang et al. 2015) (Nan et al.
2015).

After detecting the sensitivity of the user inputs
data, it is necessary to track the related app data-flows
of privacy disclosures for that user inputs to various
sinks. Such tracking will help to determine if this
privacy disclosure is valid or suspicious. Another
study (Lu et al. 2015) proves that more than 67% of
app privacy exposes discovered using traditional
approaches are actually valid (i.e., required in the
basic functions of the apps). For example, GPS apps
need to send user’s current location to remote servers
to show it on the map. Also, such tracking can help to
recognize the vulnerabilities in the apps that may
accidentally expose sensitive user inputs to public, to
the attacker or to third-party ad reference library.
Nevertheless, previous data-flow analysis approaches

are incapable of determining the validity of
discovered data-flow privacy leak. This weakness
regularly leads to overestimated privacy exposures
covering numerous false warnings (e.g., benign or
functional privacy exposures). Since these warnings
are not true user privacy violations, they cause
distractions and interruptions for users. Alerting all
privacy exposures of sensitive user inputs to the user
will seriously annoy him and reduce the usability (Lu
et al. 2015).

To sum up, guarding users’ privacy along with
both deliberate and unintended disclosures requires:
(1) automatic recognition of the private sensitive
content the user enters into smartphone apps and
based on it (2) distinguish only suspicious data flows
of privacy disclosures for that user inputs to various
sinks. This paper proposes such approach which can
ensure appropriate protection that matches with
users’ confidence and anticipations (Huang et al.
2015) (Nan et al. 2015).

In this paper, we present some application-based
threads and propose an enhanced framework
architecture to detect truly suspicious user-inputs
privacy leaks in Android apps that harmfully impact
end-users. Malware detection is described in existing
works (Gorla et al. 2014), (Pandita et al. 2013) and is
out of scope of this paper. Recent research (Khan et
al. 2015) indicates wide ranges of threats and
vulnerabilities on smartphones that cyber criminals
are now concentrating more and more on them.
Attackers utilize the huge diversity of smartphone
applications on the internet in order to terminate
safety mechanisms, increase threats and expand
vulnerabilities. This trend emphasizes the need for
further security enhancements on application level of
smartphones, as well as more flexible, better security
solutions and policies for mobile applications. Some
important mobile applications-based threats to user
privacy are presented as follows.

2 APPLICATION-BASED
THREATS

Adversaries can take advantage of the weaknesses
inside current protection techniques in order to steal
sensitive user inputs. For instance, fake banking apps
can be designed with very similarity UIs for stealing
user’s financial credentials. Moreover, some
developers unintentionally reveal sensitive user data.
For example, eavesdropping attack is exposed to the
apps that transmits content as plaintext across public
networks. (Nan et al. 2015). Therefore, privacy

Enhanced Identification of Sensitive User Inputs in Mobile Applications

507

Figure 1: Application-Based Threads.

violations can have resulted from mobile apps that
store or transmit sensitive user input without any
protection (figure 1).

Mobile applications, either benign or malicious,
can be downloaded online which introduces
numerous security threats on both types; applications
explicitly designed to be malicious as well as useful
applications that can be misused for malicious drives.
The greatest concern rises when the application is
malicious, fake or bogus (Khan et al. 2015)(Sujithra
2012). Accordingly, applications-based threats can be
classified into benign app threads, malicious app
threads or even combination of them.

2.1 Benign App Threads

Although, mobile application can be found benign,
useful and valuable, it can disclose the user privacy
accidentally or be exploited for malicious purposes.
Applications that reveal privacy threats are not
essentially malicious, but collects or uses more
sensitive information that users are unwilling to
expose to the public. For example, the global
positioning system (GPS) can provide information
about any location a user goes to. Any leak of this
information can lead to serious problems.
Additionally, benign applications may contain
software faults or vulnerabilities which can be
utilized for malicious intent. These permit attackers
to access sensitive information, accomplish unwanted
actions, halt a service from running correctly, and
consequently download further applications without
user agreement. Mobile app vulnerability is a safety
disclosure that outcomes from an app weakness that
the application developer did not anticipate to present
and will fix after it is revealed. Vulnerability in
mobile apps contains three elements; app flaw or
weakness, accessibility to it, and malicious

mechanism able of exploits that the flaw and attack it
(Khan et al. 2015) (Sujithra 2012).

