
A Statement Level Bug Localization Technique using Statement
Dependency Graph

Shanto Rahman, Md. Mostafijur Rahman and Kazi Sakib
Institute of Information Technology, University of Dhaka, 1205, Bangladesh

Keywords: Statement Level Bug Localization, Search Space Minimization, Statement Dependency, Similarity Measure-
ment.

Abstract: Existing bug localization techniques suggest source code methods or classes as buggy which require manual
investigations to find the buggy statements. Considering that issue, this paper proposes Statement level Bug
Localization (SBL), which can effectively identify buggy statements from the source code. In SBL, relevant
buggy methods are ranked using dynamic analysis followed by static analysis of the source code. For each
ranked buggy method, a Method Statement Dependency Graph (MSDG) is constructed where each statement
acts as a node of the graph. Since each of the statements contains few information, it is maximized by com-
bining the contents of each node and its predecessor nodes in MSDG, resulting a Node Predecessor-node
Dependency Graph (NPDG). To identify relevant statements for a bug, similarity is measured between the bug
report and each node of the NPDG using Vector Space Model (VSM). Finally, the buggy statements are ranked
based on the similarity scores. Rigorous experiments on three open source projects named as Eclipse, SWT
and PasswordProtector show that SBL localizes the buggy statements with reasonable accuracies.

1 INTRODUCTION

In automatic software bug localization, finding bugs
in granular levels i.e., statement of the source code is
needed because it reduces maintenance effort. On top
of this, many bug localization techniques have alre-
ady been proposed which ranked buggy classes (Zhou
et al., 2012) or methods (Poshyvanyk et al., 2007).
The suggestion of buggy classes provide a large pro-
blematic solution search space where a bug can stay.
Among the suggested class list, it is almost impos-
sible to find buggy statements because a class may
contain numerous statements. Although suggesting
buggy methods are better than suggesting classes, this
hardly reduces the maintenance effort because a met-
hod may also have large number of statements.

Although statement level bug localization is
required, there may exist several limitations such
as the availability of large irrelevant information
within a project for a bug and a small valid in-
formation within a statement. A software project
often contains a large number of statements having
massive amount of irrelevant information for a bug.
For example, Bug Id- 31779 of Eclipse is related to
src.org.eclipse.core.internal.localstore.Uni f iedTree.
java, whereas the total number of files in Eclipse

is 86206 and except the aforementioned buggy
file, other files are irrelevant for this bug. As bug
localization using bug report follows probabilistic
approach, the consideration of irrelevant information
can mislead to rank the buggy statements. Therefore,
it is needed to discard the irrelevant source code as
much as possible. Meanwhile, a single statement
contains very few information about a bug. For exam-
ple, for Eclipse Bug Id- 31779, line 122 (i.e., child =
createChildNodeFromFileSystem(node, parentLocal
Location, localName);) is one of the buggy state-
ments which contains few information about the
bug. Only using this information, suggesting buggy
statement is another challenging issue.

Fault localization is closely related to the bug lo-
calization, however the main difference is, fault lo-
calization does not consider bug report whereas bug
localization does (Zhou et al., 2012). In real life pro-
jects, user or Quality Assurance (QA) team reports
against a faulty scenario, and the bug is fixed using
that report. Although several researches address bug
localization, to the best of the authors knowledge,
still no research has been conducted to suggest buggy
statements using bug report. Zhou et al. propose a
class level bug localization technique by considering
whole source code as a search space. As a result,

Rahman, S., Rahman, M. and Sakib, K.
A Statement Level Bug Localization Technique using Statement Dependency Graph.
DOI: 10.5220/0006261901710178
In Proceedings of the 12th International Conference on Evaluation of Novel Approaches to Software Engineering (ENASE 2017), pages 171-178
ISBN: 978-989-758-250-9
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

171

biasness may be introduced. As this technique sug-
gests classes, it demands manual inspection into the
source code files to find buggy statements. Conside-
ring this issue, comparatively more granular level i.e.,
method level suggestion is addressed. Poshyvanyk
et al. propose PROMISER which suggests methods
as buggy (Poshyvanyk et al., 2007). Authors consi-
der whole source code which may degrade the accu-
racy of bug localization. To improve the accuracy,
recently Rahman et al. introduce MBuM where irre-
levant source code for a bug is discarded (Rahman and
Sakib, 2016). Still, developers need manual investiga-
tions to find the buggy statements. Interestingly, the
minimized search space which is extracted in MBuM
can be used for reaching further granular level.

