
Educating Computer Science Educators Online
A Racket MOOC for Elementary Math Teachers of Finland

Tiina Partanen1, Pia Niemelä2, Linda Mannila3 and Timo Poranen4

1Tampere City, Tampere, Finland
2Pervasive Computing, Tampere University of Technology, Tampere, Finland

3Åbo Academi University, Turku, Finland
4Computer Sciences, University of Tampere, Kalevantie 4, 33100 Tampere, Finland

Keywords: Computer Science Education, K-12 Education, Teacher Training, MOOC, Racket, Teacher Professional
Development (TPD), Math-integrated Computer Science.

Abstract: Many countries all over the world are in the process of introducing programming into their K-12 curricula.
New Finnish Curriculum includes programming mentioned especially in accordance with mathematics and
crafts. Consequently, Finland needs to train teachers to teach programming at elementary school level. In
this paper, we describe how elementary math teachers were educated online to teach programming using the
Racket programming language. The aim of the course was to increase both content knowledge (CK) and
technological pedagogical content knowledge (TPACK). By analyzing the course feedback, questionnaires
and exercise data, we present the teachers’ views on the course and effects on their professional development
(TPD). Finally, we describe development ideas for future online courses.

1 INTRODUCTION

Our society is becoming increasingly digitalized,
which has also given rise to a global discussion on the
role of computer science in education. As a conse-
quence, a number of countries all over the world have
introduced computational thinking, programming or
computer science in their K-9 curricula. Since 2014,
for instance students in England have learned to com-
pute starting at the age of five. In Finland, program-
ming has been part of the national curriculum ef-
fective since autumn 2016. It was introduced as a
cross-curricular addition, but integrated in particular
into the syllabi of crafts (grades 3-9) and mathemat-
ics (grades 1-9).

Integrating programming into the basic education
was a remarkable change, to which Finnish teacher
training departments have not yet fully adapted.
Henceforth, both pre- and in-service teachers need
to learn to program and obtain an understanding of
the core elements of computational thinking. Adding
curriculum requirements of this kind retrospectively
changes the job description of a teacher significantly.
The employer is responsible for taking care of the
teachers’ training and providing time for sufficient
professional development. In addition to new require-

ments, rapid technological disruptions – especially
within information and communication technology
(ICT) – necessitate the continuous professional devel-
opment of teachers in order to ensure frictionless ca-
reer moves in future. By choosing courses that enable
them to fulfill curriculum requirements, thus enhanc-
ing employability, teachers aim at maximizing their
market value. Hence, they are willing to put their own
effort into studying.

Although this training need is recognized by the
government, in-service training resources are insuffi-
cient. Against this background, all voluntary train-
ing initiatives are warmly welcome. In this paper,
we present the Racket track of Koodiaapinen MOOC,
a project initiated informally by a group of volun-
teer teachers to respond to the gap in formal train-
ing. After the voluntary start, the Ministry of Edu-
cation is currently sponsoring the MOOC by offering
the organizers funding according to the number of in-
service teachers completing the course. The goals of
the course are two-fold: to educate math teachers to
learn programming in the first instance, and secondly,
to function as a tool in the search for best practices to
teach programming.

Partanen, T., Niemela, P., Mannila, L. and Poranen, T.
Educating Computer Science Educators Online - A Racket MOOC for Elementary Math Teachers of Finland.
DOI: 10.5220/0006257800470058
In Proceedings of the 9th International Conference on Computer Supported Education (CSEDU 2017) - Volume 1, pages 47-58
ISBN: 978-989-758-239-4
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

47



1.1 Theoretical Background

Teachers now find themselves in a situation where
they need to upgrade their skills and knowledge re-
lated to technology, programming and digital com-
petence. This can be seen as a type of transforma-
tion, although, it does not fully match ’transforma-
tive learning’ as defined by Mezirow (1997). As an
initiator, Mezirow depicts a ’disorienting dilemma’,
but the way in which he describes the process can be
seen as too intimidating: during disorientation, fear,
anger and shame are listed as the driving forces. Con-
sequently, we chose to speak about the ’reorienting
dilemma’ of teachers instead. In the current reorien-
tation, the most dominant motivation is the external
pressure caused by changes in the curriculum and the
consequent demands to educate students accordingly.
Emotionally, reorientation is also less engaging than
disorientation.

Fortunately in Finland, teachers commonly ex-
hibit several types of internal motivation, e.g., their
own personal willingness to develop. Teachers con-
sciously build and develop their technological knowl-
edge and expertise as agents of their professional de-
velopment. In order to attain a better view on mo-
tivational factors, we refer to the self-reinforcement
and self-efficacy theories of Bandura (2006), where
self-efficacy is an important predictor in successful
professional development, even more than the actual
achievements. On a global scale, the self-efficacy of
Finnish teachers is considered high and boosted by
excellent PISA results, which teachers strive to main-
tain. In addition, they are aware of the new standards
set by the education authorities as a response to the
rapid technological development.

The change in perceived self-efficacy is one metric
for assessing the MOOC course learning outcomes.
Kennedy (2016) talks about enactment problems in
bringing new programming skills into the classroom
context after attending a professional development
course. She highlights the gap between the course set-
up and the actual teaching context of the real class-
room. Good self-efficacy in math is anticipated to
lower this threshold and foster the transfer. In this
study, we wish to focus in particular on teaching math
and programming together, and examine how math
teachers adapt to the change.

1.2 Research Questions

• What has been learned about organizing a pro-
gramming MOOC for teachers?

• How did the teachers evaluate the Racket course?

• How did the teachers describe the effect of the
course on their professional development and self-
efficacy in teaching programming?

