
Contact Deduplication in Mobile Devices using Textual Similarity and
Machine Learning

Eduardo N. Borges, Rafael F. Pinheiro and Graçaliz P. Dimuro
Centro de Ciências Computacionais, Universidade Federal do Rio Grande – FURG,

Av. Itália, km 8, 96203-900, Rio Grande, RS, Brazil

Keywords: Deduplication, Similarity, Mobile, Classification.

Abstract: This paper presents a method that identifies duplicate contacts, i.e., records representing the same person
or organization, automatically collected from multiple data sources. Contacts are compared using similarity
functions, which scores are combined by a classification model based on decision trees, avoiding the need
for an expert to manually configure similarity thresholds. The experiments show that the proposed method
identified correctly up to 92% of duplicate contacts.

1 INTRODUCTION

Over the past few years, Internet and Web have
changed the way people communicate. With the in-
crease of the number of Web applications, users tend
to accumulate many accounts in different services
like email, social network, music and video streams
and virtual stores. The progress of technology has
provided access from mobile devices such as smart-
phones and tablets, to all services mentioned above.
Managing information from many services or appli-
cations is a complex task for users. Some basic ser-
vices of mobile devices can be affected by the redun-
dancy of information automatically collected from
different applications. For example, to find a contact
on the contacts list with duplicates and incomplete in-
formation considerably reduces the productivity that
a mobile device can offer.

Figure 1 shows a piece of a real contact list,
including ten records, collected from different data
sources represented by the icon on right side. Some
information are already combined from some sources
as shown in the record 3 (Google, Whatsapp and
Waze). However, the records 4, 5 (Skype), 6
(Google+) and 8 (LinkedIn) represent the same per-
son and could be integrated with the record 3 mak-
ing the cluster D. This also happens in the cluster
A = {1,2} and B = {7,9}. The record 10 does not
have a similar contact, so it remains alone.

Popular operating systems for mobile devices, like
iOS and Android (Goadrich and Rogers, 2011), pro-
vide a contact association feature, but the user needs

Figure 1: A list of contacts (left) and the expected result of
deduplication (right).

to select the records he/she wants to combine. This as-
sociation is stored in the device. If the user loses the
device or reinstall the system, their contacts restored
from an on-line account will not be associated.

This paper presents a deduplication method that
uses some similarity functions to compare the fields
that describe the contacts collected from multiple
sources. The scores returned by these functions are
used to train a classification model, based on decision
trees, that may be used as part of an automatic contact
association strategy (integration). The new method is
compared to the strategies implemented by a set of ap-
plications for contact management available for free.
The quality of the method is also experimentally eval-
uated on a real database with about 2000 records.

64
Borges, E., Pinheiro, R. and Dimuro, G.
Contact Deduplication in Mobile Devices using Textual Similarity and Machine Learning.
DOI: 10.5220/0006275100640072
In Proceedings of the 19th International Conference on Enterprise Information Systems (ICEIS 2017) - Volume 1, pages 64-72
ISBN: 978-989-758-247-9
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

Figure 2: Graphical user interfaces of the apps (left to right): Contacts Cleaner, Duplicate Contacts, Duplicate Contacts
Delete, Contact Merger and Duplicate Contacts Manager.

The rest of this paper is structured as follows. Sec-
tion 2 presents a study on a set of five apps for contact
management. Section 3 reviews studies of the sci-
entific literature about fundamental concepts for the
understanding of the proposed work. Section 4 speci-
fies the proposed method to deduplicate contacts. The
developed prototype and experimental evaluation re-
sults are discussed in Section 5. At the end, in section
6, the conclusions are presented and pointed out some
future work.

2 CONTACT MANAGEMENT
APPLICATIONS

On-line stores, like Google Play1, Apple App2, and
Windows Phone Store3, offer many applications for
contacts management, however the majority of ap-
plications aims to make easier the insertion, edition,
organization and sharing information about contacts.
The user prefers these applications than the ones in-
stalled by default on the operating systems. There are
few applications to identify and eliminate duplicate
contacts.