In this paper, Statement level Bug Localization
(SBL) is proposed where statements are suggested as
buggy. At first, SBL extracts source code methods,
generated from (Rahman et al., 2016). As the state-
ments of the methods’ are related to each other, for
each suggested method, a dependency relationship is
developed among the statements, which is named as
Method Statement Dependency Graph (MSDG). The
information of each node is processed to produce cor-
pora. Later, a Node Predecessor-node Dependency
Graph (NPDG) is developed where the corpora of
each node (i.e., statements of the source code) and
its predecessor nodes in MSDG are combined. This
is because a statement often contains few information
about a bug. The combination of each node with its
predecessors increases the valid information of each
statement. The similarity between the bug report and
each node of NPDG is measured using VSM. These
statement similarity scores are weighted by the cor-
responding method similarity score. Finally, a list of
buggy statements are suggested using the descending
order of the similarity scores.

The effectiveness of SBL has been measured
using 230 bugs from three open source projects na-
mely Eclipse, SWT and PasswordProtector where
Top N Rank, Mean Reciprocal Rank (MRR) and
Mean Average Precision (MAP) are used as the eva-
luation metrics. In all the projects, SBL ranks more
than 28.33% buggy statements at the top 1 and more
than 58.33% within top 5. In case of MAP, 38.5%,
44.2% and 61% accuracies are gained for Eclipse,
SWT and PasswordProtector respectively. For MRR,
45.8%, 51.3% and 66% accuracies have been achie-
ved in the aforementioned projects respectively.

2 LITERATURE REVIEW

Since statement level bug localization is new, this
section focuses on researches that are conducted to
suggest buggy classes or methods.

2.1 Class Level Bug Localization

Zhou et al. propose BugLocator where class level
buggy locations are suggested (Zhou et al., 2012).
Here, two sets of corpora have been generated; one
for bug report and another for source code using se-
veral text-processing approaches such as stop word
removal, multi-word identifiers and stemming. Simi-
larity is measured between these two sets of corpora
by revised Vector Space Model (rVSM). This techni-
que considers whole source code for static analysis
which may degrade the accuracy. An improved ver-
sion is addressed by Ripon et al. where special weig-
hts are assigned on structural information including
class names, method names, variable names and com-
ments of the source code (Saha et al., 2013). Due to
considering whole source code for a bug, the accuracy
of the technique may get biased.

Another class level bug localization technique is
proposed by Tantithamthavorn et al. (Tantithamtha-
vorn et al., 2013). Here, an intrinsic assumption is
that when a bug is fixed, a set of classes are changed
altogether. On top of this, co-change score is calcula-
ted and a list of co-change files are identified. Large
number of changes holds high score for those files to
be buggy. After finding the co-change score, these
results are adjusted with BugLocator. As this techni-
que suggests classes as buggy, manual searching is
needed to find the actual buggy statements from the
source code which consumes lots of time.

Sisman and Kak incorporates version histories
(Sisman and Kak, 2012) to suggest buggy locations.
Similar to this, Wang et al. introduce a technique by
considering similar bug reports, version history and
the structure of the source code (Wang and Lo, 2014).
This technique also suggests class level buggy loca-
tions and so, developers have to spend time to find
buggy statements. Based on this version histories and
structural information, Rahman et al. also propose a
class level bug localization technique (Rahman et al.,
2015). Here, authors identify suspicious score for
each class by combining the scores of rVSM (Zhou
et al., 2012) with the frequently changed file informa-
tion. Another score is generated from prioritization
component and these two scores are combined. Ho-
wever, as these techniques suggest classes, it demands
manual investigation to find buggy locations in more
granular levels (e.g., buggy methods or statements).