2 RELATED WORK

2.1 Digital Competence in the Finnish
Curriculum

In December 2014, a new curriculum for Finnish
basic education (grades 1-9) was accepted by the
Finnish National Board of Education. This curricu-
lum has been in effect since August 2016 and empha-
sizes digital competence as an interdisciplinary skill
throughout all grades. The curriculum excerpts below
mention programming explicitly in the objectives of
two subjects, mathematics and crafts:
Grades 1-2
Digital competence: ”Students get and share expe-
riences about digital media and programming in an
age-appropriate manner.”
Mathematics: ”Students get acquainted with the pro-
gramming basics by creating step-by-step instruc-
tions, which are also tested.”
Grades 3-6
Digital competence: ”Students learn to program and
become aware of how technology depends on deci-
sions made by humans.”
Mathematics: ”Students plan and implement pro-
grams using a visual programming language.”
Crafts: ”Students practice programming robots
and/or automation.”
Grades 7-9
Digital competence: ”Programming is practised as
part of various other subjects.”
Mathematics: ”Students should develop their algo-
rithmic thinking and learn to solve problems using
math and programming. In programming, students
should practise good coding conventions.”
Crafts: ”Students use embedded systems, plan, and
apply programming skills in order to create prod-
ucts.”
As the curriculum stipulates that programming is to
be taught integrated with math, we start by examin-
ing how best to exploit the expected synergy bene-
fits. Compared with programming, math has a well-
established syllabus that has evolved into its current
state since the very dawn of the educational system.
Despite certain minor syllabus areas being dropped
from, or reintroduced to, the curriculum, the core con-
tent of the math syllabus has remained much the same
for decades. In order to ensure smooth transition, the

CSEDU 2017 - 9th International Conference on Computer Supported Education

48



strong math core should be exploited in order to intro-
duce the analogous and logically progressive steps for
programming. It is tentatively assumed that integrat-
ing programming into math will move the center of
gravity of the syllabus towards computational think-
ing.

Computational thinking has gained traction since
the seminal article by Wing (2006) on the topic.
There is no absolute consensus on the definition
of the term computational thinking, but many start
from Wing’s (2011) observation, “[t]he thought pro-
cesses involved in formulating problems and their so-
lutions so that the solutions are represented in a form
that can be carried out by an information-processing
agent.” Several operational definitions have been sug-
gested, for instance one presenting a set of corner-
stones of computational thinking including data col-
lection, analysis and representation, problem decom-
position, abstraction, algorithms, automation, parallel
code and simulation (Barr and Stephenson, 2011). Pa-
pert (1996) has stated, ”Computer science develops
students’ computational and critical thinking skills
and shows them how to create, not simply use, new
technologies. This fundamental knowledge is needed
to prepare students for the 21st century, regardless of
their ultimate field of study or occupation”.

Math is at the very core of programming that re-
quires algebraic, logic and problem solving skills.
Synergy implies mutual benefit between two entities,
and although the benefits that a good understanding
about math and perceived self-efficacy confer on the
learning of computational skills are clear (Lent et al.,
1991; Zeldin and Pajares, 2000), the transfer in the
other direction, from programming to math, may not
be that obvious. In a successful transfer, however, a
student should be capable of finding the common un-
derlying conceptual bases of different topics (Jarvis
and Pavlenko, 2008). Finding such analogies requires
a certain level of intellectual maturity and that a stu-
dent has elaborated on the learning material concep-
tually in order to reach a deeper understanding.

In general, successful transfer correlates with al-
ready acquired expertise: the greater the expertise,
the more well-rounded one is skill-wise and the more
flexible one’s mental models are for adopting new
knowledge (Bransford et al., 2000). An expert finds
correspondences and analogies by exploiting the pre-
viously constructed knowledge. The expert can easily
and without extraneous effort identify the significant
features of the new material and is hence able to eas-
ily learn in new situations. A novice, on the other
hand, can become bogged down by the amount of
data and may concentrate on irrelevancies. In defin-
ing the concept of expertise, the Gestalt psychologists

(e.g. Köhler, 1970) refer to the insight experience that
helps learners find the right solutions intuitively and
enables them to predict the outcomes in new situa-
tions.

Transfer may happen either laterally or vertically
(Gagné, 1965), near or far or by the low road or
the high road (Perkins and Salomon, 1988) imply-
ing a certain hierarchy of learning. In addition, Rich
et al. (2013) state that one of the two complemen-
tary subjects tends to be interpreted in learners’ minds
in a more abstract manner while the other encour-
ages to focus on application. In the case of math
and programming, math is more abstract, while pro-
gramming is understood as applied math (Dijkstra,
1982). In math, educators have long talked about
conceptual and procedural knowledge (Gray and Tall,
1994): conceptual knowledge comprises a full pos-
session of the appropriate concepts and the ability
to link them together, i.e., the high road to knowl-
edge transfer, while procedural knowledge consists of
well-internalized mathematical routines on the low-
road. Practicing math routines is anticipated to pro-
vide one appropriate affordance for programming in-
terventions.

Transfer between math and programming will be
streamlined by bridging the current math syllabus
with corresponding programming topics. In addition
to students, we note the value of transfer to in-service
teachers: the similarity between math and program-
ming of the Racket MOOC is expected to motivate
math teachers to learn programming.

2.2 Examples of K-12 Computer
Science Elsewhere

To get a better grasp of the current situation of pro-
gramming or computer science education EU-wide,
European Schoolnet carried out a review of the state
of computer science education in 2015 (Heintz et al.,
2016). The majority of European countries (17 out of
21) had already introduced or were in the process of
introducing computer science concepts in their K-12
curriculum (Balanskat and Engelhart, 2014). Some
countries, such as the UK, introduced computer sci-
ence as a separate subject (English Department for
Education, 2013), while others decided to integrate it
with other subjects, for instance, Finland (Finnish Na-
tional Board of Education, 2014). The length of the
syllabi varies from K-9 to K-12, and a few countries
only include computer science in the upper grades
(10-12). However, integrating computer science with
math seems risky. For instance, an OECD report has
suggested that the higher the degree of computer us-
age in math lessons, the poorer are the results (OECD,

Educating Computer Science Educators Online - A Racket MOOC for Elementary Math Teachers of Finland

49



2015). Thus the need for developing and evaluating a
suitable pedagogy for the integration is palpable.

