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Abstract: Data clustering aims to organize data and concisely summarize it according to cluster prototypes. There are 
different types of data (e.g., ordinal, nominal, binary, continuous), and each has an appropriate similarity 
measure. However when dealing with mixed data set (i.e., a dataset that contains at least two types of data.), 
clustering methods use a unified similarity measure. In this study, we propose a novel clustering method for 
mixed datasets. The proposed mixed similarity measure (MSM) method uses a specific similarity measure 
for each type of data attribute. When computing distances and updating clusters’ centers, the MSM method 
merges between the advantages of k-modes and K-means algorithms. The proposed MSM method is tested 
using benchmark real life datasets obtained from the UCI Machine Learning Repository. The MSM method 
performance is compared against other similarity methods whether in a non-evolutionary clustering setting 
or an evolutionary clustering setting (using differential evolution). Based on the experimental results, the 
MSM method proved its efficiency in dealing with mixed datasets, and achieved significant improvement in 
the clustering performance in 80% of the tested datasets in the non-evolutionary clustering setting and in 
90% of the tested datasets in the evolutionary clustering setting. The time and space complexity of our 
proposed method is analyzed, and the comparison with the other methods demonstrates the effectiveness of 
our method. 

1 INTRODUCTION 

Unsupervised clustering aims to extract the natural 
partitions in a dataset without a priori class 
information. It groups the dataset observations into 
clusters where observations within a cluster are more 
similar to each other than observations in other 
clusters (Bhagat et al., 2013; Tiwari and Jha, 2012). 
The K-means clustering algorithm is efficiently used 
when processing numerical datasets, where means 
serve as centers/centroids of the data clusters. In the 
K-means algorithm, observations are partitioned into 
K clusters where an observation belongs to the 
cluster with the closest mean (i.e., centroid) 
(Serapião et al., 2016). When dealing with 
categorical data (Bai et al., 2013; Kim, 2008), K-
modes (Ammar and Lingras, 2012) and K-medoids 
(Mukhopadhyay and Maulik, 2007) clustering 
algorithms are used instead of K-means. In the K-
modes algorithm, modes replace means as the 
dissimilarity measure and it uses a frequency based 
method to update modes during the clustering 

process. On the other hand, K-medoids algorithm 
computes a cluster medoid instead of computing the 
mean of cluster. A medoid is a representative 
observation in a cluster, where the sum of distances 
to other observations in the cluster is minimal 
(Mukhopadhyay and Maulik, 2007).  

There are four main types of data attributes, 
which are nominal, ordinal, binary, and numerical.  
Ordinal and nominal attributes are used to describe 
categorical data. Nominal attributes are used for 
labeling variables without any quantitative value. 
Nominal attributes are mutually exclusive (no 
overlap) and none of them have any numerical 
significance such as name, gender, and colors. 
Ordinal data attributes have ordered values to 
capture importance and significance, but the 
differences are not quantified such as (excellent, 
very good, good and bad) and (very happy, happy, 
and unhappy). Numerical data attributes can be 
either discrete or continuous (e.g., temperature, 
height and weight). Distance or similarity measures 
are used to solve many pattern recognition problems 
such as classification, clustering, and retrieval 
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problems (Cha, 2007). A distance is mathematically 
defined as a quantitative degree of how far apart two 
data points are. The choice of distance/similarity 
measures depends on the type of data attributes in 
the processed dataset.  

Most of the traditional clustering models are 
built to deal with either numerical data or categorical 
data. However in the real world, the collected data 
often have both numeric and categorical attributes 
(i.e., a mixed dataset). Thus it’s hard to apply 
traditional clustering algorithm directly to such 
mixed datasets. When it comes to dealing with 
mixed datasets, previous work adopted two 
approaches. The first approach unified the used 
similarity measure when dealing with mixed datasets 
(e.g., Parameswari et al., 2015; Shih et al., 2010 and 
Soundaryadevi and Jayashree, 2015). It converts the 
mixed dataset either to pure numerical data or to 
pure categorical data using a pre-processing step 
before applying the clustering algorithm.  
Unfortunately, this approach is not practical because 
there are data instances where the conversion does 
not give meaningful numerical data. Furthermore, 
this conversion may lead to loss of information. The 
second approach divides the original dataset into 
pure numerical and categorical dataset (e.g. Asadi et 
al., 2012; Ahmad, 2007; Shih et al., 2010; 
Mutazinda et al., 2015; and Pinisetty et al., 2012). 
The appropriate clustering algorithms are used to 
produce corresponding clusters for these pure 
datasets. The clustering results on the categorical 
and numerical datasets are then combined as a 
categorical dataset on which a categorical data 
clustering algorithm is employed to get the final 
output. This approach suffers from excessive 
complexity through the implementation, especially 
in the case of dealing huge/large dataset.  

