
Stack Wars: The Node Awakens

Steven Kitzes and Adam Kaplan
Department of Computer Science, California State University Northridge, Northridge, CA, U.S.A.

Keywords: Web Server, LAMP, Node.Js, Benchmark, Cloud Technology.

Abstract: As the versatility and popularity of cloud technology increases, with storage and compute services reaching
unprecedented scale, great scrutiny is now being turned to the performance characteristics of these
technologies. Prior studies of cloud system performance analysis have focused on scale-up and scale-out
paradigms and the topic of database performance. However, the server-side runtime environments
supporting these paradigms have largely escaped the focus of formal benchmarking efforts. This paper
documents a performance study intent on benchmarking the potential of the Node.js runtime environment, a
rising star among server-side platforms. We herein describe the design, execution, and results of a number
of benchmark tests constructed and executed to facilitate direct comparison between Node.js and its most
widely-deployed competitor: the LAMP stack. We develop an understanding of the strengths and limitations
of these server technologies under concurrent load representative of the computational behaviour of a
heavily utilized contemporary web service. In particular, we investigate each server’s ability to handle
heavy static file service, remote database interaction, and common compute-bound tasks. Analysis of our
results indicates that Node.js outperforms the LAMP stack by a considerable margin in all single-application
web service scenarios, and performs as well as LAMP under heterogeneous server workloads.

1 INTRODUCTION

Cloud technologies and their proliferation have
revolutionized the ways in which we live our lives
(Welke, Hirschheim and Schwarz, 2011). Service
domains that have come to rely on the cloud include
retail commerce, entertainment, and business
functions across the board, including, in a circular
fashion, software development itself. Many service
and research domains would not be possible at
current scale without the cloud. These include
contemporary social networks and big-data
analytical science. These domains leverage massive
amounts of instantly-accessible data which can be
collected, moved, and analysed upon a flexible
collection of computing resources deployed across
the world.

A need has arisen to assess the various popular
web frameworks, and to produce an understanding
of their performance characteristics. In the absence
of such understanding, a web-service company may
find itself under- or over-provisioning resources,
and/or poorly utilizing developer effort. For a
modern technology company developing a web-
service product, an ideal design includes a thorough

analysis of existing web-stack technologies, such
that their strengths and weaknesses can be identified
and their performance capabilities estimated. Such
an analysis can guide selection of the most
promising technology stack upon which to host a
given service.

Existing research has focused on scaling up the
hardware on which cloud technologies are hosted,
by upgrading or expanding hardware resources to
become more performant (Appuswamy et al., 2013),
or to scaling out the host hardware by adding more
computational resources upon which to distribute
compute workloads (Ferdman et al., 2012).
Investigations have also targeted database
performance (Pokorny, 2013), resulting in extensive
database benchmarking standards (Transaction
Processing Performance Council, 2016). These
standards may guide web-service architects through
the database design space.

However, less focus has been paid to the
comparative performance of the web application
software being run on these hardware platforms.
This software is often deployed on numerous load-
balanced machines, and facilitates business logic for
thousands of concurrent users or more (Chaniotis,

Kitzes, S. and Kaplan, A.
Stack Wars: The Node Awakens.
DOI: 10.5220/0006280702390249
In Proceedings of the 19th International Conference on Enterprise Information Systems (ICEIS 2017) - Volume 3, pages 239-249
ISBN: 978-989-758-249-3
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

239

Kyriakou and Tselikas, 2015). In this work, we
investigate the performance of these web application
service engines as they compare under concurrent
user load when run on the same hardware. We
specifically focus attention on Node.js in
conjunction with the Express.js framework, together
part of an increasingly popular, recently deployed
web application server stack known as MEAN
(MEAN.JS, 2014). We compare Node.js to its more
entrenched competitor, namely the Apache web
server in conjunction with PHP, which together form
part of the famous LAMP stack, still the most
widely distributed web platform in production
(Netcraft, 2015).

It is worth noting that Node.js functions as a
complete platform that allows developers to write
server-side software and web applications using
JavaScript. By comparison, Apache does not
contain an engine for executing PHP code, but rather
integrates with the PHP interpreter and serves the
resultant output of a given script to the requesting
client as appropriate. Node.js is special in this
regard, because an application can be written in
JavaScript that handles all aspects of an
application’s duties, from serving client requests, to
database interaction, to executing server side
JavaScript code. Since Node.js is capable of
managing static file hosting, handling business logic,
serving dynamic content, and handling database and
file I/O, this platform has proven to be an attractive
solution, in some cases winning a place over other
popular frameworks in the development
environments of industry leaders including eBay,
LinkedIn, PayPal, Uber and many others (Github,
2016). To these early adopters, Node.js provides
tremendous community support and a broad
selection of libraries made available both officially
and unofficially via the NPM (Node Package
Manager) system; as well as the ability to code
entire web applications from front to back entirely in
a single programming language (JavaScript).