A complete solution of data integration should
indicate specific methods to perform the following
tasks: extract data records from different and hetero-
geneous sources; transform the data to obtain a com-
mon representation, i.e. a compatible schema; iden-
tify semantically equivalent records which represent
the same object; merge information from multiple
sources; display to the user a set of records without
duplicate information (Lenzerini, 2002). The studied

1http://play.google.com
2http://www.apple.com/appstore
3http://www.windowsphone.com/store

applications perform only the last three tasks because
they use methods available in the operating system to
read the records in the same schema.

The Contact Cleaner app (Silva, 2012) removes
duplicate records of the list of contacts comparing
only the phone numbers. The graphical user inter-
face shown in Figure 2 has a single button that when
pressed removes duplicate contacts without any user
interaction. After the duplicate contacts were re-
moved, the app shows a notification with the number
of excluded contacts. It is not possible to view the
contacts detected as replicas and neither restore the
original list of contacts.

Duplicate Contacts (Accaci, 2016) app allows to
view duplicate contacts and to select the records that
will be delete. A preliminary selection is automati-
cally presented to the user using the equality of phone
numbers, as shown in Figure 2. It is possible to con-
figure a backup file with the last state of the contacts
list before changes.

The third app studied is Duplicate Contact Delete
(Dabhi, 2015). It has the same functions mentioned
above, but also uses the contact’s name to identify du-
plicates. The graphical interface is displayed in Fig-
ure 2. The three apps mentioned above are imple-
mented exclusively for Android and they allow only
eliminate duplicate contacts. Two apps that provide
redundant information integration and association of
contacts were also analyzed.

Contact Merge (ORGwareTech., 2015) is avail-
able for Android and Windows Phone. It combines
all contacts’ phone numbers with the same name, but
keeps only one of the names for contacts with the
same phone. This second strategy is dangerous be-
cause relevant information may be lost in the inte-
gration process. For example, the name of a contact
can be replaced by a nickname, as in the case of in-

Contact Deduplication in Mobile Devices using Textual Similarity and Machine Learning

65

tegrating “Ben” and “Benjamin Baker”. The integra-
tion process can also remove an important workplace
identifier in the contact description like the associa-
tion between “Beatrice IBM” and “Beatrice”. The in-
terface of this application is very attractive (see Figure
2) and allows to access other features in management
of contacts, such as birthdays, addresses and favorite
contacts.

Finally, Duplicate Contact Manager (Sunil, 2016)
stands out because it also uses the email on dedupli-
cation. After detecting duplicate records, statistics are
displayed on each type of contact and the number of
duplicates found, which can be viewed or removed
directly. Figure 2 (right) shows the graphical user in-
terface displaying the feature mentioned above. Un-
fortunately, the integration feature is available only in
the paid version and can not be tested. This applica-
tion is only available for Android.

Table 1 summarizes the features of the studied
apps and compares them to the method proposed in
this paper. For each application, we present the fields
used in deduplication, the comparison function of the
fields, and the use of a machine learning strategy in
the deduplication process.

The advantages and the main contributions of the
this work are the following: (i) textual similarity func-
tions, allowing to deal with many of the cases pre-
sented in the example in Figure 1 and (ii) a classifi-
cation model which combines the scores returned by
the similarity functions automatically, eliminating the
need for an expert to set up similarity thresholds. The
focus of this work is the method for identifying dupli-
cate contact records. The integration and backup are
not applicable. The Section 6 presents a full solution
for merging contacts as a the future work.

3 DEDUPLICATION REVIEW

The task of identifying duplicate records that refer
to the same real world entity is called deduplica-
tion (Borges et al., 2011). In recent years, differ-
ent methods have been proposed for the deduplica-
tion of records, especially in the context of integra-
tion of relational data (Dal Bianco et al., 2015; Ogata
and Komoda, 2013; Christen, 2012; Dorneles et al.,
2009; de Carvalho et al., 2008; Chaudhuri et al., 2003;
Bilenko and Mooney, 2003). Specific approaches for
deduplicate contact records on mobile devices were
not found in the literature.