2.2 Malicious App Threads

Malware, short of malicious applications is any type
of aggressive, intrusive, or irritating software (e.g.
Trojan, rootkit, virus, worm…etc.) aimed to achieve
malicious actions after installation in a user’s
smartphone without the user’s consent. It can be used
to gather private and personal information from user
smartphones that could result in theft or financial
scam. Spyware is another kind of malware that aims
to accumulate personal and private information
without a user’s knowledge or agreement. Targeted
data in spyware usually contains phone contact list,
call and browser history, location, and camera images
(Khan et al. 2015)(Sujithra 2012)(La Polla et al.
2013).

3 RELATED WORK

In order to detect sensitive user inputs in
smartphones’ applications, analyzing the context and
semantics of UIs is required (Nan et al. 2015). A
direct approach is to consider all user inputs are
sensitive (Arzt et al. 2014), which is obviously will
cause overload, more false positives and impartially
poor results due to combining sensitive user inputs
that we emphasis on with a plenty of additional
sources we do not care.

To the best of our knowledge, there is no in-depth
study of user inputs privacy discourses on Android
phones that alert only suspicious discourses. Thus, the
discussion of related work is divided into three types:
taint analysis, text analysis and privacy source
detection approaches.

3.1 Taint Analysis approaches

There are a lot of researches on identifying,
understanding and evaluating privacy disclosures
which focus on predefined sensitive data sources on
several mobile OS. From technical point of view,
there are two main approaches for identifying data-
flows of privacy disclosures within an app; static
(Arzt et al. 2014)(Huang et al. 2014)(Fahl et al. 2012),
(Gibler et al. 2012) and dynamic taint analysis.

The first approach is static taint analysis which
emphases on finding the potential privacy leak route
based on tracking analysis and program slicing. It can
analyze large numbers of applications. Besides, they
can detect malware or vulnerabilities in Android

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

508

apps. FlowDroid (Arzt et al. 2014) is one of pioneer
works in static analysis that only offer alternatives to
taint all user inputs as sensitive sources and offers a
limited form of sensitive input fields (password
fields). AsDroid (Huang et al. 2014) includes static
analysis tool that link the app behaviour from API call
sites to a top level function through related UI to
detect malicious behaviour. Mallodroid (Fahl et al.
2012) is a static analysis tool aimed to detect apps that
potentially use SSL/TLS inadequately or incorrectly
and thus are potentially vulnerable to Man-in-the-
Middle attacks. The static analysis can separate input
data from app UI and finds vulnerable elements in the
program code of an application (Nan et al. 2015).
Using this approach in detecting sensitive user inputs
will lead to mark all the user inputs are sensitive
which is not acceptable because it introduces a lot of
false positives and cannot differentiate if the
operations are intended or not by users due to the
lacking of user intention and context information.
Furthermore, as ssmartphones have limited ability in
handling and storing data, protecting all user inputs
will take more time and resources on smartphones
which is obviously overkill (Yang et al. 2013).

The second approach is dynamic taint analysis
such as TaintDroid (Enck et al. 2010) and AppIntent
(Yang et al. 2013) which can track sensitive data at
runtime. In another word, they can capture the context
of runtime environment such as configuration
variables and user input. More significantly, code
may be obscured to hinder static analysis, either
deliberately or accidentally. The issues are either
reducing overhead in deployments, or increasing code
coverage in dynamic testing (Rastogi et al.
2013)(Yang et al. 2013). TaintDroid (Enck et al.
2010) is one of the innovator researches which uses
dynamic taint analysis to identify privacy leaks by
tracking the flow of sensitive data over third-party
applications. AppIntent (Yang et al. 2013) is another
dynamic program analysis aimed to discriminate
user-intended sensitive data transmissions from other
transmissions to improve identifying privacy leaks.
However, dynamic taint approaches cannot be
applied in marketplaces for detecting privacy leaks in
marketplaces because they report a leak only if such
risky transmission occurs in the execution time
(Rastogi et al. 2013).

However, most research works in such dynamic
approaches often (Arzt et al. 2014), (Enck et al.
2010), (Yang et al. 2013), (Xu et al. 2012) manually
identify the contents that need protection in the apps.
They depend on users, developers or designer i.e.
necessitates human interference which is not suitable
for evaluating privacy threads on large-scale apps’

analysis. Moreover, they cannot differentiate if the
operations are valid or not from systematic point of
view without relying on human factor.