In determining the role of computer science in
education, there are various metaphors used, e.g.
computer science as literacy, a maker mind-set, or
grounded math (Burke and Burke, 2016). If the lit-
eracy metaphor is used, then programming as digital
literacy emphasizes the same logical skills as are ap-
plied in constructing linguistically correct sentences,
that is, using e.g. and/or/not in order to get the internal
logic of the sentence expressed. From a ’maker mind-
set’ perspective, the programming language should be
as productive as possible, with a low learning curve,
which suggests visual programming languages, such
as Scratch. Some studies have, however, questioned
the benefits of Scratch in enhancing problem solving
skills and good programming practices (Gülbahar and
Kalelioglu, 2014; Meerbaum-Salant et al., 2011). The
grounded math approach highlights the links between
programming and math: the transfer between math
and programming seems closest to the functional pro-
gramming paradigm. For example, learning functions
in algebra can be practised using functional program-
ming languages.

Combining functional programming with math is
not new. Historically, attempts range from the early
use of LOGO (Futschek, 2006; Kulik, 1994) to re-
cent experiments employing Racket and Haskell (Ale-
gre and Moreno, 2015). While results from the
LOGO initiatives varied (Kulik, 1994), Racket eval-
uations have consistently been positive and stable
(Felleisen et al., 2014; Felleisen and Krishnamurthi,
2009; Schanzer et al., 2015; Schanzer, 2015). The
amount of research and the positive results reported
convinced our course organizers to choose Racket for
the teacher training MOOC.

2.3 Teaching Programming using
Racket

The Racket programming language http://racket-
lang.org) is a multi-paradigm language, which also
supports functional programming. Being a Scheme
dialect previously known as PLT Scheme, it has been
developed further as an open source project (Flatt and
Findler, 2012). Racket includes a programming IDE,
DrRacket, designed especially for teaching purposes
(Felleisen and Krishnamurthi, 2009). In contexts
where DrRacket cannot be installed, a web-based en-
vironment called WeScheme (Yoo et al., 2011) can
be used. WeScheme also enables online sharing and
remixing of programs.

DrRacket has built-in support for the so-called stu-
dent languages starting with Beginning Student and

ending up with Advanced Student Language. Each
of these Student Languages gradually introduces new
programming primitives and concepts. Simplified
syntax and semantics help beginners grasp the core
concepts of function design, such as composition and
calling. Tool creators have also defined more precise
error messages in order to assist novices in debugging
and analyzing code (Marceau et al., 2011).

DrRacket comes with graphics and anima-
tion libraries (2htdp/image, 2htdp/universe) that
are especially apt for beginner level program-
ming. These libraries were developed for more
than a decade in the Program by Design project
http://www.programbydesign.org/). Along with these
libraries, the guide book ”How to Design Programs”
was written by Felleisen et al. (2014) for high school
and college level programming courses. The book
emphasizes the advantages of functional program-
ming and introduces Design Recipe to systematize
problem solving by dividing it into a chain of smaller
decisions. The Recipe also instructs how to construct
a program by composing functions and encourages
writing tests before an actual function implementation
(Felleisen et al., 2014).

To preserve the purity of the functional paradigm,
the imperative features of Racket are pushed back.
For instance, an assignment operation (set!) and other
functions causing side effects (display, read) are not
introduced until the student reaches Advanced Stu-
dent Language level. In the most recent version of
”How to Design Programs”, these imperative features
were removed altogether (Felleisen et al., 2014).

The Program by Design project provides a sepa-
rate program for middle school called Bootstrap. Its
mission is to introduce computer science by teaching
algebra by programming a video game using Racket.
This algebraic approach has been proved to improve
understanding about math concepts, such as variables
and functions (Wright et al., 2013). Racket also en-
ables passing numbers, strings and images as pa-
rameters. Using images in calculations justifies the
description of Racket as ”arithmetic with images”
(Felleisen and Krishnamurthi, 2009).

A number of articles promote DrRacket as a
prominent way of learning algebra (Lee et al., 2011;
Schanzer, 2015), especially when special care is taken
of the valid instructions and purposefully planned ex-
ercises and pedagogical models, such as the Cycle
of Evaluation (Schanzer, 2015). The use of design
recipes turned out to foster the right order of opera-
tions and composition of nested functions. Felleisen
and Krishnamurthi (2009) boldly suggests that Boot-
strap (functional programming) provides the strongest
evidence of the favorable effects of programming

CSEDU 2017 - 9th International Conference on Computer Supported Education

50



on math skills, along with the fact that researchers
have long viewed programming as a promising do-
main where to practise math concepts (Papert, 1996;
Resnick et al., 2009). Bootstrap arranges professional
training workshops for middle school math teachers
in the USA. In addition, Racket was utilized in the
professional training of math teachers in Israel (Levy,
2013). This training was based on the principles of
Program by Design, emphasizing test-first develop-
ment and the featured “algebra of images”.

3 METHOD

The idea for Koodiaapinen MOOC was introduced in
2015 by Tarmo Toikkanen and Tero Toivanen during
the annual Interactive Technology in Education con-
ference in Hämeenlinna, Finland. The initial idea was
to help teachers learn programming with material that
has been prepared especially for them by their peers,
for instance, more experienced teachers.

Design based research aims at linking theory and
practice in the discipline of education (Reimann,
2011). It stipulates the use of several iterations and re-
designs of an educational artifact based on feedback
and experience. The beta version of the course was
developed and executed without funding, and four
voluntary MOOC administration members worked in
their spare time. According to the principles of DBR,
the course and its content would then be improved
course-by-course based on the feedback received.
Figure 1 illustrates the process of two nested de-
sign cycles: the outer cycle is the process of cur-
riculum planning that takes place once a decade,
while the inner one is the iterative process of de-
veloping the ’Coding at School’ Racket material
http://racket.koodiaapinen.fi. Development proceeds
in cycles, where different stakeholders give feedback.
Based on the customers, in-service teachers in the
present study, the artifact is redesigned together with
researchers, whose research interests lie in integrating
computational thinking with math education.