Most of the proposed methods for identifying du-
plicate contacts uses the concept of measure of tex-
tual similarity, calculated by a similarity function or a
distance function. The following subsections present

the functions used in the proposed method (Peng and
Mackay, 2014; Cohen et al., 2003). They were cho-
sen because they cover different comparison strate-
gies and are suitable to identify similarities in proper
names. All functions return scores in the range [0,1].

3.1 Jaccard

Let A and B be strings represented by sets of words.
The function Jaccard calculates the similarity be-
tween A and B according to Equation 1. It returns the
ratio between the number of words shared by strings
and all the words that make up them, defined by:

Jaccard(A,B) =
|A∩B|
|A∪B| (1)

3.2 Levenshtein

Let a and b be strings, The distance Levenshtein (dist)
is defined as the minimum number of characters edi-
tions, as insertion, deletion, or replacement, necessary
to transform a in b. The similarity is calculated as the
complement of the normalized distance, defined by:

Levenshtein(a,b) = 1− dist(a,b)
max(a,b)

, (2)

where max(a,b) is the length of the larger string.

3.3 JaroWinkler

Let m be the number of correlations between the char-
acters and t the number of transpositions. The func-
tion Jaro (J), given by

J(a,b) =
1
3
(

m
|a| +

m
|b| +

m− t
m

), (3)

calculates the similarity between a and b. JaroWinkler
is a variation of Jaro, weighting the prefixes, with p
size, of both strings, defined by:

JaroWinkler(a,b) = J(a,b)+
p

10
(1− J(a,b)) (4)

3.4 MongeElkan

Let A = {a1, ...,aK} and B = {b1, ...,bL} be strings
represented by sets of words K and L respectively.
The function MongeElkan performs, for each pair
of words, an auxiliary similarity function, in general
Levenshtein, returning the average of the maximum
similarities:

MongeElkan(A,B) =
1
K

K

∑
i=1

L
max
j=1

sim(ai,b j). (5)

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

66

Table 1: Features of the related applications and the proposed work.

App Fields Comparison Machine learning
Contacts Cleaner phone number equality no
Duplicate Contacts phone number equality no
Duplicate Contacts Delete phone number, name equality no
Contact Merger phone number, name equality no
Duplicate Contacts Manager phone number, name, email equality no
proposed work phone number, name, email similarity yes

4 CONTACT DEDUPLICATION

Deduplication can be a difficult task, mainly due to
the following problems: use of acronyms, different
formatting styles, distinct structure of metadata, vari-
ation in the representation of the content, omission
of certain fields and omission of relevant content. In
mobile devices it is not common to use acronyms to
represent contacts’ names and the data does not have
a particular style. The schema of records is the same
because the API of the operating systems can retrieve
all the records in the same structure, even if it has
been automatically collected from different social net-
works or other applications.

Therefore, the focus of contact duplication is to
solve the problem of variation and omission of con-
tent, which is very frequent and more severe than
in other contexts such as in digital libraries. While
many duplicate contacts only share the first name,
references have different representations of the au-
thors (order of the names and abbreviations) and lit-
tle change in the title of publications. They also
have other relevant metadata, such as year, confer-
ence or journal. Since the vast majority of contacts
only count on name and phone numbers, the dedupli-
cation method collects these two fields and generates
an unique identifier for each record. The proposed
method is divided into four main phases presented
in Figure 3: acquisition and preprocessing, compu-
tation of similarities, classification of duplicate pairs
and clustering equivalent contacts.

4.1 Collecting and Preprocessing

In the first phase the device contacts are collected
from the internal memory, SIM cards and accounts
linked to local or cloud applications, like messen-
gers and social networks. For each imported contact,
records with fields that represent name, phone num-
bers or emails are selected and stored.

The names are preprocessed by converting to
lower case, removing accentuation and characters
other than letters or numbers. The email login (with-

processed

contacts

Similarity

Classification

Clustering

Collecting and

preprocessing

calculated scores

duplicate

pairs

clusters of equivalent contacts

contact records

Figure 3: Phases of the proposed method for identifying
duplicate contacts.

out the domain) is stored in a new field.

