
An on Demand Virtual CPU Arhitecture based on Cloud
Infrastructure

Erhan Gokcay
Software Engineering Department, Atilim University, Incek, Ankara, Turkey

Keywords: Cloud Framework, Parallel Computation, CPU on Demand, Cloud CPU.

Abstract: Cloud technology provides different computational models like, including but not limited to, infrastructure,
platform and software as a service. The motivation of a cloud system is based on sharing resources in an
optimal and cost effective way by creating virtualized resources that can be distributed easily but the
distribution is not necessarily parallel. Another disadvantage is that small computational units like smart
devices and less powerful computers, are excluded from resource sharing. Also different systems may have
interoperability problems, since the operating system and CPU design differs from each other. In this paper,
an on demand dynamically created computational architecture, inspired from the CPU design and called
Cloud CPU, is described that can use any type of resource including all smart devices. The computational
and data transfer requirements from each unit are minimized. Because of this, the service can be created on
demand, each time with a different functionality. The distribution of the calculation over not-so-fast internet
connections is compensated by a massively parallel operation. The minimized computational requirements
will also reduce the interoperability problems and it will increase fault tolerance because of increased
number of units in the system.

1 INTRODUCTION

Advances in cloud systems are increasing rapidly as
users are discovering cost and performance benefits
of cloud systems. Some features can be listed as
efficient resource sharing, security, flexibility and
on-demand service. Available hardware and
software resources can be shared among different
users and/or systems with a higher granularity than
before. This is important because most of the time
the computing resources of a system is never utilized
fully in standalone mode. There are different
deployment models (Vouk, 2008) (Zhang, 2010)
(Dillon, 2010) (Sonisky, 2011) like private, public,
community and hybrid models. Almost anything is
provided as a service.

The term cloud has different definitions. We
could say that clouds are a large pool of virtual and
easy to reach resources (hardware and/or software).
These resources can be dynamically adjusted and
assigned depending on the demand. Cloud
computing is based on several old concepts like
Service-oriented architecture (SOA), distributed and
grid computing (utility computing) (Foster, 2008)
and virtualization described in (Youseff, 2008)

(Vaquero, 2009) and (Vouk, 2008). Security is
always an issue in computing systems. With a
distributed approach protection, security and privacy
issues become more important and this issue is
analyzed in (Hashizume, 2013) (Liu, 2011) and
(Basu, 2012).

There is a great deal of work to create a standard
for the services provided such as Distributed
Management Task Force (DMTF) which is an
interoperable cloud infrastructure management
standard focuses on interoperability (Buyya, 2009).
Storage Networking Industry Association (SNIA)
SNIA standards are used to manage the data,
storage, information and also address the issues such
as interoperability, usability, and complexity
(Popovic, 2010) (snia.org). OGF standards Open
Virtual Machine Format (OVF) is a platform
independent format which provides the features like
efficiency, flexibility, security and mobility of
virtual machines (snia.org) in order to achieve
interoperability.

One of the studies in this area is done in (Botta,
2016) where the focus is on the integration of Cloud
and IoT. Although the integration is discussed in

Gokcay, E.
An on Demand Virtual CPU Arhitecture based on Cloud Infrastructure.
DOI: 10.5220/0006239803510357
In Proceedings of the 7th International Conference on Cloud Computing and Services Science (CLOSER 2017), pages 323-329
ISBN: 978-989-758-243-1
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

323

detail, still IoT devices are passive elements, not
contributing to the computation power of Cloud.

The computational units are getting
decentralized but the limit of this process needs to be
answered. The growing IoT concept needs to be
merged to Cloud systems and the interoperability
problems need to be solved as well.

The research question is that how small the
computational units can get in a Cloud environment,
how these small units can be configured, how IoT
devices can contribute to the Cloud computation and
how smaller devices will help to the interoperability
problem.