ENASE 2017 - 12th International Conference on Evaluation of Novel Approaches to Software Engineering

172

2.2 Method Level Bug Localization

Since the suggestion of more granular level (i.e., met-
hods or statements) bug localization technique is nee-
ded, few techniques are available to suggest methods
as buggy. In method level bug localization, methods
are identified as the unit of suggestions.

Lukins et al. propose a method level bug loca-
lization technique (Lukins et al., 2008) where each
method of the source code is considered as the unit
of measurement. The source code is processed using
stop words removal, language specific keywords re-
moval, multi-word identifiers and stemming. Later,
Latent Dirichlet Allocation (LDA) model is generated
and is queried using bug report to get the buggy met-
hods. Another technique is proposed by considering
whole source code where semantic meanings of each
method have been extracted (Nichols, 2010). Authors
gather extra information from the previous bug his-
tory. When a new bug arrives, Latent Semantic In-
dexing (LSI) is applied on the method documents to
identify the relationships between the terms of the bug
report and the concepts of the method documents. Ba-
sed on that, a list of buggy methods is suggested.

A feature location based bug localization is intro-
duced in (Alhindawi et al., 2013) where source code
corpus is enhanced with stereotypes. Stereotypes re-
present the details of each word which are commonly
used in programming. For example, the stereotype
‘get’ means a method returns a value. These stere-
otype information are derived automatically from the
source code via program analysis. After adding stere-
otype information with the source code methods, IR
technique is used to execute the queries. However, as
the technique suggests method as buggy, it requires
lots of time to find the buggy statements.

The first dynamic analysis based bug localization
technique is proposed by Wilde et al. where minimi-
zation of source code has been performed by consi-
dering passing and failing test cases of the program
(Wilde et al., 1992). However, due to using passing
test cases, irrelevant features may be included in the
domain of search space. As a result, the accuracy of
bug localization may be hampered. An improved ver-
sion of this is proposed by Eisenbarth et al. where
both dynamic and static analysis of the source code
are combined (Eisenbarth et al., 2003). Here, static
analysis identifies the dependencies among the data to
locate the features in a program while dynamic analy-
sis collects the source code execution traces for a set
of scenarios. Poshyvanyk et al. propose PROMESIR
where authors also use both static and dynamic ana-
lysis of the source code. Through dynamic analysis,
executed buggy methods are extracted for a bug.

Initially, the two analysis techniques produce bug si-
milarity scores differently without interacting with
each other. Finally, these two scores are combined
and a weighted ranking score for each method is me-
asured. Although this technique uses dynamic infor-
mation of the source code, it fails to minimize the so-
lution search space during static analysis.

Rahman et al. introduce MBuM which focuses
on the search space minimization by applying dyna-
mic analysis of the source code (Rahman and Sakib,
2016). Executed methods are identified by reprodu-
cing the bug, and during static analysis only the con-
tents of those executed methods are extracted. As a
result, irrelevant source code is removed from the se-
arch space. The remaining texts are processed to mea-
sure the similarity between the bug report and source
code method using a modified Vector Space Model
(mVSM). In mVSM, the length of the method is in-
corporated with the existing VSM.

From the above discussion, it is clear that the
accuracy depends on the identification of valid infor-
mation domain by removing irrelevant source code.
Existing approaches suggest either classes or methods
as buggy which also demand manual inspections to
find more granular buggy locations i.e., buggy state-
ments.

3 THE PROPOSED APPROACH

This section proposes Statement level Bug Localiza-
tion (SBL) which consists of two major phases such
as irrelevant search space minimization but maximi-
zing relevant data domain, and the ranking of buggy
statements from that relevant data domain. The de-
tails are described in the followings.