4.2 Similarity

In the second phase the records are combined in pairs.
Those who share at least one phone number or e-mail
(matching by equality) are directly identified as dupli-
cate pairs and sent to the clustering phase.

The following similarity functions are applied on
the other records and their fields:

• Levenshtein (email logins);

• Jaccard (names);

• JaroWinkler (names);

• MongeElkan (names).

Table 2 illustrates a pair of contacts and the scores
returned by these similarity functions.

4.3 Classification

In the third phase, the scores returned by the simi-
larity functions build new records, with an extra field
that represents the pair’s duplicity. These records are

Contact Deduplication in Mobile Devices using Textual Similarity and Machine Learning

67

Table 2: Pair of contacts and the scores returned by similarity functions.

Name Email login Levenshtein Jaccard JaroWinkler MongeElkan
Mateus Gabriel Muller mateusmuller 0,92 0,66 0,6 0,75Mateus Muller mateusmuller2

used as input to a classification model that labels each
pair of contacts as duplicate or distinct. This model
is a decision tree trained by C4.5 algorithm (Quinlan,
1993).

Each pair labelled as duplicate in this stage are
added in the list of pairs previously identified with
equal phone numbers or emails and they are sent to
the clustering phase.

4.4 Clustering

Finally, in the fourth and last phase, the equivalent
contacts can be grouped using two different strategies:
(i) each record is similar to at least one record in the
same cluster and (ii) all records of a cluster are similar
to each other.

For implementing these strategies, we have de-
fined a graph which each vertex represent a contact
and the edges mean the duplicity. Two algorithms are
performed over this graph (Kowalski and Maybury,
2002):
• Single Link - It returns a cluster for each con-

nected component of the graph, implementing the
first strategy;

• Click - It returns clusters representing complete
subgraphs, implementing the second strategy.
Figure 4 shows the result of clustering algorithms

considering the duplicate graph (left) as input.

Figure 4: An example of Single Link (center) and Click
(right) clustering strategies.

5 EXPERIMENTAL EVALUATION

This section describes the experiments conducted in
order to validate the contacts deduplication method
proposed in this paper. Figure 5 shows the interface
of the prototype highlighting the home screen, menu
features, a contacts list and clustering results grouping
duplicate contacts using Single Link and Click algo-
rithms. It was programmed in the Java language using
the Android SDK.

Figure 5: Prototype implemented for Android, highlighting
the results of Deduplication.

We used a real database, provided by a volunteer,
with exact 1962 contacts imported from multiple data
sources : internal memory, SIM card, Skype, Face-
book, LinkedIn, Gmail and Google+. The quality
of the method was evaluated using the percentage of
correctly classified instances (accuracy) and the recall
measure (Manning et al., 2008) to the class duplicate
contacts. It was used the Weka4 (Hall et al., 2009) tool
for training and evaluation of classification models.

All records containing at least one name and a
phone number or e-mail was selected. After the pre-
processing, 1072 contacts remain valid. These con-
tacts were combined two by two. Then 12 pairs with
the same phone numbers or email were deleted (dupli-
cate contacts detected by equality), totaling 574,044
pairs, among which only 66 represent duplicate con-
tacts. For each pair, we executed the similarity func-
tions presented above. The attributes relating to du-
plicity were added to the returned similarity scores,
building the new records. We notice that these 12

4http://www.cs.waikato.ac.nz/ml/weka

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

68

easy-duplicates can be also detected by the majority
of tools presented in Section 2. We focus in the re-
maining 66 duplicates which are hard to identify.

It was not possible to adopt an usual model eval-
uation strategy such as cross-validation because the
classes are very unbalanced (66 duplicate pairs and
573,978 distinct). We have created five training sets
with 1000 instances each. These instances were se-
lected randomly, distributed as follows: 33 repre-
senting duplicate contacts (half of the 66 available)
and 967 distinct. For each training set we have cre-
ated a corresponding test set with the addition of in-
stances available, i.e. containing the 573,044 remain-
ing records, among which are present the other 33
pairs of duplicate contacts.