Chapter 2 describes the basic challenges of cloud
systems and the motivation of the paper. Chapter 3
describes the new service architecture called Cloud
CPU. In Chapter 4, the basic building blocks of
Cloud-CPU architecture is explained. Chapter 5
describes the execution flow of Cloud-CPU
operations. Finally, Chapter 6 summarizes the
advantages of the Cloud-CPU system.

2 CLOUD CHALLENGES

The cloud computing faces many challenges that are
related to the data interoperability and portability,
governance and management, metering and
monitoring, security which are addressed by
MOSAIC (Opensource API and Platform for
Multiple Clouds) (Petcu, 2013). There are
interoperability problems between cloud systems
and services because of different services depend on
different operating systems and CPU types. Each
vendor is providing a different service with a
different set of tools. Most cloud computing systems
in operation today are proprietary, rely upon
infrastructure that is invisible to the research
community, or are not explicitly designed to be
instrumented and modified by systems researchers
(Nurmi, 2009).

Although there are many open-source cloud
systems for researchers as the development of cloud
computing, they still are using a different
Application Programming Interface (API) from each
other. For IaaS, there are some popular open-source
cloud systems, such as Eucalyptus (Nurmi, 2009),
Open Nebula (opennebula.org), Nimbus
(nimbusproject.org), etc.

A different weakness of cloud computing is the
exclusion of not-so-powerful units from the system
as a source of the services provided. Smart devices
and computational units with less resources are
basically consumers in a cloud system as described

in (Khan, 2004). Those devices, although very high
in terms of connected units, are using cloud systems
but not providing any resource back.

3 CONFIGURABLE ON DEMAND
SERVICE

In order to remove the dependency problem to the
service provider, a new framework is needed in such
a way that the consumer or user can configure the
services needed, including functionality and
computing power, from the cloud system. Instead of
providing a high level service and computation,
cloud systems will provide low level services or
computations without any final computational goal
and the user will combine these services to configure
its own customized and dedicated service.

The design is inspired from the design of a CPU
and therefore similar terminology will be used in the
paper. The framework will be called Cloud CPU
with references to CPU building blocks, although
the name similarity does not mean a one-to-one
duplication of CPU architecture and certainly there
is no intention to replace a CPU with the service.
The Cloud CPU represents the specific service that
the user is trying to configure. CPU instructions
represent minimized services or computations
received from cloud units. Registers represent basic
storage units needed in the service.

3.1 Reduced Cloud Service Model

The design of a CPU had faced a reduction in terms
of complexity of the instruction set. The early
designs include complex instructions (CISC),
whereas later designs include very simple
instructions (RISC) to execute a program with
higher efficiency. The building blocks of RISC
architecture can be designed with less errors.

The Cloud CPU framework is using a similar
approach where simple services are used instead of
complicated computations and therefore the
implementation is called a Reduced Cloud Service
Model (RCSM). The required computation is build
on top of very basic cloud services which are very
easy to implement by any unit attached to the cloud.

Because of basic service requirement from each
node, any smart device can contribute to the Cloud
CPU. A simple device can provide a simple
arithmetic operation whereas a complicated device
or unit can provide a more sophisticated calculation.

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

324

3.2 Cloud CPU Execution Flow

The Cloud CPU execution flow is given in Figure 1.
The final collection of nodes and the sub-services
provided as a whole creates the Cloud CPU for this
particular application or service and it can be saved
for future use. For another computation or service
requirement, the same procedure will be repeated to
create another Cloud CPU (CCPU).

Figure 1: Execution Flow of Cloud CPU.

4 CLOUD CPU ARCHITECTURE

The configurable service is called Cloud CPU and
once it is created, it can be saved for future use. The
instruction set represents the minimized collection of
sub-services. Program counter represents a service
that controls the flow of the execution. Register sets
represent storage for the service. Process represents
all the information that represents the created service
or Cloud CPU. The Compiler here represents the
process to decide the services needed and created.
The configurable service will be explained as a
virtual CPU creation and execution. Helper services
needed in the flow can also be saved in the cloud
which decentralize the operation. The CCPU
architecture is given in Figure 2.