Recently, researchers have given much attention 
to distance learning metric for semi-supervised 
clustering algorithms (e.g. Relevant Component 
Analysis, Discriminative Component Analysis) at 
handling mixed/or complicated datasets (Kumar and 
Kummamuru, 2008; Baghshah and Shouraki, 2009). 
Semi-supervised learning clustering algorithms 
partition a given dataset using additional supervisory 
information (Kumar and Lingras, 2008). The most 
popular form of supervision used in this category of 
clustering algorithms is in terms of pairwise 
constraints. Learning in a distance metric is 
equivalent to finding a rescaling of a given dataset 
by applying the standard Euclidean metric (Xing, 
2003). Distance learning metric is mainly processed 
for semi-supervised clustering algorithms and also 

suffers from exaggerated complexity through the 
implementation. 

To overcome the previous limitations, we 
introduce a novel clustering method for the mixed 
datasets. The proposed mixed similarity measure 
(MSM) method uses the appropriate similarity 
measure for each type of data attribute. It combines 
the capabilities of the K-modes and K-means 
algorithms when computing distances and updating 
centers for the clusters. The proposed MSM method 
is tested using six benchmark real life datasets 
obtained from the UCI Machine Learning 
Repository (Blake and Merz, 1998), and it achieved 
a significant improvement in the clustering 
performance in a non-evolutionary clustering setting 
and in an evolutionary clustering setting. The time 
and space complexity of our proposed method is 
analyzed, and the comparison with the other 
methods proves the effectiveness of our method. 

The rest of the paper is organized as follows. 
Section 2 introduces some related works and a 
background to K-means, K-modes algorithms, and 
differential evolution. Section 3 presents the 
proposed MSM method. Section 4 illustrates the 
differential evolution MSM setting. Section shows 
the experimental results and analyses. Section 6 
concludes the work and discusses future works.  

2 BACKGROUND 

In this section, we cover preliminary concepts 
needed in our work. These preliminary concepts are 
the clustering problem, K-means and K-modes 
clustering algorithms, and differential evolution 
algorithm. 

2.1 Clustering Problem  

Formally, a clustering problem is represented as an 
optimization problem as follows: 

ఓ,݊݅ܯ ,ሺμܨ ܼሻ ൌ  ߤ	݀൫ݖ, ൯ݔ 			1  ݅  ݊, 1  ݆	  ݇



ୀଵ



ୀଵ

 ሺ1ሻ

where n is the number of data points, k is the 
number of data clusters, and µij  is a membership of 
ith   data observation to cluster j (i.e.  ݆݅ߤ takes binary 

values in crisp case). ݀൫ݖ,  ൯ is the matchingݔ
distance measure between data point xi and data 
cluster center zj . 
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2.2 K-Means Clustering Algorithm 

The K-means algorithm is a widely used clustering 
algorithm for numerical data sets because of its 
simplicity (Bai et al., 2013). K-means algorithm 
searches for nearly optimal partitions with a fixed 
number of clusters. The algorithm aims to minimize 
total distances between data points and centers (Wu 
et al., 2008) where 

݀൫ݖ, ൯ݔ ൌ 	 ฮ࢞ െ	ࢠฮ

 (2)

is the distance measure between data point xi and 
data cluster center zj. The steps of K-means 
clustering algorithm are as follows (Kim and 
Hyunchul, 2008): 

1: Randomly initialize centers for the k clusters 
2: Each data point is assigned to the cluster with the nearest 

center (Eq. 2). 
3: Update the center of each cluster. 
4: Repeat steps 2 and 3 until the clusters’ centers stop changing 

or other stopping criteria are met. 
Procedure 1: Steps of K-Means algorithm. 

In step 3, the jth cluster center is updated by 
taking the mean of data observations which are 
grouped in cluster j in step 2. 