Figure 6 shows the distribution of values of each
field (similarity scores) according to the class, con-
sidering one of the training sets. None of the simi-
larity functions alone is able to properly separate the
majority of duplicate contacts. In addition, an expert
user would have great difficulty in assigning a thresh-
old for each function and/or set a way to combine
the scores appropriately. The results presented below
show the contribution of using machine learning in
the process of contact duplication.

5.1 Results

Table 3 summarizes the results of the trained models,
i.e. the number of pairs of contact duplicate or dis-
tinct correct and incorrectly classified. For each data
set (D) is presented: the frequency of true positive
(T P), the frequency of false negatives (FN), the fre-
quency of true negatives (T N), the frequency of false
positives (FP), the percentage of total instances cor-
rectly classified (accuracy - Acc) and the recall of the
class corresponding to duplicate contacts (Rdup), i.e.
the percentage of duplicate pairs correctly identified.
The last lines show the average and standard devia-
tion.

The overall quality of the models can be seen by
the high rate of test instances classified correctly. On
average, 97% of the pairs of contacts have been iden-
tified in the correct class. When observed only dupli-
cate classes were identified 27 to 33 pairs, resulting

Table 3: Deduplication results using the classifier C4.5.

D T P FN T N FP Acc Rdup
1 32 1 572309 702 99,9 97,0
2 28 5 572308 703 99,9 84,8
3 27 6 571452 1559 99,7 81,8
4 32 1 570835 2176 99,6 97,0
5 33 0 570085 2926 99,5 100
M 30,4 2,6 571398 1613 99,7 92,1
DP 2,7 2,7 962 962 0,2 8,2

Figure 6: Distribution of similarity scores according to the
class for one of the training sets.

in an average of 30.4 (92.1%) duplicate pairs of con-
tacts. The number of false negatives was significant
only for datasets 2 and 3, which made the recall fall
to 84.8 and 81.8% respectively.

Contact Deduplication in Mobile Devices using Textual Similarity and Machine Learning

69

Figure 7: Model generated from the training set 1.

Despite the good results many different pairs were
incorrectly classified as duplicates (1613 on average).
The high standard deviation occurred because the 967
records randomly selected to compose the training
sets are not sufficiently representative. However, the
main goal of this work is to correctly classify cases
where the contacts are duplicate. About false nega-
tives, on average, only 2.6 of the 33 (7.9%) of dupli-
cate contacts were classified incorrectly.

Figure 7 shows the model learned by C4.5 algo-
rithm using training set 1. Class 1 refers to dupli-
cate contacts and class 0 to different contacts. The
root of the decision tree presents the most discrim-
inatory attribute, indicating the importance of simi-
larity between the contacts’ names according to the
Jaccard function. For scores less than or equal to
0.12, the model was able to classify 961 of the 967
(99.4%) distinct pairs available in the training set. For
scores greater than 0.33, there were classified 28 of 33
(84.8%) duplicate contacts. The cases that were not
identified by the first two nodes of the tree were clas-
sified by the leaf nodes that correspond to the scores
returned by the similarity functions MongeElkan and
JaroWinkler.

The lowest revocation Rdup = 81,8% presented in
test set 3 can be explained by the simplicity of the
model learned using the corresponding training set
(Figure 8). The tree contains only one decision node
that refers to the scores returned by the JaroWinkler
function. For scores less than or equal to 0.84, all
967 different pairs available in the training set was
correctly identified, but there was two classification
errors of duplicate pairs. Values larger than 0.84 cor-
rectly identified 31 of 33 (93.9%) duplicate pairs.

Figure 8: Model generated from the training set 3.

5.2 Analysis of the Failure Cases

Table 4 presents the cases in which the proposed
method failed to identify the duplicate contact pairs,
i.e. the false negatives. For each type of failure and
dataset (Di|1 ≤ i ≤ 5) the number of cases is dis-
played. Failures are classification errors caused by: a
similarity function not used in the model, represented
by strikethrough, or a score returned by a given sim-
ilarity function less (⇓) or greater (⇑) than the rule
threshold that classify the evaluated instance. Some
examples of records and the reasons why they fit into
a particular type of failure are presented bellow.