Figure 2: Cloud CPU basic elements.

A CCPU, as its names implies, needs
instructions to execute. The instruction set of a
CCPU is also provided as a service where the set

will be called Cloud Instruction Set (CIS). Since a
huge amount of nodes are connected to a cloud
system, the number of CCPU services that can be
provided by the system is limited only by the
capacity of the cloud system. Each Cloud CPU can
use different instruction sets, registers and
architecture.

For a given CCPU created in the cloud, nodes or
resources connected to the cloud will register
themselves to provide the required CCPU services.
The node assignments may change with time due to
failures or high load constraints where multiple
resource assignments for each service will provide
fault tolerance and protect the CCPU.

Since there are multiple CCPU's implemented,
each node in the cloud may registers itself to more
than one service, fully or partially. For example one
node may have resources to execute two instructions
from one CCPU and four instructions from another
CCPU. Another node may register itself to store ten
registers from one CCPU and four registers from
another CCPU.

4.1 Cloud CPU ID (CCPUID)

The virtual CCPU created should have an id, so that
it can be identified and referred later. During the
creation of CCPU, several nodes in the cloud should
register themselves to keep CCPU IDs and to keep
track of all requests asking for a CCPU for
execution. The instruction and register set of the
CCPU, the set of nodes that registered themselves to
implement Cloud Instruction Set (CIS) and Cloud
Register Set (CRS) are also part of the information
attached to CCPU ID.

4.2 Cloud Instruction Set (CIS)

The instruction set provided by the cloud is called
Cloud-Instruction Set (CIS). Each node in the
system registers itself to execute some or all of the
CIS’s of a CCPU. Since multiple nodes can provide
this service, there is a great deal of fault tolerance
and parallel execution in the system. Each node can
serve to multiple CCPU's with a subset of CIS
depending its capacity and load. Since the
instruction set is user defined and not forced by the
hardware anymore, complicated high level
instructions can also be implemented as part of the
CCPU like sorting or like any other high level data
manipulation.

An on Demand Virtual CPU Arhitecture based on Cloud Infrastructure

325

4.3 Cloud Register Set (CRS)

Each instruction may need temporary storage (i.e.
registers). The register service provided by the cloud
is called Cloud Register Set (CRS). Since the cloud
provides a data storage service already to its clients,
CRS can use the underlying data storage services of
the cloud system. CRS will be associated differently
to each CCPU. High level register types can be
created like queue types or any other high level
storage types, since the register design is not limited
by the hardware.

4.4 Cloud CPU Compiler (CCC)

The compiler will have two basic functionalities in
the system. The first one is to compile the given
program (decide sub-services needed to finish the
required computation) using the specified CCPU as
the target. The other functionality, different from a
regular compiler, is to decide the instruction set
required to create a CCPU for the given program.

4.5 Cloud Program Counter (CPC)

Each computation or process needs a program
counter, so that the system can calculate the next
instruction (sub-service) to execute. Using the
distributed data storage service of the cloud, the
Cloud Program Counter (CPC) is implemented
easily. During the creation of the CCPU, nodes will
register themselves to store and execute the CPC
where the CPC created is associated with the process
through a Cloud Process Descriptor (CPD). Since
the CPC information is shared among the registered
nodes for this service, it will provide the required
fault tolerance. If one node fails, the other registered
node will continue the execution.

4.6 Cloud Process Descriptor (CPD)

There is a need to identify each process that executes
in the cloud. Also CPC should keep track of the
process in the cloud. It can locate the process using
CPD. This information again is saved in the cloud
by nodes who registered themselves to provide the
needed service.

5 CLOUD CPU OPERATIONS

There are several operations that may take place in
the system. The user will decide to the desired
service (represented by compiling a program) using

a specific CCPU as the target using the compiler
CCC and submit the program to the cloud as a Cloud
Process (CPR). In the cloud, a CPC will be formed
to execute the CPR. The operations required in the
system are explained below.