3.1 Minimizing Irrelevant Search Space

Since MBuM provides better ranking of buggy met-
hods than others, that ranked list of buggy methods is
used here as minimized search space (Rahman and
Sakib, 2016). To do so, irrelevant source code is
discarded by considering source code execution tra-
ces. Only the relevant method contents are proces-
sed using several text processing techniques such as
stop word removal, programming language specific
keyword removal, multi-word identifications, seman-
tic meaning extraction and stemming which produce
code corpora. Similarly, bug report is also processed
to generate bug corpora. Finally, textual similarity is
measured between code and bug corpora by mVSM.
The overall procedure is demonstrated in Figure 1.

A Statement Level Bug Localization Technique using Statement Dependency Graph

173

Figure 1: The overall procedure of MBuM.

3.2 Statement Level Bug Localization
using Minimized Search Space

In this section, source code statements are sugge-
sted as buggy by only considering the ranked buggy
methods described in Section 3.1. For each ran-
ked method, a Method Statement Dependency Graph
(MSDG) is generated where each statement acts as
a node. For each node, a super node is generated
by combining the node and its predecessors, because
the execution of a node may depend on its predeces-
sor nodes. This process maximizes the valid infor-
mation of a statement. This graph is mentioned as
Node Predecessor-node Dependency Graph (NPDG).
To suggest a list of buggy statements, node similarity
score (Ns) is measured between each node of NPDG
and the bug report using VSM. For each node, Ns
score is weighted by the score of the method (Ms)
(obtained from MBuM) which contains the node.

3.2.1 Generation of Method Statement
Dependency Graph (MSDG)

MSDG is developed because one statement may de-
pend on other statements, and it is very often defects
propagate from one to another. As a result, the state-
ment which is executed first may affect the statements
which use the result of that statement.

For a better understanding regarding the gene-
ration of MSDG, a Java source code class is con-
sidered (see Figure 2). Here, two methods na-
mely calculatePro f it and calculateOperationCost
are available within class IncomePro f it. Each met-
hod introduce some local, global and method call va-
riables. For example calculatePro f it contains sell,
buy, etc. as local variables where profit is a global
variable. Except this, calculatePro f it also depends
on the result of calculateOperationCost method. So,
operationCost at line 7 is a method call variable.

Figure 2: Source code.

Figure 3: MSDG for calculatePro f it.

For calculatePro f it method, an MSDG is de-
picted in Figure 3 which is a directed graph. Let,
G = (V,E) is a graph where V is the set of verti-
ces or statements of the method. Each vertex sto-
res some properties of the source code (i.e., package
name, class name, method name, method score and
line number of the statement). Figure 4 shows these
properties of node int sell = sell1 of MSDG in Figure
3. Similar to this node, all other nodes also contain
these types of information. E is the set of directed
edges between statements which represents the data
flow. If there exists an edge (v1,v2) from node v1 to
v2, v1 is said to be a predecessor of v2. In source code,
the predecessors can be defined as follows: if a state-
ment contains an assignment such as x = y+ z, the
last modified statements of y and z are the predeces-
sors of x. For arithmetic assignment operators such
as x+ = y, the last modification of x is also consi-
dered as a predecessor. In case of increment (x++),
decrement (x- -) and conditional statements (e.g., if
(x > 0)), statement containing the last modification

ENASE 2017 - 12th International Conference on Evaluation of Novel Approaches to Software Engineering

174

Figure 4: MSDG containing the details of a node.

of x is a predecessor. These are needed to maximize
the valid information of each statement which can im-
prove the accuracy of bug localization technique. To
find the last modification of a variable, three cases are
identified based on the types of predecessor variables
such as Local Variable Usage (LVU), Global Varia-
ble Usage (GVU) and Method Return Variable Call
(MRVC).

1. In LVU, scopes of predecessor variables are boun-
ded within that method. In calculatePro f it met-
hod of Figure 2, int sell1 affects sell, hence int
sell1 is the predecessor of sell. Similarly, int buy1
is the predecessor of buy (see Figure 2) and so on.