Also attractive to Node.js users is the enticing
possibility of superior web application performance
(Chaniotis, Kyriakou and Tselikas, 2015). The
attention Node.js has attracted from the community
and from industry leaders generates the confidence
that this is a framework that is worthy of further
performance investigation, especially in direct
comparison against the current industry leader,
Apache/PHP.

The remainder of this paper is organized as
follows. In Section 2, we provide a background
description of the Node.js and Apache runtime
architectures, and discuss the most closely related

work. In Section 3, we detail our experimental
methodology for comparing Node.js and Apache.
Section 4 provides experimental results over
multiple contemporary web-service benchmarks.
Finally, in Section 5, we provide concluding remarks
and a brief discussion of future work.

2 BACKGROUND AND RELATED
WORK

Node.js employs an event loop, executed on a single
thread, to carry out execution of all user defined
program code, as shown in Figure 1. However, only
the management of the event loop and the tasks
placed upon it are executed by this single thread.
Many other threads are involved in the process of
managing a full Node.js instance. Node.js is built
upon a bedrock of supporting technologies, most
importantly Google’s V8 Runtime and the libuv
support library. V8 allows JavaScript to be run
efficiently on server side hardware whereas libuv
provides the asynchronous event handling structure
which holds the promise of enhanced application
performance (Libuv, 2016).

At a high level, libuv’s architecture can be
described as follows. An event is placed into the
Node.js event queue by a client request, and the
event loop will process this event. The client
request will then be handled by user code. In cases
requiring asynchronous operations, such as database
or file system interaction, the user code will invoke
Node.js (or third party) function calls for these tasks.
These function calls spawn asynchronous processes
on one of several worker threads running in a thread
pool behind the scenes. Node.js, as well as third
party library developers, provide this asynchronous
behaviour by default, and implicitly encourage its

Figure 1: The Node.js Event Loop.

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

240

Figure 2: The Apache Prefork Multi-processing Module.

use.
Otherwise, as asynchronous tasks execute upon

separate worker threads, the event loop thread
continues serving other pending requests, invoking
callbacks, or spawning additional asynchronous
tasks upon worker threads as needed. Asynchronous
tasks, once completed, return control to the
application developer via callbacks, which are
placed on the end of the event queue as new events,
and wait their turn to be handled by the Node.js
event loop as appropriate.

For performance reasons, it is critical that users
take care to avoid introducing computationally
heavy code, or other synchronous tasks, into either
request handlers or callbacks that are executed on
the event loop thread, as these block execution of the
event loop. In fact, programmers must explicitly
specify when and if they wish to use a synchronous
version of a given operation, as any synchronous
implementation will block the event loop until its
task completes (Tilkov and Vinoski, 2010).
However, if the asynchronous functionality that
comes packaged with Node.js is employed, and the
event loop remains unburdened with synchronous
operations, then the load of processing each
individual item on the event loop queue remains
relatively light, and chiefly consists of spawning an
asynchronous task on a worker thread.

As Figure 2 demonstrates, Apache employs a
configurable multi-process, multi-threaded solution
to concurrency. This modern Apache architecture
represents a departure from the original Apache
engine, which was designed at a time when
concurrency was not a severely limiting factor for
most use cases. The contemporary Apache maintains
a thread pool (in varying patterns by version,
configuration, and host operating system) for
handling request service operations in parallel
(Menasce, 2003). However, as mentioned above,
while these processes are carried out in true parallel
fashion on multiple threads – and possibly even on
multiple processors – each individual thread will
block in its own right while waiting on outstanding

operations that might take long stretches of time,
such as database or file system access. Moreover,
the construction, tear-down, and context switching
of these threads can be costly in and of itself. We
aim to mitigate the computational overhead of
Apache/PHP’s management of many parallel
threads, each of which may individually block as it
handles a single user request. We compare against
the aforementioned Node.js event queue model,
where a single thread responds to multiple requests
and multiple responses using the same single queue,
and farms subtasks to a pool of worker threads.