First three tracks of the Koodiaapinen course
(ScratchJr, Scratch, Racket) targeted at a number of
general goals: promoting creativity; presenting pro-
gramming as a tool for creating something new and
inspiring; sharing pedagogical ideas and artifacts dur-
ing the course; using exercises directly applicable in
a classroom context in order to make it easier for
teachers to get started; offering course participants
sufficient content knowledge so that they would not
limit themselves to applying ready-made program-
ming materials but also be able to create their own
programming exercises; and enabling peer-support by

Figure 1: Nested DBR cycles of curriculum updates (up-
date/10yrs) and Coding at School courses (2 updates/yr).

urging participants to help each other on discussion
forums. The use of these peer-support channels was
crucial, given the lack of resources.

The very core of the ’Coding at School’ Racket
material is to reveal the nature of programming as
a sort of applied mathematics and show how math-
ematics can be taught through programming. The ap-
proach is designed to motivate math teachers to adopt
programming in their teaching, and to show that pro-
gramming lessons are not time wasted.

After the course, its potential effects on the partic-
ipating teachers’ content knowledge (CK) and tech-
nological pedagogical content knowledge (TPACK)
were evaluated (Voogt et al., 2013). TPACK measures
the efficiency of teachers in exploiting technology in
their teaching, and this evaluation required suitable
rubrics. However, the fluent use of technology dur-
ing math lessons is not the core goal of the MOOC.
Instead, the study aims at building on the existing
math foundation and fully exploiting and transfering
this knowledge as programming skills in order to cre-
ate the positive feelings of self-efficacy from the very
beginning. Consequently, in this study, the TPACK
model has been exploited in an attempt to fill the
newly-created space between math and computer sci-
ence, by focusing in particular on a smooth transfer
between these two disciplines.

Educating Computer Science Educators Online - A Racket MOOC for Elementary Math Teachers of Finland

51



3.1 MOOC Platform Selection

Eliademy, the free Finnish platform, was
selected for the autumn 2015 MOOC
https://eliademy.com/catalog/koodiaapinen.html).
Eliademy comprises such basic features as course
editing and management tools, a discussion forum,
assignment systems for returning files and support
for quizzes. At that time, the platform did not include
peer-review. In addition, sharing artifacts and ideas
was not functional in Eliademy, and as a result the
course was transferred to Padlet (http://padlet.com),
an online notice board system instead.

While Padlet worked nicely for sharing images
and code via WeScheme links and essays via Google
Drive or OneDrive, an integrated grading system was
missing. This lack caused manual work for the in-
structor. In addition, Padlet did not allow the in-
structor to contact participants, which prevented her
from giving personal feedback on, for instance, their
programming style and essays. Hence, an integrated
learning environment would have been preferable.

For the spring 2016 MOOC
(https://plus.cs.hut.fi/aapinen-racket/K2016/),
the course platform was switched to A+
(https://plus.cs.hut.fi/ developed by Aalto Uni-
versity and used in the university’s own programming
courses. In the beginning, A+ did not support
showcasing of returned artifacts. As this was found
crucial for the Koodiaapinen MOOC, the Rubyric
team added the feature.

After this change, Rubyric’s peer-review func-
tionality was used to minimize the workload of the
course personnel. The new system enabled the in-
structor to define grading rubrics and points, so the
peer-review was as easy as selecting an appropriate
description for the code quality among given options.
Peer-reviews were conducted anonymously without
using the Padlet-style review wall. Code to be re-
viewed was allocated randomly to reviewers. Ex-
ercises that were not peer-reviewed were put on the
Padlet-style wall with the participants’ names so that
peers could comment on their work, as shown in Fig-
ure 2. Piazza http://piazza.com was used as the dis-
cussion platform. These services were integrated us-
ing IMS-LTI protocol.

3.2 Course Design Principles

The implementation of the Racket track was inspired
by the Systematic Program Design online course of-
fered by edx.org (Kiczales, 2015). Similarly to that
course, the Racket MOOC contained weekly exer-
cises with the following introductory material:

Figure 2: Topic 1 artifacts on the Padlet-style wall (Spring-
2016.)

1. Short motivational video, in which the lecturer in-
troduced the contents and the purpose of the ex-
ercise. Some videos also responded to feedback
received during the previous week.

2. Tutorial screen capture videos introduced the core
concepts. The lecturer used DrRacket for show-
ing programming examples that demonstrated the
concepts to be learned during that week. The step-
per tool was used extensively in order to explain
the evaluation rules. Some written notes were
added online, but the course content was mainly
delivered in video format. The idea was that the
course participants could test the programming
examples themselves while watching the videos.

3. The Design Recipe was used to demonstrate the
principles of function design, see Figure 3. By
using the recipe, a user can solve one detail at a
time and proceed step-by-step until the function is
ready. One of its noteworthy features is the defini-
tion of test cases before implementing the actual
function body.

Figure 3: Design recipe presented as a staircase that helps
to design a function step-by-step.

4. Exercises and their solutions were delivered as
both DrRacket and WeScheme files and used as
self-tests of the course content presented in the
video tutorials.

5. Hands-on exercises differed from the System-
atic Program Design exercises as neither peer-
review nor multiple choice quizzes were used to

CSEDU 2017 - 9th International Conference on Computer Supported Education

52



check how well the material had been understood.
Lastly, Koodiaapinen had an essay about the ped-
agogical aspects instead of a programming project
as in Systematic Program Design.

The programming exercises and their so-
lutions were taken from the Coding at
School material and the Coder’s handbook
http://racket.koodiaapinen.fi/manuaali/), which
contains documentation for the graphics and ani-
mation libraries (2htdp/image and 2htdp/universe),
Beginning Student Language primitives, and new
library additions of Racket Turtle and display-read.

4 RESULTS

The first Racket track was carried out on a weekly
basis. At the end of each week, feedback was col-
lected first using Google Forms and later Grader, an
online survey tool developed at Aalto University. The
feedback was saved and analyzed in order to improve
the next course. Open-ended textual feedback for the-
ory and exercises was solicited, as well as a time es-
timate about the workload of a week. In this chapter,
we introduce our results in chronological order, first
the Autumn-2015 results and corresponding lessons
learned, followed by the Spring-2016 results.