2. In GVU, the predecessor variable is globally de-
clared and multiple methods may use that varia-
ble. The declaration of the double pro f it = 0.0
in line 3 affects line 8 where pro f it is calculated
using sell, buy, operationCost and pro f it. There-
fore, line 3 is the predecessor of line 8.

3. MRVC indicates that a statement calls a method
which returns a value. In this case, the last mo-
dification of that called method’s return statement
is the predecessor of the current node. In Figure
2, line 7 shows that operationCost calls a met-
hod (i.e., calculateOperationCost), which returns
cost variable (see line 20). Therefore, line 20 is
the predecessor of the calling node (i.e., line 7),
as shown in Figure 3.

From Figure 3 it is found, the last two nodes such
as system.out.println(“Yes you gain profit”) and sy-
stem.out.println(“Sorry you lose”) have no edge with
other nodes because these do not use any variables or
call any methods. As a result, the above mentioned
cases (i.e., LVU, GVU and MRVC) are not satisfied.

Figure 5: Node Predecessor-node Dependency Graph
(NPDG) corresponding to Figure 3.

3.2.2 Generation of Node Predecessor-node
Dependency Graph (NPDG)

In this phase, textual information is maximized by
combining the corpora of each node with its predeces-
sors (i.e., only the direct predecessors). At first, each
node of MSDG containing a statement of the source
code is processed. To do so, text are processed using
the techniques, described in Section 3.1. Finally, a list
of valid code corpora is obtained.

As SBL depends on the similarity between the
bug report and statements of the source code, incre-
asing valid information of a statement is an implicit
demand. Hence, a super node is generated by combi-
ning each node with its predecessor nodes’ corpora
because predecessors may affect its successors, re-
sults in an NPDG. Figure 5 shows an NPDG which is
derived from Figure 3 by combining each node with
its predecessor nodes. In Figure 3, int sell = sell1
is a node while in NPDG, this node is incorporated
with its predecessor node (i.e., int sell1). As a re-
sult, the number of corpus is increased for statement
int sell = sell1.

After the generation of NPDG, similarity score is
measured between the bug report and each node of
NPDG. This graph is traversed to find the frequencies
of shared terms between the bug corpora and each
node corpora of NPDG. As several kinds of term-
frequency (t f) have already been available (e.g., loga-
rithm, boolean variants), logarithm variant performs
better than others (Croft et al., 2010). t f (t,n) and
t f (t,b) are calculated according to Equation 1 and 2.

t f (t,n) = log ftn +1 (1)

t f (t,b) = log ftb +1 (2)
ftn and ftb are the frequencies of a term of NPDG
node and bug report respectively, which are used for

A Statement Level Bug Localization Technique using Statement Dependency Graph

175

measuring the similarity between bug report and each
statement of the source code (see Equation 3).

Ns(n,b) =V SM(n,b) = cos(n,b) = ∑t∈b∩n((log ftn +1)× (log ftb +1))

× 1√
∑t∈n(log ftn+1)2

× 1√
∑t∈b(log ftb+1)2

(3)

Here, Ns(n,b) denotes the similarity score of each
node. A statement containing large score (Ns) repre-
sents that the statement has large similarity with the
bug report. Similarly, low score of a statement indi-
cates that the bug has minimum effect on that node.

The score of each statement is weighted by the
score of the method using Equation 4. This is be-
cause, a statement contains a few number of words
compared to a method (Moreno et al., 2013). So, it is
more obvious that the large ranking scored methods’
are more likely liable for being buggy.

SBLscore = Ns×Ms (4)
Ms and Ns represent the score of a method contai-
ning statement s and the statement similarity score re-
spectively. SBLscore denotes the ranking score of each
statement, and based on that, statements are ranked.

4 RESULT ANALYSIS

To measure the effectiveness of SBL, several bug
reports from three open source projects named as
Eclipse, SWT and PasswordProtector are considered.
The experiments are conducted for validating the ran-
king of buggy statements. To measure the accuracy
of SBL, Top N Rank, Mean Reciprocal Rank (MRR)
and Mean Average Precision (MAP) are used as me-
trics which are also commonly used in bug localiza-
tion. The data collection followed by the experimen-
tal details are discussed in the followings.