Moreover, all the above-mentioned taint analysis
approaches do not try to analyze or to understand
whether the detected privacy disclosures has any
relationship with the app’s functionality. Instead, the
security experts or the users have to understand such
relationship manually. Our approach utilizes peer
voting mechanism (Lu et al. 2015) to identify
suspicious privacy disclosures and benefit the users in
selecting more traditional and safe applications.

3.2 Text Analysis in Android Apps

Diverse researches exploit UI text analysis for various
security goals. AsDroid (Huang et al. 2014) detects
tricky behaviors in Android applications by checking
conflicts between program behavior and anticipated
behavior through analyzing UI textual. However,
their UI analysis is based on few textual keywords,
which could be insufficient. CHABADA (Gorla et al.
2014) checks application behaviors against
application descriptions through Natural Language
Processing (NLP) approach called “topic modelling”.
It aimed to detect malicious behaviours in Android
applications by collecting applications that are alike
to each other in their textual descriptions. Then
detects application which used APIs differently from
the regular use of the APIs in the same collection.
CHABADA cannot exactly detect privacy
disclosures as it only recognizes sensitive APIs
without tracking the data-flows among their sources
and sinks. Our approach identifies suspicious privacy
disclosures and benefit the users in selecting more
traditional and safe applications.
 Whyper (Pandita et al. 2013) take advantages of a
NLP technique (Stanford Parser) to check if the
application description justifies the permission usage.
Although our approach provides an enhanced
complementary approach in assessing the validity of
privacy disclosure, we might possibly leverage their
methods to produce more comprehensive privacy-
related texts for identifying user inputs data.

3.3 Privacy Source Detection

Some studies concentrate on mapping between
Android permissions and APIs such as PScout (Wain
et al. 2012). It gets the specific permissions from the
Android OS source code to accomplish permission-
to-API mapping through static analysis. Cashtags
(Mitchell et al. 2015) protects users sensitive inputs
that are displayed on the screen by and replacing them

Enhanced Identification of Sensitive User Inputs in Mobile Applications

509

with non-sensitive data elements. It aims to prevent
shoulder surfing threats but it simply gathers all
sensitive data in one data repository without any
protection techniques.

SUPOR (Huang et al. 2015) and UIpicker (Nan et
al. 2015) are the most related works addressing the
problem of our paper. They intend to automatically
identify sensitive user inputs in android application.
They present different approaches to cover user
inputs that are not protected with smartphone OS and
APIs access permissions. UIpicker take advantage of
supervised learning approach to train a classifier
based on the extracted features from the UI elements’
texts and layout descriptions. It furthermore considers
the texts of the sibling elements in the layout file.

SUPOR detects sensitive user inputs using UI
rendering, geometrical layout analysis and NLP
techniques. Since UIPicker rely on sibling elements
in the layout file to associate the description text for a

 UI field, this could simply include unrelated texts
as features. SUPOR eliminate such problems by
selecting only the text labels that are actually close to
input fields in the monitor, imitating how users look
at the UI, and uses the labels’ text to determine the
sensitiveness of the input fields. SUPOR focuses on a
definite type of UI elements (EditText) whereas
UIPicker includes more UI elements such as
dropdown lists (Spinners), RadioButton, CheckBox
besides (EditText). However, UIPicker techniques in
extracting privacy-related texts could complement

Table 1: Comparison between Sensitive Users’ Inputs Detection Systems.

 SUPOR UIPicker

Data scope Identity, account, personal, credential, financial
and health information

Account credentials and user Profiles, location (plain
text format) and financial data

Contribution Propose SUPOR, first static mobile app analysis
tool for detecting sensitive user inputs in
Android apps that are not permission protected,
and evaluate its performance.

Measure the spreading of private user input data based
on 17,425 applications, propose UIPicker framwork
for automatic identification of user inputs data in large
scale within Android apps and offer runtime security
improvement based on UIPicker.

Benchmark First research in this field First large-scale analysis of apps’ privacy risks.

Result Detect 355 apps with false positive rate 8.7%
from 16,000 popular Android apps

Detect 6,179 (35.46%) of 17,425 popular Android apps

Manual
Evaluation

Based on 40 randomly selected apps
(Precision: 97.3% & Recall: 97.3%)

Based on 200 randomly selected apps
(Precision: 93.6% & Recall: 90.1%)

System
Components

Layout analysis, UI sensitiveness analysis and
UI – code Binding.