4.1 Autumn-2015

Promisingly, up to 369 teachers attended the beta ver-
sion of the Racket track of Koodiaapinen MOOC. The
Racket track turned out to be significantly more dif-
ficult in comparison with the other tracks (ScratchJr,
Scratch), thus preventing participants from maintain-
ing the same pace. Based on the feedback, the
course had too much weekly content: the target was 2
h/week, but the actual workload was notably higher,
3-4 h/week. As a result, the MOOC team decided to
slow down the Racket track. To complete the course,
80% of the coursework had to be returned, as 140 out
of the 369 participants did (completion rate 38%).

The autumn course proceeded in the order of
functions-logic-loops. All in all, too many concepts
were introduced simultaneously and teachers started
to struggle with learning, which in turn resulted in
an excessive amount of questions in the discussion
area. On the other hand, experienced programmers
still lacked a few crucial tools needed in the exercises,
e.g., a conditional structure. Lesson learned: Topics
need to be organized based on their difficulty: sim-
ple things first and then proceeding to more advanced
techniques in a widening spiral. Exercises must be
synced with the introduced topics.

Coupling a function with the design recipe caused
confusion: participants did not see the need for test
cases and stubs. Lesson learned: These topics need
to be introduced separately, first functions and man-
ual testing in an interactive window. After this, tests
may be automated with check-expect and re-used in
designing new functions. Automatic tests will help in
understanding how functions should be implemented
and in checking that functions behave as expected. A
similar order is also used in the guide ’How to Design
Programs’ (Felleisen et al., 2014).

No major problems due to DrRacket and
WeScheme were reported. However, check-
expect supported images in DrRacket but not in
WeScheme, thus examples worked differently, which
left WeScheme users puzzled. In addition, some in-
teroperability issues arose due to a few functions in-
troduced in Racket-lang documents, yet the Finnish
Coder’s handbook was restricted only to primitives
functional in both.

Due to time constraints, some important concepts
were left out from the autumn course, e.g., recur-
sion, local variables and more advanced usage of lists.
However, these skills were needed when implement-
ing the quiz application in a good programming style
without repetition. Lesson learned: The quiz was
found highly motivating and applicable for school,
however, the corresponding lesson is to be comple-
mented with the needed advanced topics.

The final essay worked as expected: teachers
found it both motivating and useful. Postponing ped-
agogical and curriculum considerations to the end of
the course was a deliberate design decision: one needs
to understand relevant programming and computa-
tional thinking ideas as well as challenges involved
in teaching before adjusting the curriculum. The es-
say aimed at highlighting TPACK issues and summa-
rizing the ideas evolved during the course. The main
TPACK threads of this MOOC were to ponder how
to apply the course exercises to STEM subjects, es-
pecially math, and foster creativity, culminating with
the final essay. In addition, the accomplished self-
designed artifacts were one step towards advancing
self-efficacy and enactment.

The course material for Spring-2016 was revised
and rearranged and new material was developed based
on the lessons learned from Autumn-2015. The style
of the beta version was retained: introductory and tu-
torial videos, PowerPoint slides, exercises with solu-
tions and the programming artifacts to be returned
and reviewed. Three returned artifacts were peer-
reviewed, and therefore they had fixed return and re-
view deadlines. For all other artifacts, the deadline
was the end of the course.

Educating Computer Science Educators Online - A Racket MOOC for Elementary Math Teachers of Finland

53



Table 1: Two iterative Racket track development cycles based on the feedback (Autumn-2015/Spring-2016).

w Autumn-2015 Lessons Learned Spring-2016
1 Introduction to Racket programming using

images (2htdp/image library), problem de-
composition, variables as global constants.
Artifact: An image shared by participants

The image created
positive feelings
of achievement:
using simple
geometric shapes
familiarized the
teachers with the
tool and enabled
creativity.

t1: The same exercise as in autumn

2 Using functions and parameters to solve
problems (abstraction), the design recipe
as a scaffold.
Artifact: Definition of a function (screen
capture images). The 1st exercise focused
on purpose of the function, its signature,
a stub and test cases, i.e. on demonstrating
the design recipe process. The 2nd exercise
was to implement the actual function body
and the minimum of two function calls.

Contents from
weeks 2-4 from
autumn 2015 were
divided into topics
2-5 and new con-
tent on recursion
and broader usage
of lists was added.

t2: Earlier introduction: how to use
true/false, comparison operators, predi-
cates and conditional structure (if) to con-
trol code execution, how to test functions
in an interaction window and by writing
unit tests (check-expect)
Artifact: Definition of a function, which
uses if-expression, including the purpose,
signature and test cases for all code
branches. Peer-reviewed by 3 participants

3-
4
*)

Boolean operators (and, or, not), compar-
isons, predicates, and conditional struc-
tures (if, else) to control code execution.
The animation engine (2htdp/universe),
reading a user input (display-read library)
familiarizing with WeScheme.
Artifact: WeScheme code with condi-
tional structures, the result could be an
animation, a simple quiz or an automated
calculator for some math formulas. Shared
with the group

*) Time for the autumn material of
week 3 was doubled (week 3 became
weeks 3 - 4)

More code skele-
tons provided for
t3-5, so the course
participants did
not need to create
applications from
scratch.

t3: The design recipe for functions. Writ-
ing tests first, Boolean operators and
conditional structure for more complex
logic, animation engine (2htdp/universe),
WeScheme to share code
Artifact: No changes to the animation and
the simple mouse app. The quiz and the
calculator postponed.
t4: Helper and recursive functions, reading
user input (display-read library), blocks
with side-effects (user interaction), local
variables for storing the input
Artifact: Defining multiple functions (at
least one recursive) i.e. a purpose, a sig-
nature and test cases. The end result could
be an image, recursive calculation or a sim-
ple calculator that asks an input in a loop.
Peer-reviews by 3 course participants

5 Looping using higher order functions
(map, foldl, foldr) and lists, usage of
Racket Turtle library to draw geometric
shapes.
Artifact: Shared image, which uses a
looping structure and either:

1. higher order functions + 2htdp/image
2. higher order functions/loops with re-

peat + Racket Turtle

As similar ex-
ercises were
already done in
accordance with
the recursion,
only Racket Tur-
tle option was
maintained and
foldl/foldr were
left out.