4.1 Data Collection

Eclipse, SWT and PasswordProtector are used as the
subject of evaluation. Eclipse is a widely used open
source Integrated Development Environment (IDE)
which is written in Java. SWT is a widget toolkit
which is integrated with Eclipse. PasswordProtector1

is also an open source project used to encrypt pass-
words for accessing multiple websites.

Different versions of Eclipse and SWT (e.g., ver-
sion 2.1.0, 3.0.1, 3.0.2 and 3.1.0) are chosen which
contain large volume of source code. For example,
Eclipse 3.0.2 contains 12,863 classes, 95,341 met-
hods and 1,86,772 non-empty statements, SWT con-
tains 489, 18,784 and 32,032 classes, methods and

1https://raw.githubusercontent.com/shanto-Rahman/
SBL/master/PasswordProtector.zip

Table 1: The performance of SBL by considering 230 bugs.
Project
name

Top 1 Top 5 Top 10 Top 20 MRR MAP

Eclipse
34

(28.33%)
70

(58.33%)
79

(65.83%)
98

(81.66%)
45.8% 38.5%

SWT
38

(38%)
63

(63%)
72

(72%)
85

(85%)
51.3% 44.2%

Password
Protector

4
(40%)

9
(90%)

10
(100%)

10
(100%)

66% 61%

non-empty statements respectively. These benchmark
projects lack the available patches with statement le-
vel bug fixing because, none of the researches are
conducted on statement level. Hence, SBL is evalua-
ted using 230 bugs from three projects (i.e., 120 from
Eclipse, 100 from SWT and 10 from PasswordProtec-
tor). These bugs are manually collected from Bugzilla
for Eclipse and SWT. For each bug, corresponding pa-
tched files are also collected to validate the results
provided by SBL. Meanwhile, the bug reports and
fixed files of PasswordProtector are collected from the
developers of the projects (Rahman, 2016).

The details of each bug are available in (Rahman,
2016) where bug id, description and buggy locations
are given. It is noteworthy that stack trace is omitted
from the bug description as it may bias the evaluation.

4.2 Research Questions and Evaluation

In this section, SBL is validated by addressing two
research questions RQ1 and RQ2. RQ1 states how
many bugs are successfully located by suggesting
buggy statements. And RQ2 demonstrates the effect
of considering predecessors of each node. The follo-
wing discussion holds the detail description of each
research question along with their evaluation.

4.2.1 RQ1: How Many Bugs are Successfully
Located at Statement Level?

For each bug, the ranked list of buggy statements sug-
gested by SBL are compared with the original patched
buggy statements. If the buggy statements are ranked
at the top 1, top 5, top 10 or top 20, the bug is con-
sidered effectively localized. MRR and MAP metrics
are also used to prove the efficacy of SBL.

Table 1 presents SBL locates 28.33% buggy sta-
tements at the top in Eclipse. This refers that develo-
pers may not traverse any more statements for 28.33%
bugs. Besides, 58.33% and 65.83% bugs are located
within top 5 and top 10 respectively. In case of SWT,
SBL locates 38%, 63% and 72% at the top 1, top 5
and top 10. For PasswordProtector, 40% bugs are
localized at the top 1, 90% and 100% bugs are cor-
rectly localized within top 5 and top 10 suggestions.
For Eclipse, SWT and PasswordProtector, MRR of
SBL is 45.8%, 51.3% and 66% while MAP is 38.5%,

ENASE 2017 - 12th International Conference on Evaluation of Novel Approaches to Software Engineering

176

0 5 10 15 20
0

20

40

60

80

100

Ac
cu

rac
y (

%
)

Top N Rank

 NPDG MSDG

Figure 6: Demonstrating the effects of predecessor nodes in
120 bugs of Eclipse using Top N Rank.