2.3 K-Modes Clustering Algorithm 

K-modes clustering algorithm extends the K-means 
algorithm to cluster categorical data (Gibson et al., 
1998), by replacing means of clusters by modes. K-
modes algorithm uses a simple matching distance 
(Aranganayagi and Thangavel, 2009), or a hamming 
distance when measuring distances between data 
observations. To understand the matching distance 
measure, let x and y be two data observations in D 
dataset and L be the number of attributes in a data 
observation. The simple matching distance measure 
between x and y in D is defined as:  

݀	ሺݔ, ሻݕ ൌ 	ߜሺݔ, ሻݕ


ୀଵ

 (3)

where  ߜሺݔ, ሻݕ ൌ 	ቐ
ݔ		݂݅							0 ൌ 	 	ݕ

݁ݏ݅ݓݎ݄݁ݐ		݂݅							1						
			 . 

The steps of the k-modes clustering algorithm is 
similar to the k-means algorithm (Procedure 1), 
except that the center of cluster is updated according 
to the following equation:   

ݖ ൌ 	ܽ 	∈ ,			ሻܣሺ	ܯܱܦ 	ݎ ∈ ݊ (4)
where ݖ represents the new updated value of cluster 
j in the ݈௧ attribute, and ܽ	is the value of the data 

observation r which has the most frequent value in 
the ݈௧ attribute for the data observations within 
cluster j. With respect to ܣ,  it expresses all the 
possible values which can be taken by the attribute 
݈	and DOM is a domain of this attribute.  ݊ is the 
total number of data observations in cluster j. 

2.4 Differential Evolution 

Differential evolution (DE) is a population-based 
global optimization algorithm that uses a real-coded 
representation (Saha et al., 2010). DE belongs to the 
class of genetic algorithms since it uses selection, 
crossover, and mutation operators to optimize an 
objective function over the course of successive 
generations (Suresh et al., 2009).  The DE operators 
are as follow: 
1. Mutation operator: In generation t, let ܺ,௧ be the 

ith solution vector in the population of size NP 
(i.e., ݅ ∈ ሾ1, 2, … , ܰܲሿ).  For each solution vector 
ܺ,௧, a mutant vector ܸ,௧ାଵ	is generated using three 

randomly picked solutions from the population 
using the following equation: 

ܸ,௧ାଵ ൌ ܺଵ,௧  ൫ܺଶ,௧ܨ െ 	ܺଷ,௧൯ (5) 

where ݎଵ, ,ଶݎ ଷݎ ∈ ሾ1, 2, … , ܰܲሿ are three mutually 
distinct random numbers and ݎଵ, ,ଶݎ 	ଷݎ ് ݅, and 
ܨ ∈ ሾ0, 2ሿ is a real number representing the 
differential weight. 
 

2. Crossover operator: Let L be the dimension of a 
solution vector and ݆ ൌ 1, 2, … ,  be the index for ܮ
the dimension. The mutant vector ܸ,௧ାଵ	and the 
target solution vector ܺ,௧	are crossed to generate a 
trial solution vector  

ܷ,௧ାଵ ൌ ൫ݑଵ,௧ାଵ, ,ଶ,௧ାଵݑ … ,  ,௧ାଵ൯ (6)ݑ

where ݑ,௧ାଵ ൌ 	 ቊ
ݎ	݂݅												,,௧ାଵݒ 		 ݆	ݎ		ܴܥ ൌ ,ሺ݅ሻ݊ݎ
ݎ	݂݅														,,௧ݔ	 		 ݆	݀݊ܽ		ܴܥ ് .ሺ݅ሻ݊ݎ

 

where ݎ 	∈ ሾ0, 1ሿ is a uniformly generated random 
number, ܴܥ	 ∈ ሾ0, 1ሿ is the crossover probability, 
and ݊ݎሺ݅ሻ ∈ ሾ1, 2, … ,  ሿ is a randomly chosenܮ
dimension  index. 

 
3. Selection operator: The trail vector ܷ,௧ାଵ is 

compared against ܺ,௧ and will replace it in the 
population if the following condition is met where 
݂ሺ. ሻ is the fitness function: 

ܺ,௧ାଵ ൌ ቊ ܷ,௧ାଵ, ݂݅ ݂൫ ܷ,௧ାଵ	൯ ൏ ݂ሺ ܺ,௧ሻ

ܺ,௧, .݁ݏ݅ݓݎ݄݁ݐ											
 (7)
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3 MSM METHOD 

The proposed MSM method is a novel clustering 
model based on using different similarity measures 
when dealing with mixed datasets. The MSM 
method has a pool of different similarity measures 
and uses them according to the type of data attribute 
under consideration. When computing distances and 
updating centroids, the MSM method merges 
between the capabilities of k-modes and K-means 
algorithms. Thus, we modify some steps in the 
traditional clustering model. Procedure 2 shows the 
steps of the MSM method. These modified steps are 
explained in details in the next sub-sections. 