Pre-processing, Privacy text analysis, Classifier and
Program behaviour filtering

Strength Boarder detection converge in user text
fields using synonyms and Google
Translate.

 Better scalability (shorter time analysis)

 Boarder detection converge in many types of user
inputs.

 Secure user data inputs by preventing sending them
as plaintext and checking SSL risks using
integration with MalloDroid

 Dynamic generation of privacy features to expand
private semantic data using a few privacy-related
seeds.

Weaknesses Fixed privacy related dataset besides
excluding address from their dataset.

 Insufficient context to identify sensitive
keywords

 Deal with one specific type of UI elements
(EditText)

 Cannot differentiate between valid and
suspicious privacy disclosers

 Limitation in privacy feature extraction
mechanisms that introduces false positive and
false negative results.

 Cannot differentiate between valid and suspicious
privacy disclosers

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

510

NLP techniques in SUPOR for enhancing the
construction of keyword dataset. Table 1 provides a
comparison between these related approaches.
However, SUPOR and UIPicker cannot distinguish
between valid and suspicious privacy disclosers
which we focus on in this paper.

 Several research works (Arzt et al. 2014), (Enck
et al. 2010), (Yang et al. 2013)(Han et al.
2013)(Gibler et al. 2012), (Mitchell et al. 2015)
emphasis on smartphone privacy disclosure of
sensitive data sources. Our approach identifies
legitimate (valid) sensitive user inputs and may
enable most of the current privacy researches to be
functional on sensitive user inputs. Therefore, our
research compliments the existing works.

4 PROBLEM STATEMENT

In this section, we first display a motivating example
of users’ sensitive inputs in a UI screen, then we
examine challenges in recognizing such data and
clarify our data scope of users’ input.

4.1 Motivating Example

Figure 2 displays a UI of mobile app that hold some
vital sensitive information that is often required in a
many shopping apps. The user has to input the credit
card records to complete the payment process. As the
developers might be unaware of the possible threats
on the exposes of such sensitive information, the
credit card credentials are sent in plain text over an
insecure channel which accidentally compromises
users’ privacy. Several apps in smartphones
necessitates sensitive information for many
functional goals. This information is mostly private
and personal which users are not comfortable in
revealing them without proper security.

Figure 2: Example of sensitive user inputs in UI.

Sensitive user inputs are the dominant type of
sensitive data that has been almost ignored in
previous researches. Even though user inputs can be
greatly security-sensitive and have risky
consequences once it is exposed, little has been done
so far to detect them at a large-scale (Nan et al. 2015).

The main issue here is how to automatically
discriminate sensitive user inputs from other inputs in
UIs. This is challenging because of the content’s
lankness of fixed constructions that obstruct
recovering them without semantics exploration.
Another issue is to determine if the privacy disclosure
of the identified sensitive user inputs is valid or
suspicious.

Previous privacy disclosure analysis approaches
often limit the options to mark all user inputs as
sensitive sources and cannot determine the validity of
discovered data-flow privacy leak i.e. whether it is
caused by functional privacy exposures in benign app
or not. Exploring in this method would produce
absolutely bad results dues to combining sensitive
user inputs that we emphasis on with a plenty of
additional sources we do not care and due to
combining valid and invalid data-flow privacy leaks.
Furthermore, such approaches obviously will cause
more overload; more false positives in detecting
theses sensitive user inputs and overestimated privacy
exposures covering numerous false warnings (e.g.,
benign or functional privacy exposures).

Similar problem also occurs in runtime user input
protection. For example, if an app is trying to transmit
sensitive user inputs outside the mobile, an
appropriate defence method is to inform users to
prevent such transmitting. It is overkill to alarm users
of all inputs whether it is sensitive or not, including
their valid and suspicious privacy exposures. Since
these warnings are not true user privacy violations,
they cause distractions and interruptions which will
greatly annoy users. Moreover, this will reduce the
usability since (1) many usual inputs do not require to
be treated as sensitive inputs and (2) most privacy
exposures of sensitive user inputs are valid and do not
require to annoy user with it.