0 5 10 15 20
0

20

40

60

80

100

Ac
cu

rac
y (

%
)

Top N Rank

 NPDG MSDG

Figure 7: Demonstrating the effects of predecessor nodes in
100 bugs of SWT using Top N Rank.

44.2% and 61% respectively. These results indicate,
SBL can effectively localize the buggy statements.

4.2.2 RQ2: Does NPDG Improve the Accuracy
of Bug Localization?

SBL creates super node by combining each node and
its predecessor nodes. Hence, it is an intrinsic de-
mand to show whether the consideration of these pre-
decessor nodes improve the bug localization accuracy
or not. To validate this, a comparison is made bet-

0 5 10 15 20
0

20

40

60

80

100

Ac
cu

rac
y (

%
)

Top N Rank

 NPDG MSDG

Figure 8: Demonstrating the effects of predecessor nodes in
10 bugs of PasswordProtector using Top N Rank.

Eclipse SWT PasswordProtector
0

10

20

30

40

50

60

70

80

M
RR

 (%
)

Project Names

 NPDG
 MSDG

Figure 9: Impact of the predecessor node using MRR.

Eclipse SWT PasswordProtector
0

10

20

30

40

50

60

70

80

M
AP

 (%
)

Project Names

 NPDG
 MSDG

Figure 10: Impact of the predecessor node using MAP.

ween without considering predecessor (i.e., MSDG)
and with consideration of predecessors (i.e., NPDG).

Figure 6-8 show the accuracy of ranking buggy
statements in Top N Rank by MSDG which is com-
paratively lower than that of NPDG for all the studied
projects. Because buggy statements depend on its pre-
viously executed statements. And NPDG is more ef-
fective when the bug is not stayed in a statement rather
it propagates from one statement to another.

Figure 6 holds a comparative study between the
results of considering NPDG and MSDG in case of
Eclipse. The ranking of buggy statements in Eclipse
shows that 21.66% and 28.33% bugs are located at the
1st position in case of MSDG and NPDG respectively.
For SWT, 29% and 38% bugs are located at the 1st po-
sition for MSDG and NPDG. Although PasswordPro-
tector is comparatively low volume project than other
two, here also NPDG performs better than MSDG,
i.e., 40% and 30% bugs are located at the 1st position
respectively. Thus NPDG improves 6.67%, 9% and
10% performance in case of Eclipse, SWT and Pass-
wordProtector respectively over MSDG.

The effects of using predecessors are shown in Fi-
gure 9 and 10 where MRR and MAP are considered
as metrics respectively. NPDG also shows higher va-
lues than MSDG. In case of MRR, 9.8%, 8.3% and
5% (Figure 9) improvements are found by conside-

A Statement Level Bug Localization Technique using Statement Dependency Graph

177

ring NPDG instead of MSDG for Eclipse, SWT and
PasswordProtector respectively. Meanwhile, 7.3%,
10.1% and 7.3% (Figure 10) accuracy improvements
have been found (on MAP) by NPDG over MSDG in
the aforementioned three projects respectively.

5 CONCLUSION

In this paper, a novel statement level bug localization
technique named as SBL is proposed where irrele-
vant search space is discarded using the source code
dynamic analysis. The relevant search space is furt-
her minimized by ranking the buggy methods. Later,
for each suggested method, a Method Statement De-
pendency Graph (MSDG) is generated which holds
the relationship among the statements. For invoking
predecessor node information, a Node Predecessor-
node Dependency Graph (NPDG) is generated for
each method where bag of words of each node and its
predecessor nodes are combined. The similarity bet-
ween each node (i.e., statement) of NPDG and the bug
report is measured to rank the buggy statements. Ef-
fectiveness of SBL has been evaluated on three open
source projects. The experimental results show that
SBL can successfully rank buggy statements. It is
also evident from the results, the consideration of pre-
decessor nodes improve the accuracy.

Since SBL performs well in different types of pro-
jects, in future it can be applied in industrial projects
to assess its effectiveness in practice.