In D1, the pair of contacts whose names are
“Leonardo C3” and “Leonardo Emmendorfer” is not
identified because MongeElkan returns 0.5. This
score is less than 0.7, so it was classified by a leaf
node as distinct contacts (see Figure 7). This case of
failure is very difficult to solve because C3 is a qual-
ifier that refers to the workplace of the contact, while
Emmendorfer is the surname.

In D3, although MongeElkan returned the maxi-
mum score for contacts “Nyland” and “Nathan Ny-
land”, JaroWinkler returns only 0.61. Due to this
function was the only one used in the decision tree
and the classification threshold was 0.84 (see Figure
8), this pair was incorrectly classified as distinct con-
tacts.

In the same way, Table 5 shows the cases of failure
to identify distinct contacts, i.e. false positives. It
presents the same fields as in Table 4.

Table 4: Cases of failure to identify duplicate contacts (false
negatives).

Failure D1 D2 D3 D4 D5
Levenshtein 1 1
JaroWinkler ⇓ 5
MongeElkan ⇓ 1 4 1
FN(Σ) 1 5 6 1

Table 5: Cases of failure to identify distinct contacts (false
positives).

Failure D1 D2 D3 D4 D5
Levenshtein 286 238 442 838 1354
Jaccard 637
JaroWinkler 134
MongeElkan 244 36
Jaccard ⇑ 73 8 204 1375
JaroWinkler ⇑ 332 236 1116 161
MongeElkan ⇑ 11 323 18
FP(Σ) 702 703 1559 2176 2926

In D1, most failures are cases where the scores re-
turned by the JaroWinkler function are higher than ex-
pected by the classification model, totaling 332 of the
702 cases (47.3%). For example, JaroWinkler (Adri-

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

70

ana Gouveia, Adriana Jouris) = 0.93. This and many
other distinct pairs of contacts consisting of only two
names and where the first name is exactly the same
return very high scores for this function. This behav-
ior was because JaroWinkler considers the size of the
prefix in common to the strings.

In D5, the contacts Fernando Luis Martins and
Luiz Fernando Tusnski are incorrectly detected as dis-
tinct pairs because the score returned by the Jaccard
similarity function is 0.5. This value is higher than the
maximum score of 0.33 expected by the classification
model. This type of error was most frequent for this
dataset (1375/2926 = 47%), in addition to the cases
where the similarity between emails was not used by
the Levenshtein function (1354/2926 = 46.3%).

6 CONCLUSION

This paper presented a method for deduplication of
contacts that facilitates the integration process and
considerably reduces the time a user would take to
manually associate contacts from different accounts.
The experiments show that, using textual similarity
functions and machine learning algorithms, it was
possible to correctly identify up to 92.1% of duplicate
contacts pairs that do not share telephone numbers or
e-mail addresses. The contribution of the proposed
work when compared to the tools presented in Section
2 becomes evident because these pairs of contacts can
not be detected by any of them.

However, other identification errors can still ap-
pear. For example, the contact with name = “Mom”
stored on the SIM card with the home phone number
would not be detected as a duplicate of the record con-
taining its proper name and cell number. There may
still be homonyms that do not represent the same per-
son, as in the case of “Orlando Marasciulo” (records
6, 7 and 8 of Figure 1).

As future work we intend to adopt a cloud archi-
tecture that stores the users local learning models and
integrates them generating a global model. The hits
and errors of the deduplication processes will be com-
bined in order to improve the deduplication process
for all users. Also, the prototype will be reimple-
mented as a service allowing an efficient incremental
deduplication for each insertion or deletion of a con-
tact.

Finally, the graphical interface will only allow the
user set up parameters and interact with the integra-
tion algorithm, choosing between two or more repre-
sentations of a duplicate contact name.

REFERENCES

Accaci, A. (2016). Duplicate contacts, v. 3.23. http://
play.google.com/store/apps/details?id=com.accaci.
Available: November, 2016.