The first efforts to provide web benchmarks
include SPECweb and SPECjbb from the Standard
Performance Evaluation Corporation. Although
SPECjbb, specific to Java servers and JVMs,
continues to be supported with a 2015 release
(SPECjbb, 2015), SPECweb’s collection of server-
side applications implemented in JSP, PHP, and
ASPX has retired as of 2012 (SPECweb, 2009).
Although these benchmarks have been used to
compare web server implementations before,
including power characteristics (Economou et al.,
2006) and maximum concurrent users (Nahum,
Barzilai and Kandlur, 2002), the underlying
architecture of these servers has changed in recent
years, and the applications are no longer
representative of the feature-set nor asynchronous
APIs provided by modern web services. Studies
using WebBench or other traffic generators to load-
test Apache and other web-servers have measured
server performance when accessed by tens of
simultaneous clients (Haddad, 2001), rather than the
hundreds or more expected on contemporary
services.

Prior work has also investigated the performance
of JavaScript virtual machines on different mobile
platforms (Charland and Leroux, 2011), or have
compared the benchmarks offered by JavaScript
engines to the execution of JavaScript on the
websites of famous web applications
(Ratanaworabhan, 2010). Both of these studies limit
performance analysis of JavaScript to client-side
execution, either measured coarsely over the
application duration, or by analysing fine-grain
events recorded by instrumented client browsers.
Although these studies compare different browsers
and/or different client hardware, they do not
demonstrate the scaling advantages of JavaScript
when executed on the server side.

One recent study in particular measures the
server-side execution of Node.js in comparison to
Apache/PHP and Nginx, another open source web
server competitor (Chaniotis, Kyriakou and Tselikas,

Stack Wars: The Node Awakens

241

2015). The results found that for most purposes,
under concurrency stress testing, Nginx performed
better at scale than Apache/PHP, but also that
Node.js outperformed both, except in the case of
static file hosting, where Nginx was the winner. The
ultimate performance solution proposed by
Chaniotis et al was to develop a hybrid system in
which Nginx was used to serve static files and
Node.js was used for all other purposes. However, it
was also acknowledged that Node.js as a singular
web server environment bore other advantages,
including the fact that an entire web application
could be developed, front to back, all in JavaScript,
a single language.

To refresh and enhance the results of prior
investigation into server-side performance, we focus
on the server-side benchmarking process in
particular, using a number of operations commonly
employed by contemporary web services. Beyond
the results reported by the most recent web-server
measurements (Chaniotis, Kyriakou and Tselikas,
2015), other contemporary studies focus on database
benchmarking (Pokorny, 2013), and cloud scaling
techniques (Ferdman et al., 2012). Moreover, the
web workloads employed by Chaniotis et al are
limited to static file retrieval, hashing operations,
and basic client/server I/O. Thus, investigation into
web application framework performance remains
relatively quiet at the time of this writing. In this
work, we extend the efforts of prior art by
developing more extensive benchmarks that allow us
to directly exercise, measure, and compare the
performance of Node.js and Apache/PHP as they
fare in typical client-server interactions.
Furthermore, we exercise these servers with
heterogeneous workloads comprised of multiple
simultaneous combinations of different operations.
These workloads are more representative of the
diverse set of functions executed on-demand by
modern web service APIs.

3 METHODOLOGY

Three physical machines were employed as nodes
for this study. A Lenovo X230 ThinkPad with 8GB
of RAM and a 64-bit 2.60GHz Intel i5 processor
hosts a pair of virtual servers. The guest virtual
machines thereon run atop Oracle VM VirtualBox,
and feature a dual-core configuration with 4GB of
RAM powering an installation of 32-bit Ubuntu
14.04. The server versions of Apache and Node.js
are 2.4.18 and v5.6.0 respectively. Apache Bench
was executed upon a client desktop machine

boasting a six-core 64-bit AMD Phenom II clocked
at 3.0 gigahertz and running Windows 7 on 4GB of
RAM. Finally, our MySQL server was executed
upon a desktop machine featuring a six-core 64-bit
AMD FX clocked at 3.3GHz and running Windows
10 on 8GB of RAM.

Using Apache Bench (Apache Software
Foundation, 2016), we execute several tests against
both Apache/PHP and Node.js. These tests vary
load, in terms of total requests made; as well as
concurrency, in terms of requests sent to the server
concurrently by Apache Bench. In this work, we
generate up to 8192 concurrent requests for our
simplest benchmark in Section 4.1.