4.2 Challenges

Sensitive users’ input data can be simply identified by
human but it is very challenging for the machine to
automatically recognize this data on large-scale using
existing approaches. These sensitive input data
cannot be recognized during runtime checking
because they are extremely unstructured which make
it very difficult to use predefined expressions for
matching when users input them. Moreover, private
user inputs, similar to any usual inputs, are spread in
several UIs in a particular app. Mostly such UIs
require login or composite trigger situations which
makes it very challenging for automatic testing tools
to navigate such interfaces comprehensively without
manual interference. It also impractical to detect these
data by static analysis approaches because, within

Enhanced Identification of Sensitive User Inputs in Mobile Applications

511

program code’s, there is no clear difference between
sensitive user input and other inputs. Apps accept all
these input data, then transferred out or kept in local
storage in an identical way, which makes it hard to
differentiate them using static analysis approaches
(Nan et al. 2015).

Another issue is to determine if the privacy
disclosure of the identified sensitive user inputs is
valid or not. This requires to track the related data
flows of these inputs privacy disclosures to various
sinks which help users make further informed
judgments. Many existing privacy exposes detection
approaches were designed to expose apps’ activities
that trace confidential data (source) to a confidential
channel (sink), but this might be not expressive
enough to users or developers (Lu et al. 2015).
Current taint analysis approaches alert users regard
any app privacy violations even if it is part of the
app’s core functions. Thus, whenever evaluating a
valid navigation app or a doubtful calculator app with
a 3rd-party library tracing users, current approaches
alert users with the identical kind of reports that show
possible privacy exposes.

This paper proposes enhanced approach for
suspicious privacy disclosure detection of users’
inputs in smartphones. which includes: (1) automatic
recognition of the private sensitive content the user
enters into smartphone apps and based on it (2)
distinguish only suspicious data flows of privacy
disclosures for that user inputs to various sinks. Our
goal is primarily to detect sensitive data in benign
apps. The results can be also used for security
analysis or protection of such data. Instead of
focusing on malicious privacy leakages that
intentionally avoid detection, our approach targets
efficient large-scale examination of apps, some of
which might not appreciate user privacy and
aggressively misuse user privacy in exchange of
profits. Malware detection is out of scope of this
paper. There are many works for detecting malware
apps (Gorla et al. 2014; Pandita et al. 2013), however,
our approach do not deal with malicious apps that
deliberately avoid our analysis (Nan et al. 2015), e.g.,
malware that creates its layout dynamically or uses
images as labels to prompt users to input their
sensitive data.

Our approach is designed to discover concealed
privacy leakage user-inputs data flows in a specific
Android app that could not be explained by the
common functions of the app in order to maintain low
false positive rate.

Figure 3: Overall Architecture of our Approach.

5 IDENTIFICATION APPROACH

In this section, we provide a summary of our
approach and describe the key units that we propose
in our identification framework.

5.1 Overview

Figure 3 shows the overall workflow of our approach.
It is made up of six key units to identify suspicious
leaks of data-flows which contain sensitive users’
inputs. These key units are: layout analysis, privacy
textual creator, sensitive users’ inputs detection,
privacy disclosure analysis, binding and peer voting.
They can be split into two stages: private users’ inputs
identification and privacy leaks recognition.

In the first stage (Step 1,2,3,4), our approach takes
a set of apps to identify sensitive user inputs from
their textual semantics and associated field location in
GUI. In the second stage (Step 5,6), peer voted
mechanism (Lu et al. 2015) scans the resulted privacy
disclosures from both the primary app and peers apps
(Step 5) to identify truly suspicious privacy
disclosures (Step 6).

During the private users’ inputs identification
stage, the layout analysis unit takes an app in a form
of APK file, deconstructs the layout files within this
APK file, and delivers the layout files holding input
fields. Then sensitive users’ inputs detection unit
combines text labels with input fields inside the
resulted layout files in order to prepare for the
discovery of private user inputs. Privacy textual
creator extracts privacy textual elements from a
subset of specific layouts in peer (similar) apps to
generate keywords dataset. Based on the resulted
sensitive keywords (from step 2), the words of the
text labels (from step 3) is compared to determine the
privacy of the input fields. The binding unit then
examines the primary app’s source code to find the
variables associated with the value of the sensitive

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

512

input fields. After variable binding, the second stage
initiates the process of privacy leak recognition.

Throughout the privacy leak recognition stage,
existing research efforts in detecting privacy
disclosure (step5) of smartphones’ sensitive data
sources can be utilized for sensitive user inputs. Thus
privacy disclosure analysis generates data-flows
report of users’ inputs privacy disclosures using any
static taint analysis tool such as flowDroid (Arzt et al.
2014). After that, peer voted mechanism detects the
exposes of sensitive user inputs that are truly
suspicious. Next we describe each unit in detail.