Bilenko, M. and Mooney, R. J. (2003). Adaptive dupli-
cate detection using learnable string similarity mea-
sures. In Proceedings of the ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data
Mining, pages 39–48.

Borges, E. N., Becker, K., Heuser, C. A., and Galante, R.
(2011). A classification-based approach for biblio-
graphic metadata deduplication. In Proceedings of
the IADIS Int. Conference WWW/Internet, pages 221–
228.

Chaudhuri, S., Ganjam, K., Ganti, V., and Motwani, R.
(2003). Robust and efficient fuzzy match for online
data cleaning. In Proceedings of the ACM SIGMOD
International Conference on Management of Data,
pages 313–324.

Christen, P. (2012). A survey of indexing techniques
for scalable record linkage and deduplication. IEEE
Transactions on Knowledge and Data Engineering,
24(9):1537–1555.

Cohen, W. W., Ravikumar, P., and Fienberg, S. E. (2003).
A comparison of string distance metrics for name-
matching tasks. In Proceedings of the IJCAI Workshop
on Information Integration, pages 73–78.

Dabhi, P. (2015). Duplicate contacts delete, v. 1.1.
http://play.google.com/store/apps/details?id=com.don.
contactdelete. Available: November, 2016.

Dal Bianco, G., Galante, R., Gonalves, M. A., Canuto, S.,
and Heuser, C. A. (2015). A practical and effective
sampling selection strategy for large scale deduplica-
tion. IEEE Transactions on Knowledge and Data En-
gineering, 27(9):2305–1319.

de Carvalho, M. G., Laender, A. H. F., Gonalves, M. A.,
and da Silva, A. S. (2008). Replica identification us-
ing genetic programming. In Proceedings of the ACM
Symposium on Applied Computing, pages 1801–1806.

Dorneles, C. F., Nunes, M. F., Heuser, C. A., Moreira, V. P.,
da Silva, A. S., and de Moura, E. S. (2009). A strategy
for allowing meaningful and comparable scores in ap-
proximate matching. Information Systems, 34(8):673–
689.

Goadrich, M. H. and Rogers, M. P. (2011). Smart smart-
phone development: Ios versus android. In Proceed-
ings of the 42nd ACM Technical Symposium on Com-
puter Science Education, SIGCSE ’11, pages 607–
612, New York. ACM.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann,
P., and Witten, I. H. (2009). The weka data min-
ing software: An update. SIGKDD Explor. Newsl.,
11(1):10–18.

Kowalski, G. J. and Maybury, M. T. (2002). Information
Storage and Retrieval Systems : Theory and Imple-
mentation. Springer, Boston, MA, USA.

Lenzerini, M. (2002). Data integration: a theoret-
ical perspective. In Proceedings of the ACM

Contact Deduplication in Mobile Devices using Textual Similarity and Machine Learning

71

SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, pages 233–246.

Manning, C. D., Raghavan, P., and Schutze, H. (2008). In-
troduction to Information Retrieval. Cambridge Uni-
versity Press.

Ogata, M. and Komoda, N. (2013). The parameter opti-
mization in multiple layered deduplication system. In
Proceedings of the International Conference on Enter-
prise Information Systems, volume 2, pages 143–150.

ORGwareTech. (2015). Contact merger, v. 3.8. http://
play.google.com/store/apps/details?id=com.orgware.
contactsmerge. Available: November, 2016.

Peng, T. and Mackay, C. (2014). Approximate string match-
ing techniques. In Proceedings of the International
Conference on Enterprise Information Systems, vol-
ume 1, pages 217–224.

Quinlan, J. R. (1993). C4.5: programs for machine learn-
ing. Morgan Kaufmann Publishers Inc., San Fran-
cisco, USA.

Silva, A. M. (2012). Contacts cleaner, v. 1.6.
http:// play.google.com/store/apps/details?id=br.com.
contacts.cleaner.by.alan. Available: November, 2016.

Sunil, D. M. (2016). Duplicate contacts manager, v. 2.8.
http://play.google.com/store/apps/details?id=com.
makelifesimple.duplicatedetector. Available: Novem-
ber, 2016.

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

72