5.1 Cloud Program Compilation

The program compilation is very similar to a regular
compilation. Each compiler converts a programming
language to the assembler program using the
hardware platform that the compiler is running on. If
you are running the compiler on an I7 Intel
processor, the compiler will use the instruction set of
I7 CPU in the conversion. The difference in Cloud
Process Compilation (CCC) is that the CPU
hardware is not fixed anymore and the target CCPU
can be changed for each compilation and most
importantly it can be created from scratch. There are
regular cross-compilers for different targets but still
those target CPU’s are fixed and you need to move
the compiled program to the corresponding platform
to run. On the other hand several CCPU types can
coexist and run in this structure. The flow diagram is
given in Figure 3.

The decision for the target CPU can be handled
in different ways. The first decision is whether a
new CCPU should be created for compilation or an
existing one should be used. The user may also
specify the target CCPU. Depending on the level of
the similarity, either the compiler will use an
existing CCPU type and compiles the program for it,
or it creates a new CCPU and the program is
compiled for the new CCPU type created. If the
decision is left to the compiler, the decision should
be based on the programming language to be
compiled, cloud capacity, complexity of the new
CCPU needed and the time for the compilation for
an existing CCPU. The decision can change
depending on a system and it is not hard-wired.

Figure 3: Cloud Program Compilation.

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

326

5.2 Cloud Instruction Set Creation

Determining the instruction list and storage types of
the CCPU is a difficult process. There are almost
infinitely many combinations, since the virtual
hardware is flexible and it can behave as you wish,
the instructions are not limited by the hardware
anymore. In addition to the number of combinations,
there are other factors as the interconnection speed,
storage capacity and processing speed of nodes. An
exhaustive list cannot be created here as it will be
out of scope of this paper.

 The creation of the CCPU process can be
initiated by the compiler as well as by the user. A
basic guideline can be given as follows and shown in
Figure 4.
 The programming language is analyzed.

 A decision will be made if the language should
be implemented as it is or it should be converted
to a different language. There are several
examples to this type of decision. We can have
a microcontroller that can execute BASIC
language directly. The second choice is to
convert (compile) the BASIC language to a
more basic RISC type language with few basic
machine instructions.

 The cloud will be analyzed in terms of capacity,
speed and availability.

 It is possible to have predefined templates for a
language carefully designed by a user.

 The compiler will check these templates if there
is a close match to the current language. It can
decide to use one of the templates or create a
new one.

 If a new template is needed by the compiler, the
scope will be limited to the instructions in the
current program. A new implementation may
not cover all possible constructs of the
language, since the compiler scope is limited by
the current program. On the other hand, a user
created template will cover the whole language
elements.

 If the decision is to create a new instruction set,
in that case the compiler will create a list of
needed instructions using a Cloud Instruction
Description (CID). Type can be class, function,
statement, arithmetic or other constructs
necessary. The description should list the
required functionality as an operation or as a
pseudo algorithm. Complexity can be given or
can be calculated from the algorithm. Required
storage types should also be listed. This

information is needed so that each node in the
cloud can respond to the request.

5.3 Cloud CPU Creation

Once the CCPU type is determined, the node
performs two different actions depending on the
state of the CCPU explained below and given in
Figure 5.

 Use an existing CCPU

 The initiating node will check if all the nodes
registered to execute this CCPU are still active or
not. If not, new nodes are invited to join to execute
the missing instructions and/or architecture.

 Create a new CCPU

 The instruction list created by the compiler for
a new CPU is sent as a broadcast to the cloud to
invite interesting nodes to implement the
required instructions. Systems with desired
properties to implement the required
functionality will respond and register
themselves to execute a specific function. For
example a system with high speed storage may
respond to create the registers and/or queues,
and another system with high speed processing
units may respond to implement a complicated
instruction in the CCPU

Figure 4: Cloud Instruction Set Creation.

An on Demand Virtual CPU Arhitecture based on Cloud Infrastructure

327

Figure 5: Cloud CPU Creation.