5.2 Architecture Units

This section describes the key units in our
identification architecture that detects truly
suspicious user inputs privacy leaks in Android apps
that harmfully impact end-users.

5.2.1 Layout Analysis

This unit aims to provide user inputs fields of a
primary app, and obtain the details of input fields
such as types, hints, and coordinates. Such details are
used for the users’ inputs detection unit (step 3) for
detecting sensitiveness of user inputs fields. Based on
the user perception, text label must be physically
close to the input field in the UI. Thus layout analysis
unit extracts the users’ inputs fields from layout files
imitating how users see the UI. Then it computes the
distances between text labels and input fields based
on their coordinates to find the finest expressive text
label for every input field (Huang et al. 2015).

5.2.2 Privacy Textual Creator

Our approach leverages NLP methodologies used in
related work (Huang et al. 2015) (Nan et al. 2015) to
enhance the privacy textual keywords dataset
construction method. As a start, all texts in the
resource files of all similar (peer) apps, including the
primary one, is gathered in a form of a list of noun
phrases. Then we extract words in this list to create a
list of words and sort both lists based on their
frequency. We can adapt Stanford parser as NLP
technique to extract nouns and noun phrases from the
top frequent text. As privacy textual words show
together in specific layouts, they are semantically
related to users’ sensitive data. Such layouts can be
utilized to extract privacy textual keywords.
Therefore, another NLP technique (chi-Square test)
extracts sensitive keywords from a subset of specific
layouts. It tests whether a particular word in the user-
input layout is sensitive or not according to its
occurrences in keyword dataset. Also, we can enlarge

the keyword dataset by refining the known words and
leverage WordNet(Princeton 2010) as well as Google
Translate to include synonyms and translated
keywords in several language. The outcome of this
unit is privacy textual dataset that contain sensitive
keywords.

5.2.3 Sensitive Users’ Inputs Detection

The privacy determination of an input field is based
on three levels: its type, hint or text label that were
collected in the layout analysis (step 1). At first, the
type of user inputs field is tested to find whether it is
a password type. If not, the second test compares the
hint of input field with the privacy-related keywords
dataset to check if is sensitive or not. If not, the third
test compares text label of input field with the
privacy-related keywords dataset to check if is
sensitive or not but this test requires finding the
related text label that expresses the goal of the input
field.

We can leverage SUPOR correlation scores
algorithm to associate a text label to each input field
based on their distances and relative positions (Huang
et al. 2015). The outcome of this unit is a list of
sensitive user inputs fields in the primary app.

5.2.4 Binding

This step aims to bind the sensitive input fields that
were detected earlier with related variables that store
their values in the primary application source code.
The binding unit do this using context-sensitive
analysis which identifies each sensitive input field
with a contextual ID. In order to distinguish the
variables’ names in many layouts within the same
application, each contextual ID contains layout ID
and input field ID to reference any input field on
application level. Such binding mechanism enables
the initiation of privacy leak recognition (Huang et al.
2015) (Nan et al. 2015).

5.2.5 Privacy Disclosure Analysis

To assist users in making more informed decisions,
this unit was built to discover apps' behaviours that
propagate user sensitive input data (i.e., source) to a
sensitive channel (i.e., sink). The privacy disclosure
analysis unit generates privacy disclosure reports for
all potential users’ inputs flows inside a specific app
as well as the related similar apps since they all have
similar privacy disclosures. These flows include both
valid and invalid privacy leakages for similar apps
which are included to expand the scope of detecting
sensitive data flows for the next step 6. In order to
achieve high coverage and scalability, we will use

Enhanced Identification of Sensitive User Inputs in Mobile Applications

513

static taint analysis tool which primarily aim to
discover all data-flows from the sensitive users’
inputs data (sources) to the defined channels (sinks).
Such static analysis tool can achieve high
performance as well as high coverage capacity to
detect more complete privacy disclosure data-flows.
The outcome of this unit includes all kinds of data-
flow privacy leakages that originate from users'
inputs fields in similar mobile applications.

5.2.6 Peer Voting

After detecting privacy disclosures for a given
primary app, suspicious privacy leakages should be
distinguished using peer voting mechanism. Since
applications with the identical or similar functionality
(called peer apps) have similar privacy disclosures,
this insight formulates the peer voting mechanism.
The peer voting unit identifies the legitimacy of a
particular privacy disclosure spotted in an app (called
primary app) by asking its peer apps regard their
profiles of privacy disclosures. Peer apps are
expressed from the viewpoint of users, which covers
the apps that are operational alike with the primary
app. Thus, users can consider a peer app as a
substitute of the primary app. In order to implement
this unit, we need (1) a method to find operational
similar apps as well as (2) an automated approach to
distinguish the extremely suspicious privacy
disclosures of user inputs (Lu et al. 2016).