1: All data elements are assigned a cluster number between 1 
and k randomly, where k is the number of clusters desired. 

2: Find the cluster center of each cluster. 
3: For each data element, find the cluster center that is closest 

to the element. Assign the element to the cluster whose 
center is closest to it. 

4: Re-compute the cluster centers with the new assignment of 
elements. 

5: Repeat steps 3 and 4 till clusters do not change or for a 
fixed number of times. 

Procedure 2: Steps of the MSM method. 

3.1 Computing Distances 

In the proposed MSM method, let A and B be two 
mixed data points with m attributes. When 
computing the distance between A and B, the MSM 
method calls the similarity measure according to the 
attribute type, and compute a sub-distance between 
the attribute in A and the same attribute in B. The 
total distance between A and B is the sum of the 
sub-distances for the m attributes. The used 
similarity measures are normalized to be in the [0, 1] 
interval as follows: 

 For ordinal data attribute 

	,ݖ ൌ 	
		,ݎ

ܯ െ 1
 (8) 

where z୧,	୬		is	the standarized value of attribute 
a୬		of the data object i,  r୧,	୬		 is	the	difference 
value before standardization, M୬		is the upper 
limit of the domain of attribute a୬. 	 

 For binary and nominal data attribute, we use the 
matching distance (Equation 3). 

 For numerical data attribute, we use the 
following equation 

zijሺnሻ ൌ
หݔ,  െ ห	,ݔ	

max ݔ െ min ݔ
 (9) 

where z୧,	୨	is the standardized difference value 
of attribute a୬		between two data objects i and 
j,  x୧,	୬	and	x୨,	୬	are the values of attribute a୬		of 
object i and j before standardization, max xn 
and min xn are the upper and lower limit of the 
domain of attribute a୬, respectively. 
 
Figure 1 shows an example of two mixed data 
points A and B. The first two attributes are 
binary and nominal, so the matching distance 
is used in measuring the distance between 
them. The third attribute is ordinal, so the sub-
distance is calculated using equation 4, where 
the domain of this attribute is from 1 to 4. The 
last attribute is numerical and has the range 
[150, 175], so the sub-distance is calculated by 
equation 6.  Finally, the total distance between 
A and B is the sum of these sub-distances, 
which will be 1.73. 

 

Figure 1: An example of calculating the distances in the 
MSM method. 

3.2 Updating Centers 

Generally speaking, the step of updating centers 
differs according to the type of data (e.g., categorical 
or numerical). Thus when updating centers, the 
proposed MSM method updates each value of 
attribute according also to the data type (see Figure 
2). If the value of attribute is numerical, then we use 
the updating rule of the k-means algorithm. 
However if the value of attribute is categorical, then 
we use the updating rule of the k-modes algorithm. 
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Figure 2: Example for updating centers in the MSM 
method. 

4 EXPERIMENTAL DESIGN 

Measuring similarity between data points is a corner 
stone in the clustering process, whether it is a non-
evolutionary clustering setting (e.g., Procedures 1 
and 2) or in an evolutionary clustering setting. Thus 
to evaluate the performance of the MSM method, we 
compared it against other existing similarity 
measures in (Boriah et al., 2008) (i.e., matching 
distance, IOF, and Eskin similarity measures) in 
addition to the scaling method in (Parameswari et 
al., 2015) assuming both the non-evolutionary and 
evolutionary settings. Evolutionary computation 
techniques play a vital role in improving the data 
clustering performance because of its ability to avoid 
falling in local optimal solutions.  

 
We use differential evolution (DE) as an 

evolutionary technique, where a similarity measure 
becomes a sub-routine used within the evolutionary 
setting. For DE with the MSM method (denoted by 

DE-MSM), procedure 3 illustrates the steps of the 
algorithm. In step 3, the initialized centers of 
clusters are randomly determined. The next steps 
represent the main part of the proposed method, 
where it starts with updating centers, then updating 
distances. The mutation and crossover operators then 
have to be applied using Equations 5 and 6, 
respectively. The resulting new individual is a 
candidate which is evaluated against its parent using 
Equation 7 to select the one with the better fitness. 
When reaching the maximum number of iterations, 
we use the accuracy measure performance (Arbelaitz 
et al., 2013) to select the best individual of the final 
population. 