6 CONCLUSIONS

In this paper, a new idea to design and implement a
configurable service (virtual CPU) using the cloud
architecture is introduced where the units of a CPU
core represent nodes or services provided by a cloud
system and the data transfer between them is
replaced by a data transfer inside the cloud system.
The CPU functionality becomes a service provided
by the cloud system.

By pushing the CPU units to a cloud system, a
giant virtual CPU is created where each unit of the
CPU can have multiple implementations, support,
and parallel execution and fault tolerance. The basic
element of the new cloud service is the CPU. This
new service will be called as a virtual CPU or more
accurately as a Cloud CPU (CCPU).

The granularity of the service provided by each
node is minimized which means that the cloud
provides only the basic functional blocks and
instructions of a CPU. This minimization has several
advantages and the motivation can be listed as
follows.

 Fault tolerance: The first advantage is fault
tolerance where a node failure only will affect a
single instruction or register, not the whole
computation (which would have been provided
by that node in a normal cloud system). Since
the provided functionality is minimal, failure of
a CCPU service or node can be replaced easily
by another node.

 Security: Each node, executing only a few
instructions, does not see the whole program or

computation. The result of a single computation
or instruction on a node does not mean anything
at all by itself. This feature protects the process
from attackers on top of the normal security
measures.

 Scalability: The functionality provided by each
node to a specific CCPU is minimal; therefore
any required expansion and/or reduction can be
done very easily and quickly. It won’t be that
easy to add a large server with a computational
service to the system.

 Computational Requirements: Since only
small and minimal functions are implemented in
the cloud, nodes with minimal computational
power can join to the system. This is getting
more important as very small units are getting
connected to the internet (internet of things).

 Interoperability: To provide a service by a node
in a cloud system, the service should be written
by a programming language supported by the
operating system of that node. Different types of
nodes should agree on the data format and/or
calculation to distribute the computation to
several nodes. In the proposed system, the node
needs to provide a minimal computation where
the format is decided during setup for that
CCPU. Therefore even though each node may
have a different OS, providing the functionality
would be very easy.

 Optimization of resources: Adding or removing
servers on demand creates large fluctuations in
a cloud system where the resources may be over
determined or under determined respectively.
Since each resource comes with a cost attached
to it, a better optimized resource structure will
result in a better optimized budget.

 Heterogeneous CPU implementations: Since
each node contributes to CCPU using minimal
functionality, many virtual CPU’s can be
generated at the same time depending on the
capacity of the cloud system registered for the
service. Each CPU can have a completely
different set of instructions and/or registers and
other units different from each other. The cloud
can create a Pentium CPU and a SPARC CPU
at the same time. Instead of using a design
created before, each time a new CPU (on-
demand CPU) can be created in the system as
well. The new design can be reused later or
deleted.

 Hardware independent virtual CPU: Although
each regular CPU is different in hardware, a
high level language can hide this complexity

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

328

and difference from the user by converting the
high level language into a specific CPU
assembly language. The hardware differences
are hidden from the programmer. Using a
similar concept, a virtual CPU can be
implemented by using any combination of
simple or complicated instructions and data
storage units (registers, queues, sorted lists) and
the underlying hardware is hidden from the
user. A SPARC system can provide an “ADD”
instruction for the virtual CPU where a
PENTIUM CPU can provide a “SORT”
instruction. The virtual CCPU is hiding the
hardware details like how an instruction is
implemented and it is focusing on what is
implemented.

 Process and/or programming language
specific virtual CPU: The virtual CPU can be
created on demand or permanently in the
system. Depending on the process, either a
specialized virtual CPU is created and the
process is executed on it, or a general virtual
CPU is created and/or reused to execute the
process. With this implementation it is possible
to create a C-specific virtual CPU.

 Parallel Operation: The Cloud CPU creates a
massively parallel system where normal
systems are limited in terms of number of cores
and/or CPU’s.