t5: Lists to store a set of values, iterating a
list recursively and producing new lists or
one result value, how to use image files in
DrRacket and WeScheme applications
Artifact: WeScheme code, which imple-
ments a simple list based quiz using a re-
cursive list-eater function, shared with oth-
ers.
t6: Looping using lists and higher order
functions (map), usage of Racket Turtle li-
brary to draw geometric shapes
Artifact: Shared image, drawn using
Racket Turtle library

6 Requirements of the Finnish curriculum
for the programming, algorithmic think-
ing/computational thinking, and how to
teach and integrate it with other subjects.
Artifact: Either a.) an essay (1-2 pages)
reflecting the challenges of teaching pro-
gramming b.) design of a new exercise
c.) a syllabus for integrating programming
into one’s own subject

Participants felt
that this exercise
was particularly
applicable for
their work and
hence found it
motivating.

t7: The same exercise as in autumn, except
peer-reviews were added

CSEDU 2017 - 9th International Conference on Computer Supported Education

54



Some participants complained that it was difficult
to create programs from scratch and preferred exer-
cises with given code skeletons. Thus, such skele-
tons were provided as a scaffold for writing a program
in order to support a learning path with distinct use-
modify-create steps (Lee et al., 2011).

4.2 Spring-2016

The course syllabus for Spring-2016 was designed
so that different aspects of algorithmic thinking (ab-
straction, logic, repetition) were introduced side by
side starting from the easier ideas and progressing to
more advanced ideas. The course content was di-
vided into seven topics, each scheduled to take 10-
14 days. Three topics were almost identical to those
in Autumn-2015: topic 1, topic 6 (previously 5) and
topic 7 (previously 6), i.e., the final essay was left un-
changed. Table 1 illustrates an overview of the course
content and exercises, and how the course developed
according to the feedback.

The Spring-2016 version of the Racket track had
fewer participants (171) than the beta version, as it
was competing for the same target group with a newly
introduced Python track. Of these 171 participants
who started the Racket track, 100 finished, resulting
in a 58% completion rate (80% of the coursework was
required to pass). The completion rate was 31%, tak-
ing into account all teachers (325) who had enrolled
on the MOOC. The number of teachers, whose re-
turned coursework was accepted for topics t1 - t7, is
illustrated in Figure 4.

Figure 4: Number of accepted coursework for topics 1-7.

4.2.1 Pre-course Survey

We conducted a pre-course survey to get background
information about the participants (N=137) using
Grader, which was also used for lesson feedback.
Based on the survey, most participants had some pre-
vious experience in programming: only 26% had
none, and as many as 45% had used more than one
programming language/environment. In the order of
popularity, the languages mentioned were Scratch,
34%, C/C++ 30 %, Java 26 %, Pascal 22 % , Basic

20 %, Python 15 %, Visual Basic 14 %, JavaScript 10
%, FORTRAN 9 %, LOGO 8 % and C# 3 %. The
greatest number of participants were among the 25-
to-35 age group (42%) and the majority of them were
female (78%). Almost 90% of the course participants
were math teachers and a similar proportion (91%)
taught in grades 7-9. Almost two thirds (61%) re-
ported that they had never used programming in their
teaching.

Compared to Autumn-2015, notably fewer pro-
gramming questions were asked on the discussion
forum. Consequently, the peer support that proved
so important during Autumn-2015, was almost non-
existent during Spring-2016. The same phenomenon
was noted in all four tracks of Koodiaapinen. One
possible reason is that the Piazza was too difficult to
use, another might be that the joint discussion area of
all tracks was laborious to follow and hence distanc-
ing. In addition, discussions generated email notifi-
cations to all participants, which was found annoy-
ing. Moreover, while Autumn-2015 was advertised to
everyone, Spring-2016 was marketed mainly to math
teachers, who are anticipated to be more fluent with
technology by default, thus asking less questions.

4.2.2 Course Feedback

The teachers’ feedback on their level of experienced
enthusiasm, suitability and usefulness of the seven
topics covered was above average on a scale of 1-
5 (1: not at all, 2: a bit, 3: reasonably, 4: a lot, 5:
very much). The highest enthusiasm was created by
programming images (t1,6) and animations (t3). The
final essay (t7) scored the highest on the suitability
and usefulness due to its pedagogical and curriculum
reflections, whereas recursion (t4) scored the lowest.
Overall, however, the scores did not differ remark-
ably, see Figure 5:

Figure 5: Spring-2016 feedback for topics 1-7.

The course feedback indicated a medium diffi-
culty level for most lessons, but recursion was consid-
ered the most difficult in all aspects. In similar vain,
the workload of most topics scored in the middle,
where the exercises using more complex logic and
the animation library resulted in the highest workload
scores. The actual hours used per topic are shown in

Educating Computer Science Educators Online - A Racket MOOC for Elementary Math Teachers of Finland

55



Figure 6. The target for Spring-2016 was 3-4 hours of
work per topic, and in fact most participants used 2-6
hours. Hence, the target was reasonably close to the
realization.

Figure 6: Amount of participants as a function of workload
grouped by topics.

4.2.3 Post-course Surveys for the Course
Development

At the end of the course, the course setup was evalu-
ated by the participants, but the survey gain was no-
tably low at that iteration: only 12 participants an-
swered, out of which 11 completed the course. The
teachers were asked, for example, to list aspects that
helped in completing the course, the top three reasons
being:

1. the tutorial videos of the course

2. the importance of the subject

3. concrete programming exercises

Table 2 and 3 illustrate the claims that the par-
ticipants agreed on either ’strongly’ or ’to a certain
extent’. The rejected claims were ’The course did
not support my development in becoming a teacher
of programming’ (1.75) and ’The course did not of-
fer sufficient knowledge of teaching programming’
(2.25). Most improvement ideas related to the course
schedule and the difficulty of the exercises:

1. Only peer-reviewed exercises had deadlines while
the rest had to be completed before the course
end. This made it possible to complete tasks in
the wrong order, causing difficulties. Setting ped-
agogically adjusted deadlines would improve this.