For the DE, we use a population size of 100 
individuals (i.e., 100 different sets of centers), 
maximum number of iterations of 100, and 
crossover rate CR of 0.2. These parameters are 
chosen based on preliminary experiments. 

5 EXPERIMENTAL RESULTS 
AND DISCUSSIONS 

The proposed method is tested on six real-life mixed 
datasets obtained from the UCI Machine Learning 
Repository (Blake and Merz, 1998). The obtained 
results of 100 independent runs are summarized in 
table 1 for the non-evolutionary setting. Table 1 
contains the mean and standard deviation of best 
result of accuracy. We compare the MSM method 
against three similarity measures(i.e., matching 
distance, IOF, Eskin, and Scaling) already existing 
in    the    literature.    We   performed   T-test    with 

 
1: Input: D = the used dataset, K = number of data clusters, NP = population size 
2: Output: clusters assignment 

3: Add randomly initialized clusters’’ centers (i.e., individuals of population). 
4: Evaluate the fitness of all individuals. 

5: While Stopping Criterion (i.e., maximum number of iterations) is not met; do: 
6:         For each Individual Pi (i = 1 … NP) in the population, do: 

7:           a) Update centers of the k clusters. 
8:           b) Update distance between data objects and the updated centers of clusters. 
9:           c) Apply the mutation operator using Eq. 5. 

10:           d) Apply the crossover using Eq. 6. 
11:           e) Evaluate the fitness of the offspring C from parent Pi. 

12:           f) Apply selection operator to create new-population by comparing the offspring C against its parent Pi using Eq. 7. 
13:       End For 

14: End While   
15: Calculate the accuracy measure performance for every individual in the final population. 

16: Select the best solution (i.e., set of centers) which has the highest accuracy. 

Procedure 3: The DE-MSM method.
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Table 1: Mean ± standard deviation of best solution of 100 independent runs for the simple matching, IOF, Eskin, Scaling 
and the proposed MSM method.  

 Simple 
Matching 

IOF Eskin Scaling MSM T-test 

Breast Cancer 0.8128434 ± 
2.69461E-06 

0.771992 ± 
0.001752535 

0.782972 ± 
0.001451745 

0.814782 ± 
0.0027383 

0.839089 ± 
6.0179E-06 

Significant 

Zoo 0.8787367 ± 
0.000736404 

0.861041 ± 
0.000184208 

0.880504 ± 
0.00144237 

0.885224 ± 
0.0056389 

0.913004 ± 
0.000432323 

Significant 

Hepatitis 0.766462 ± 
0.000562314 

0.710596 ± 
0.003786261 

0.669242 ± 
0.00143719 

0.769892 ± 
0.0056282 

0.8187971 ± 
2.72221E-05 

Significant 

Heart Diseases 0.7520178 ± 
9.35633E-06 

0.778464 ± 
0.001182946 

0.6315967 ± 
0.000205821 

0.761143 ± 
0.00088239 

0.7953947 ± 
1.06071E-05 

Significant 

Dermatology 0.8476637 ± 
0.00152124 

0.699989 ± 
0.00055469 

0.6957118 ± 
0.000270416 

0.856321 ± 
0.0003345 

0.8424427 ± 
3.90709E-05 

Significant 

Credit 0.9043666 ± 
4.05246E-06 

0.864447 ± 
0.003066162 

0.6360959 ± 
0.001083251 

0.91882 ± 
0.0004267 

0.8960072 ± 
1.21558E-05 

Significant 

 
confidence level 0.05 to illustrate the statistical 
significant of the results obtained by the MSM 
method and the second best similarity measure. As 
shown in Table 1, the MSM method obtained 
statistically significant better results for four 
datasets, while simple matching obtained better 
results for two datasets (where one is not statistically 
significant). Based on the results, the proposed 
MSM methods performed better when compared 
with the other similarity methods, and it improved in 
about 80% of the tested datasets. Moreover, Table 2 
lists the run time of the five clustering similarity 
methods on different datasets. From Table 2, we can 
see that the MSM method needs more time than the 
simple matching method. However, the MSM 
method consumes time less than IOF, Eskin, and 
Scaling methods. 

Table 2: The running time of the five clustering models on 
the used datasets. 