ACKNOWLEDGEMENT

This research is supported by the fellows-
hip from ICT Division, Bangladesh. No-
56.00.0000.028.33.028.15-214 Date 24-06-2015.

REFERENCES

Alhindawi, N., Dragan, N., Collard, M. L., and Maletic,
J. I. (2013). Improving feature location by enhancing
source code with stereotypes. In 2013 IEEE Inter-
national Conference on Software Maintenance, pages
300–309. IEEE.

Croft, W. B., Metzler, D., and Strohman, T. (2010). Search
engines: Information retrieval in practice. Addison-
Wesley Reading.

Eisenbarth, T., Koschke, R., and Simon, D. (2003). Loca-
ting features in source code. IEEE Transactions on
Software Engineering, 29(3):210–224.

Lukins, S. K., Kraft, N., Etzkorn, L. H., et al. (2008).
Source code retrieval for bug localization using la-
tent dirichlet allocation. In 15th Working Conference
on Reverse Engineering, WCRE’08, pages 155–164.
IEEE.

Moreno, L., Bandara, W., Haiduc, S., and Marcus, A.
(2013). On the relationship between the vocabulary
of bug reports and source code. In International Con-
ference on Software Maintenance (ICSM), pages 452–
455. IEEE.

Nichols, B. D. (2010). Augmented bug localization using
past bug information. In 48th Annual Southeast Regi-
onal Conference, page 61. ACM.

Poshyvanyk, D., Gueheneuc, Y.-G., Marcus, A., Antoniol,
G., and Rajlich, V. C. (2007). Feature location using
probabilistic ranking of methods based on execution
scenarios and information retrieval. IEEE Transacti-
ons on Software Engineering, 33(6):420–432.

Rahman, S. (2016). shanto-rahman/source code: 2016.
https://github.com/shanto-Rahman/SBL.

Rahman, S., Ganguly, K., and Kazi, S. (2015). An im-
proved bug localization using structured information
retrieval and version history. In 18th International
Conference on Computer and Information Technology
(ICCIT), pages 190–195. IEEE.

Rahman, S., Rahman, M. M., and Sakib, K. (2016). An im-
proved method level bug localization approach using
minimized code space. Communications in Computer
and Information Science (Accepted).

Rahman, S. and Sakib, K. (2016). An appropriate method
ranking approach for localizing bugs using minimized
search space. In Proceedings of the 11th International
Conference on Evaluation of Novel Software Approa-
ches to Software Engineering, pages 303–309.

Saha, R. K., Lease, M., Khurshid, S., and Perry, D. E.
(2013). Improving bug localization using structured
information retrieval. In 28th International Confe-
rence on Automated Software Engineering (ASE), pa-
ges 345–355. IEEE.

Sisman, B. and Kak, A. C. (2012). Incorporating version
histories in information retrieval based bug localiza-
tion. In 9th IEEE Working Conference on Mining Soft-
ware Repositories, pages 50–59. IEEE Press.

Tantithamthavorn, C., Ihara, A., and Matsumoto, K.-i.
(2013). Using co-change histories to improve bug
localization performance. In Software Engineer-
ing, Artificial Intelligence, Networking and Paral-
lel/Distributed Computing (SNPD), 2013 14th ACIS
International Conference on, pages 543–548. IEEE.

Wang, S. and Lo, D. (2014). Version history, similar report,
and structure: Putting them together for improved bug
localization. In 22nd International Conference on
Program Comprehension, pages 53–63. ACM.

Wilde, N., Gomez, J. A., Gust, T., and Strasburg, D. (1992).
Locating user functionality in old code. In Software
Maintenance, 1992. Proceerdings., Conference on,
pages 200–205. IEEE.

Zhou, J., Zhang, H., and Lo, D. (2012). Where should the
bugs be fixed? more accurate information retrieval-
based bug localization based on bug reports. In
34th International Conference on Software Engineer-
ing (ICSE), pages 14–24. IEEE.

ENASE 2017 - 12th International Conference on Evaluation of Novel Approaches to Software Engineering

178