Before initiating peer voting mechanism, the peer
apps should be selected first. There are several
opportunities to do this such as keyword-based
similarity, classification based on category or
permissions, or recommendation systems.
Recommendation systems can be either a
fundamental property of app stores or a standalone
service provided by third parties. Such systems return
a list of apps that are operational similar or associated
to the primary app. The resulted list can contain apps
that are frequently installed or used together. To take
advantage of users’ experience in using apps, we
choose to utilize existing app recommendation
systems such the one delivered by Google Play, and
occupy a NLP method named semantic similarity to
enhance refining similar apps. The peer apps
generated from the existing Google Play
recommender can produce similar apps lists drew
from the users’ experience i.e. user views and
installation patterns. Although the recommendation
details are ambiguous, the resulted ranking lists offers
useful selection regard choosing functionally similar
apps. Then we filter out irrelevant apps (minor
outlier) using same-category rule between a primary
app and its peer apps and using semantic similarity on
app descriptions which excludes apps with long

semantical distance from the other peers (Lu et al.
2015).

Then peer voting mechanism takes peer apps as
input and decides the validity of a specific privacy
disclosure in the primary app by checking the privacy
disclosures of the peer apps. Each peer app can vote
for it: each peer app is checked to detect whether it
has this privacy disclosure or not. If yes, the peer
votes for 1; if not, vote for 0. If the majority of the
peers has the same privacy disclosure, it is counted as
an essential for the core functions of primary apps.
Otherwise, the privacy disclosure is possible to be
caused by replaceable or unpredicted element of the
primary app, and consequently will be considered as
a suspicious privacy leakage. However, privacy
leakage should be measured to decide to what extent
it can be valid. This validity can be modelled in
equation 1 where Votes# is the number of peer apps
who has the same privacy disclosure and Peers# in the
number of peer apps for a specific primary app (Lu et
al. 2015).

Privacy Validity = Votes# / Peers# (1)

The privacy validity represents "how likely the
privacy disclosure is legitimate in the primary app”
and should not exceed the validity threshold which is
usually set around 2% (Lu et al. 2015) (Lu et al.
2016). If the primary app compared to the peer does
not agree with the voting, then this unit reports a
probable violation of use input privacy.

6 CONCLUSION

In this paper, we present some application-based
threads and propose an enhanced framework
architecture to detect truly suspicious user-inputs
privacy leaks in Android apps that harmfully impact
end-users. We plan to implement this framework as
future work. Sensitive user inputs detection is
important to improve protection but mostly ignored
as a sensitive source in mobile apps. Our approach
conducts specialized privacy leaks detection
considering user inputs data source. We leverage
NLP methodologies to enhance the privacy textual
keywords dataset construction method. It can achieve
significant improvements to static analysis work in
terms of validity. By excluding the valid and
legitimate disclosures, our approach exposes only
suspicious privacy leaks that cannot be linked with
apps’ core functions. As a result, privacy leaks
detection rate can be greatly increased, and
simultaneously, the manually works needed from
security analysts or end-users will be decreased.

ICISSP 2017 - 3rd International Conference on Information Systems Security and Privacy

514

REFERENCES

Arzt, S. et al., 2014. FlowDroid : Precise Context , Flow ,
Field , Object-sensitive and Lifecycle-aware Taint
Analysis for Android Apps. PLDI ’14 Proceedings of
the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pp.259–269.

Enck, W. et al., 2010. TaintDroid: An Information-Flow
Tracking System for Realtime Privacy Monitoring on
Smartphones. Osdi ’10, 49, pp.1–6.

Fahl, S. et al., 2012. Why eve and mallory love android: an
analysis of android SSL (in) security. Proc. of ACM
CCS, pp.50–61.

Gibler, C. et al., 2012. AndroidLeaks: Automatically
detecting potential privacy leaks in Android
applications on a large scale. Lecture Notes in
Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in
Bioinformatics), 7344 LNCS, pp.291–307.