 Average Running Time (Minutes) 

 
Simple 

Matching 
IOF Eskin Scaling MSM 

Breast 

Cancer 
4.82 5.33 5.47 4.97 4.94 

Zoo 2.11 2.26 2.34 2.17 2.10 

Hepatitis 2.69 3.24 3.32 2.87 2.63 

Heart 

Diseases 
3.17 3.38 3.41 3.27 3.22 

Dermatology 3.68 3.87 3.96 3.71 3.72 

Credit 5.19 5.42 5.49 5.34 5.21 

 
We now move to the evolutionary clustering 

setting, where each similarity measure is used as a 
sub-routine to compute distances and update centers 

in the DE algorithm. For the same six real-life mixed 
datasets, the obtained results of the 100 independent 
runs are reported in Table 3. Table 3 contains the 
mean and standard deviation of best result of the 
accuracy measure performance. To compare our 
results, we compared the DE with different 
similarity measures (i.e., DE-MSM, DE-Simple 
matching, DE-IOF, DE-Eskin, DE-Scaling). Based 
on the experimental results, the DE setting (Table 3) 
yields higher accuracy compared to the non-
evolutionary setting (Table 1). In addition as shown 
in Table 3, the DE-MSM obtained statistically 
significant better results for five datasets, while 
simple matching obtained better results for one 
dataset. 

6 CONCLUSION AND FUTURE 
WORK 

In this study, we proposed a novel clustering MSM 
method for the mixed datasets (i.e., datasets with at 
least two types of data attributes). In contrast to 
existing approaches in literature dealing with mixed 
datasets, the MSM method assigns a unique 
similarity measure for each type of data attribute 
(e.g., ordinal, nominal, binary, continuous). When 
dealing with a pure dataset (i.e., with only one type 
of data attributes), the MSM method will reduce to 
the K-means or the K-modes algorithms. Using six 
benchmark real life mixed datasets from the UCI 
Machine Learning Repository, we first compared the 
performance of the MSM method against other 
similarity measures (i.e., simple matching, IOF, 
Eskin, and Scaling) in a non-evolutionary setting.
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Table 3: Mean ± standard deviation of best solution of 100 independent runs for the DE-simple matching, DE-IOF, DE-
Eskin, DE-Scaling, and DE-MSM. 

 
DE-Simple 
Matching 

DE-IOF DE-Eskin DE-Scaling DE-MSM T-test 

Breast Cancer 
0.823201 ± 
00013254 

0.7901874 ± 
0.000231 

0.805437 ± 
0.006119 

0.82289 ± 
000245 

0.8472614 ± 
0.07811E-05 

Significant 

Zoo 
0.90132 ± 
0.0002621 

0.884791± 
0.6119E-04 

0.899645 ± 
0.00332 

0.908892 ± 
0.002583 

0.9435833 ± 
2.52812 E-06 

Significant 

Hepatitis 
0.798517± 
0.003213 

0.769026 ± 
0.00371 

0.734618 ± 
1.842E-04 

0.797582± 
0.0007739 

0.83306326 ± 
7.2235E-05 

Significant 

Heart 
Diseases 

0.762825 ± 
0.000765 

0.7356806 ± 
2.5723E-05 

0.6571352 ± 
0.00422 

0.774329 ± 
0.000113 

0.82840165 ± 
3.77392E-05 

Significant 

Dermatology 
0.85060403 
± 0.000113 

0.7285605 ± 
0.00117 

0.705437 ± 
0.0005632 

0.8505721 ± 
0.00017 

0.86351823 ± 
1.4426 E-04 

Significant 

Credit 
0.9392598 ± 
0.0006234 

0.88369739 
± 0.000921 

0.7401278 ± 
3.48192E-04 

0.940456 ± 
0.000253 

0.91358951 ± 
0.000218 

Significant 

 
The experimental results showed that the MSM 
method achieved statistically significant accuracy in 
80% of the tested datasets. We then move to 
evolutionary setting using DE where similarity 
measures were used to compute distance and update 
centers during the search process. DE showed its 
ability to improve the clustering performance 
compared to the non-evolutionary setting, and DE-
MSM achieved statistically significant accuracy in 
90% of the tested datasets compared to DE-simple 
matching, DE-IOF, DE-Eskin and DE-Scaling. The 
time and space complexity of our proposed method 
is analyzed, and the comparison with the other 
methods confirms the effectiveness of our method. 
For future work, the proposed MSM and/or DE-
MSM methods can be used in a multiobjective data 
clustering framework to deal specifically with mixed 
datasets. Furthermore, the current work can be 
extended to data clustering models with uncertainty. 
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