2. For some topics, the video examples were simpler
than the real exercises. This can be remedied ei-
ther by having the material cover more complex
examples, or making the exercises easier to match
the difficulty level of the videos.

3. Although the video tutorials were considered
helpful and clear, a few teachers would preferred
written material: after watching a video, finding
specific information caused problems.

Table 2: Claims that participants agreed on.

Feature Score
[1..5]

MOOC-style courses are well suited for
professional development

4.5

The course provided skills needed for
teaching programming

4.4

The course increased my knowledge on
how to teach programming

4.3

The course provided methods for teaching
programming

4.3

The course worked well for as a MOOC 4.3
The course gave me concrete ideas (tips)
for my work as a teacher

4.3

The teaching methods applied enhanced
my learning

4.1

The course increased my confidence in
programming as a teacher

3.9

I was committed to learning actively by
myself during this course

3.9

I will promote the contents that I learned
during this course to the other teachers in
my school district and my own school

3.6

The course made me excited about pro-
gramming

3.6

The course increased my interest in learn-
ing more about teaching programming

3.6

I received sufficient support during the
course

3.6

4. To complete the course, 6 out of 7 topics were
required, thus a few participants did not return the
final essay. It, however, was considered the most
important topic, in particular more important than
those covered in topics 5 and 6. Consequently,
the teachers suggested that the final topic should
be compulsory and either 5 or 6 elective.

The course material and exercises were spread on
multiple platforms, such as A+, Eliademy, Rubyric
and Piazza, which was found confusing. Moreover,
A+ and Eliademy required separate accounts, which
led into problems e.g. when opening solution files
in Eliademy. In order to find the exercises more
easily, the teachers suggested direct links to be at-
tached to the material. Due to the variety of plat-
forms, following the course execution was also prob-
lematic. The status of a delivery was shown in several
places, thus getting an overview of each assignment
was cumbersome, which hampered the recognition of
pending peer-reviews. Only a sufficient number of
peer-reviews granted a credit and because of pending
reviews a number of credits were missing. Credits
were delayed also because the course set-up required

CSEDU 2017 - 9th International Conference on Computer Supported Education

56



the instructor to accept each return separately. Yet
another source of annoyance was Piazza by sending
participants an excessive amount of email notifica-
tions. Consequently, the teachers proposed a daily or
weekly digest instead.

These improvement ideas were taken into account
in the later versions of the Racket course; the devel-
opment of the course is meant to be continuous. Af-
ter implementing a few of these improvements, mul-
tiple benefits could already be listed regarding the
new platform and course syllabus. First, reviewing
and grading of returned artifacts was much easier us-
ing the new Padlet-style wall. Also peer-reviewing
decreased the amount of work, since the instructor
needed to manually review only the cases that were
unclear. Secondly, code reviews provided a new
learning opportunity and clarified the requirements of
good programming style, for instance, why appropri-
ate naming and written purpose statements for func-
tions are important and why code needs to be tested.
Thirdly, the new course syllabus and schedule seemed
to work better and the workload for the course partic-
ipants and the instructor was more balanced.

5 CONCLUSIONS

We have developed an online programming course for
elementary school teachers, emphasizing the linkage
between mathematics and programming, and facili-
tating creativity and sharing. As the first result, we
found that teachers were willing to learn program-
ming and appreciated the pedagogical considerations
in particular: the final exercise of writing the es-
say scored highest of all exercises on both suitabil-
ity and usefulness. The previous programming exer-
cises aimed at enhancing the content knowledge. As
such, the programming exercises were tailored to be
fit for teaching in authentic classroom settings, but in
conjuncture with learning to program teachers were
called to reflect on the exercises and come up with
new aspects and brand new tasks as well.

Secondly, the teachers’ feedback from the Spring-
2016 course iteration was more positive than from the
first beta trial, which indicated that the level of diffi-
culty and workload were becoming reasonable. The
contents of the course were perceived both suitable
and useful. In addition, the course seemed to cre-
ate a fair amount of enthusiasm, making this type
of programming MOOC a motivating and interest-
ing form of professional development for in-service
teachers. In the effort to provide effective in-service
training, the improvement of the learning platform
and fine-tuning the course material should be contin-

uous. Consequently, the course will be incrementally
improved based on the participants’ feedback: these
two subsequent Racket courses prove that this type of
agile course development is feasible.

Thirdly, the positive course feedback and reflec-
tions in essays seem to suggest that professional de-
velopment and self-efficacy of the participants in-
creased. However, future research should observe the
long-term effects of the course, e.g., how many partic-
ipants actually started using the learned material and
skills in their work. As Kennedy (2016) points out,
real enactment in the school context is the final test.

Further studies should also examine more thor-
oughly the suitability of the material for elementary
math and the question whether the course gave a sat-
isfactory enough insight into computational thinking.
For the purpose, the final essays provide a plethora of
data to review. Systematic research and executing var-
ious learning experiments will enable determining the
best practices for developing computational thinking
and enhancing math syllabus, thus fulfilling the new
requirements of the Finnish Curriculum 2014.

ACKNOWLEDGMENTS

We thank the Aalto University A+ and Rubyric teams
for their efforts for the Koodiaapinen MOOC. We ex-
press our gratitude to Emmanuel Schanzer for modi-
fying WeScheme to suit our material and to Technol-
ogy Industries of Finland Centennial Foundation for
funding the development of the Koodiaapinen MOOC
in Spring 2016. Last but not least, thanks to Tarmo
Toikkanen for coordination.

REFERENCES

Alegre, F. and Moreno, J. (2015). Haskell in Middle and
High School Mathematics. In TFPIE vol. 1,.

Balanskat, A. and Engelhart, K. (2014). Computing our
future: Computer programming and coding-Priorities,
school curricula and initiatives across Europe. European
Schoolnet.

Bandura, A. (2006). Guide for constructing self-efficacy
scales. Self-efficacy beliefs of adolescents 5.

Barr, V. and Stephenson, C. (2011). Bringing computational
thinking to K-12: what is Involved and what is the role
of the computer science education community? ACM
Inroads 2, 48–54.