REFERENCES

Youseff, L., Butrico, M. and Da Silva, D., 2008. Toward a
unified ontology of cloud computing, Grid Computing
Environments Workshop (GCE '08).

Vaquero, L., Rodero-Merino, L., Caceres J., and Lindner,
M., 2009. A break in the clouds: towards a cloud
definition. SIGCOMM Computer Communication
Review, Volume 39, Number 1, pp. 50-55, January.

 Vouk, M., Cloud computing- issues, research and
implementations, 2008. Journal of Computing and
Information Technology (CIT) Volume 16, Number4,
pp. 235–246.

Sonisky, B., 2011. Chapter 1, Cloud computing
bible,Wiley publishing inc.

Zhang, Q., Cheng, L., and Boutaba,R.,2010. Cloud
computing : state of the art and research challenges.
Journal of Internet Services and Applications, vol. 1,
pp. 7–18.

Dillon, T., Wu, C., and Chang, E., 2010. Cloud
Computing: Issues and Challenges, in 24th IEEE
International Conference on Advanced Information
Networking and Applications, pp. 27-33.

Hashizume, L., G Rosado, D., Fernndez-Medina, E., B
Fernandez, E., 2013. An analysis of security issues for

cloud computing, Journal of Internet Services and
Applications, Page no 1-13.

 Foster, I., Zhao, Y., Raicu, I., and Lu, S., 2008. Cloud
Computing and Grid Computing 360-degree
compared, in Grid Computing Environments
Workshop, pp. 1–10.

Liu, Y., Ma, Y., Zhang, H., Li, D., Chen, G., 2011. A
Method for Trust Management in Cloud
Computing:Data Coloring by Cloud Watermarking,
International Journal of Automation and Computing,
DOI: 10.1007/s11633-011-0583-3 ,Page no 280-285

Basu, A., Vaidya, J., Kikuchi, H., Dimitrakos, T., and
Nair, S., 2012. Privacy preserving collaborative
filtering for SaaS enabling PaaS clouds, Journal of
Cloud Computing: Advances, Systems and
Applications, Page no 1-14.

Buyya, R. Shin Yeo, C., Venugopal, S., Broberg, J.,
Brandic, I., 2009. Cloud computing and emerging IT
platforms: Vision, hype, and reality for delivering
computing as the 5th utility, Future Generation
Computer Systems, 25 ,Page no 599 616.

Popovic, K., Hocenski, Z., 2010. Cloud Computing
Security Issues and Challenges, MIPRO ,May 24-
28,Opatija, Croatia, Page no 344-349.

snia.org, Cloud Data Management Interface (CDMI),
Available at:
http://www.snia.org/techactivities/standards/currstanda
rds/cdmi, accessed on 9.8.

Petcu, D. Di Martino, B., Venticinque, S., Rak, M., Mhr,
T., Esnal Lopez, G., Brito, F., Cossu, R., Stopar, M.,
2013. Experiences in building a mOSAIC of clouds ,
Journal of Cloud Computing: Advances, Systems and
Applications, Page no 1-22.

Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, S. So-
man, G., Youseff, L., and Zagorodnov, D., 2009. The
Eucalyptus open-source cloud-computing system,
IEEE International Symposium on Cluster Computing
and the Grid (CCGrid ’09).

opennebula.org, Open Nebular, Available at:
http://www.opennebula.org.

nimbusproject.org, Nimbus, http://nimbusproject.org.
Khan, A., Othman, M., Madani, A., and Khan, A., 2014.

A Survey of Mobile Cloud Computing Application
Models, in IEEE Communications Surveys &
Tutorials, vol. 16, no. 1, pp. 393-413, First Quarter.

Botta, A., Donato ,W., Persico V., Pescapé , A., 2016,
Integration of Cloud computing and Internet of
Things: A survey, Future Generation Computer
Systems, Volume 56, , Pages 684-700, March

An on Demand Virtual CPU Arhitecture based on Cloud Infrastructure

329