Gorla, A. et al., 2014. Checking app behavior against app
descriptions. Proceedings of the 36th International
Conference on Software Engineering - ICSE 2014,
pp.1025–1035. Available at:
http://dl.acm.org/citation.cfm?doid=2568225.2568276.

Han, J. et al., 2013. Comparing Mobile Privacy Protection
through Cross-Platform Applications. Network and
Distributed System Security Symposium, pp.1–15.
Available at:
http://www.liaiqin.com/hanjin/%5Cnpapers3://publica
tion/uuid/EDE08F21-0175-4B99-B31B-
86FC339DAFB4.

Huang, J. et al., 2014. AsDroid: detecting stealthy
behaviors in Android applications by user interface and
program behavior contradiction. ICSE 2014:
Proceedings of the 36th International Conference on
Software Engineering, (March). Available at:
https://ece.uwaterloo.ca/~lintan/publications/asdroid-
icse14.pdf.

Huang, J. et al., 2015. SUPOR: Precise and Scalable
Sensitive User Input Detection for Android Apps. 24th
USENIX Security Symposium (USENIX Security 15),
pp.977–992. Available at:
https://www.usenix.org/conference/usenixsecurity15/t
echnical-sessions/presentation/huang.

ITU, 2016. ITU Statistics. Available at:
http://www.itu.int/en/ITU-
D/Statistics/Pages/stat/default.aspx.

Khan, J., Abbas, H. & Al-Muhtadi, J., 2015. Survey on
Mobile User’s Data Privacy Threats and Defense
Mechanisms. Procedia Computer Science, 56(Csdi),
pp.376–383. Available at:
http://www.sciencedirect.com/science/article/pii/S187
7050915017044.

Lu, K. et al., 2015. Checking More and Alerting Less:
Detecting Privacy Leakages via Enhanced Data-flow
Analysis and Peer Voting. Symposium on Network and
Distributed System Security (NDSS).

Lu, K. et al., 2016. DuLeak: A Scalable App Engine for
High-Impact Privacy Leaks. , p.16. Available at:
https://www.google.com/patents/US9245125.

Mitchell, M., Wang, A.-I.A. & Reiher, P., 2015. Cashtags:
Protecting the Input and Display of Sensitive Data. 24th
USENIX Security Symposium (USENIX Security 15),
pp.961–976. Available at:
https://www.usenix.org/conference/usenixsecurity15/t
echnical-sessions/presentation/mitchell.

Nan, Y. et al., 2015. UIPicker : User-Input Privacy
Identification in Mobile Applications This paper is
included in the Proceedings of the.

Pandita, R. et al., 2013. Whyper: Towards Automating Risk
Assessment of Mobile Applications. USENIX Security
Symposium.

La Polla, M., Martinelli, F. & Sgandurra, D., 2013. A
Survey on Security for Mobile Devices. IEEE
Communications Surveys & Tutorials, 15(1), pp.446–
471.

Princeton, U., 2010. WordNet:An Electronic Lexical
Database. Princeton University. Available at:
http://wordnet.princeton.edu.

Rastogi, V., Chen, Y. & Enck, W., 2013. AppsPlayground :
Automatic Security Analysis of Smartphone
Applications. CODASPY ’13 (3rd ACM conference on
Data and Application Security and Privac), pp.209–
220.

Sujithra, M., 2012. Mobile Device Security : A Survey on
Mobile Device Threats , Vulnerabilities and their
Defensive Mechanism. , 56(14), pp.24–29.

Wain, K. et al., 2012. PScout : Analyzing the Android
Permission Specification. CCS ’12 Proceedings of the
2012 ACM conference on Computer and
communications security, pp.217–228. Available at:
http://www.eecg.toronto.edu/~lie/papers/PScout-
CCS2012-
web.pdf%5Cnhttp://dl.acm.org/citation.cfm?id=23822
22.

Xu, R. et al., 2012. Aurasium: Practical Policy Enforcement
for Android Applications. Proceedings of the 21st
USENIX conference …, p.27. Available at:
https://www.usenix.org/system/files/conference/usenix
security12/sec12-
final60.pdf%5Cnhttp://dl.acm.org/citation.cfm?id=236
2793.2362820.

Yang, Z. et al., 2013. AppIntent: analyzing sensitive data
transmission in android for privacy leakage detection.
Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security - CCS ’13,
pp.1043–1054. Available at:
http://dl.acm.org/citation.cfm?doid=2508859.2516676.

Enhanced Identification of Sensitive User Inputs in Mobile Applications

515