Bransford, J. D., Brown, A. L. and Cocking, R. R. (2000).
How people learn.

Burke, Q. and Burke, Q. (2016). Mind the metaphor: chart-
ing the rhetoric about introductory programming in K-12
schools. On the Horizon 24, 210–220.

Educating Computer Science Educators Online - A Racket MOOC for Elementary Math Teachers of Finland

57



Dijkstra, E. W. (1982). How do we tell truths that might
hurt? In Selected Writings on Computing: A Personal
Perspective pp. 129–131. Springer.

English Department for Education (2013). National Cur-
riculum in England Computing programmes of study.

Felleisen, M., Findler, R., Flatt, M. and Krishnamurthi, S.
(2014). How to Design Programs, Second Edition. MIT-
Press.

Felleisen, M. and Krishnamurthi, S. (2009). Viewpoint
Why computer science doesn’t matter. Communications
of the ACM 52, 37–40.

Finnish National Board of Education (2014). Finnish Na-
tional Curriculum 2014.

Flatt, M. and Findler, R. (2012). PLT - The Racket guide 1.
Futschek, G. (2006). Algorithmic thinking: the key for un-

derstanding computer science. In International Confer-
ence on Informatics in Secondary Schools-Evolution and
Perspectives pp. 159–168, Springer.

Gagné, R. M. (1965). The Conditions of Learning. New
York: Holt, Rinehart and Winston.

Gray, E. M. and Tall, D. O. (1994). Duality, ambiguity,
and flexibility: A proceptual view of simple arithmetic.
Journal for research in Mathematics Education , 116–
140.

Gülbahar, Y. and Kalelioglu, F. (2014). The effects of teach-
ing programming via Scratch on problem solving skills:
A discussion from learners’ perspective. Informatics in
Education-An International Journal 13.1, 33–50.

Heintz, F., Mannila, L. and Färnqvist, T. (2016). A Re-
view of Models for Introducing Computational Think-
ing, Computer Science and Computing in K-12 Educa-
tion. Frontiers in Education October.

Jarvis, S. and Pavlenko, A. (2008). Crosslinguistic influence
in language and cognition. Routledge.

Kennedy, M. (2016). How does professional development
improve teaching? Review of Educational Research .

Kiczales, G. (2015). UBCx: SPD1x Systematic Program
Design - Part 1 (version 1, summer 2015).

Kulik, J. A. (1994). Meta-analytic studies of findings on
computer-based instruction vol. 1, of Technology assess-
ment in education and training pp. 9–34. Psychology
Press.

Köhler, W. (1970). Gestalt psychology: An introduction
to new concepts in modern psychology. WW Norton &
Company.

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erick-
son, J., Malyn-Smith, J. and Werner, L. (2011). Compu-
tational thinking for youth in practice. ACM Inroads 2,
32–37.

Lent, R. W., Lopez, F. G. and Bieschke, K. J. (1991). Math-
ematics self-efficacy: Sources and relation to science-
based career choice. Journal of counseling psychology
38, 424.

Levy, D. (2013). Racket Fun-fictional Programming to
Elementary Mathematics Teachers. In TFPIE2013 TF-
PIE2013.

Marceau, G., Fisler, K. and Krishnamurthi, S. (2011). Mea-
suring the effectiveness of error messages designed for
novice programmers. In Proceedings of the 42nd ACM

technical symposium on Computer science education pp.
499–504, ACM.

Meerbaum-Salant, O., Armoni, M. and Ben-Ari, M. (2011).
Habits of programming in scratch. In Proceedings of the
16th annual joint conference on Innovation and technol-
ogy in computer science education pp. 168–172, ACM.

Mezirow, J. (1997). Transformative learning: Theory to
practice. New directions for adult and continuing educa-
tion 1997, 5–12.

OECD (2015). Students, Computers and Learning.
Papert, S. (1996). An exploration in the space of mathemat-

ics educations. International Journal of Computers for
Mathematical Learning 1, 95–123.

Perkins, D. N. and Salomon, G. (1988). Teaching for trans-
fer. Educational leadership 46, 22–32.

Reimann, P. (2011). Design-based research pp. 37–50.
Methodological choice and design. Springer.

Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk,
N., Eastmond, E., Brennan, K., Millner, A., Rosenbaum,
E., Silver, J. and Silverman, B. (2009). Scratch: pro-
gramming for all. Communications of the ACM , 52,
60–67.

Rich, P. J., Leatham, K. R. and Wright, G. A. (2013). Con-
vergent cognition. Instructional Science , 41, 431–453.

Schanzer, E., Fisler, K., Krishnamurthi, S. and Felleisen,
M. (2015). Transferring skills at solving word prob-
lems from computing to algebra through Bootstrap. In
Proceedings of the 46th ACM Technical symposium on
computer science education, pp. 616–621, ACM.

Schanzer, E. T. (2015). Algebraic Functions, Computer Pro-
gramming, and the Challenge of Transfer .

Voogt, J., Fisser, P., Roblin, N. P., Tondeur, J. and van
Braak, J. (2013). Technological pedagogical content
knowledge–a review of the literature. Journal of Com-
puter Assisted Learning 29, 109–121.

Wing, J. M. (2006). Computational thinking. Communica-
tions of the ACM 49, 33–35.

Wing, J. M. (2011). Computational thinking. In VL/HCC
p. 3, csta.acm.org.

Wright, G., Rich, P. and Lee, R. (2013). The influence of
teaching programming on learning mathematics. In So-
ciety for Information Technology & Teacher Education
International Conference vol. 2013, pp. 4612–4615, ed-
itlib.org.

Yoo, D., Schanzer, E., Krishnamurthi, S. and Fisler, K.
(2011). WeScheme: the browser is your programming
environment. In Proceedings of the 16th annual joint
conference on Innovation and technology in computer
science education pp. 163–167, ACM.

Zeldin, A. L. and Pajares, F. (2000). Against the odds:
Self-efficacy beliefs of women in mathematical, scien-
tific, and technological careers. American Educational
Research Journal 37, 215–246.

CSEDU 2017 - 9th International Conference on Computer Supported Education

58