To provide a direct “apples-to-apples”
comparison, each benchmark is implemented both in
PHP and Node.js using the APIs available in each
framework. In Section 4.5, we employ child
processes in both frameworks to measure the impact
of this programming practice on workload
performance.

We address performance variability in our
measurements by testing each reported level of
concurrency 10 times, and averaging these results
into a single value represented by each bar
(measurement) in the figures of Section 4. Put
differently, for each benchmark, we executed each
web server configuration 10 times at each
concurrency level, and average these 10 executions
to provide the single reported result per concurrency
level per benchmark.

The metric concurrent mean is defined by
Apache Benchmark as the mean time per request
“across all concurrent requests.” This refers to the
amount of time spent on each individual request, as
a calculated mean value (Apache Software
Foundation, 2016). If a given test executes N
requests, at some constant concurrency level, for a
total execution time of T, the concurrent mean is
defined in Equation 1 as follows.

concurrent mean = ܶ/ܰ
(1)

In this work, we employ the concurrent mean
metric to represent how much time a server spends
working on each single request, on average.

4 EXPERIMENTAL RESULTS

4.1 Web Service Baseline Measurement

In Figure 3 we compare the bandwidth in requests
handled per second of Node.js and Apache under the
"no-op" scenario: a simple call-and-answer test

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

242

employing a small, constant response string. This
test effectively reports the maximum possible
performance (measured as response time) of which
our server frameworks are capable, as they are
performing the smallest possible amount of work per
request. This will serve as a baseline against which
we consider other bandwidth results from a variety
of scenarios. The results of this simple test,
measuring the number of requests served per unit
time at exponentially increasing levels of
concurrency, demonstrate a clear advantage in favor
of Node.js for the "no-op" scenario. For this test,
both executions of Apache Benchmark make 10000
total requests. In this test, we begin at concurrency
level 2, meaning 2 requests outstanding from clients
at any given moment, and ramp concurrency up by
powers of 2 through concurrency level 8192.

At low concurrency levels, and as concurrency
begins to ramp up slowly, Apache/PHP bandwidth
wavers near 300 requests/second, before collapsing
to a plateau level, so named as performance levels-
off beyond (to the right of) this point. Node.js, on
the other hand, performs similarly to Apache under
testing conditions of up to concurrency level 256,
but only wavers slightly near the plateau level of
Apache/PHP. Positive results for Node.js persist
longer than expected, and far beyond the
concurrency level at which performance for
Apache/PHP drops off.

In Figure 4, mapping mean request time against
longest request service time for both Node.js and
Apache/PHP at exponentially increasing levels of
concurrency, we begin to see the effects of high
concurrency as it taxes both of our server stacks.
We see a number of interesting results surfacing
from this particular manifestation of the data. First,
we see that mean time and longest time do not
deviate far from each other for either technology set.
Next, we observe that Node.js appears to enjoy a

Figure 3: Bandwidth for the Baseline “No-Op” (Requests
per Second).

Figure 4: Mean vs Longest Request Time for Baseline
“No-Op” (in ms).

tremendous advantage over Apache/PHP, although
this is partially an illusion created by our charting
methodology. If the same chart were presented with
a logarithmically scaled Y-axis (not pictured here
due to space constraints), we would see that the
performance for our two technologies, with respect
to mean and longest times, actually tracks linearly
with respect to concurrency, and that the
performance difference between the two
technologies likewise tracks linearly. This result
suggests that across all levels of concurrency,
Node.js can be expected to maintain a considerable
lead over Apache/PHP.
 In Figure 5 we observe the concurrent mean
across all concurrent requests. As might be predicted
based on the results shown above in Figure 3, we see
the average time per request rising precipitously
from approx 4 to 15 milliseconds for Apache/PHP at
the plateau level beyond 256 concurrent requests.
The average time per request for Node.js remains
relatively flat, showing no significant rise as
concurrency crosses the plateau level for
Apache/PHP.

4.2 Search over Large Strings

Our next test is designed to stress the computational

Figure 5: Concurrent Mean for Baseline “No-Op” (in ms).

Stack Wars: The Node Awakens

243

efficiency of each technology. To that end, we
devise a test in which a very large body of text is
searched using regular expressions for target strings
of various length and frequency. Again, this test was
run at exponentially increasing levels of
concurrency, beginning with 2 and ramping up 64.
Due to time constraints and the computational cost
of large string searches, we are herein prevented
from testing at concurrency levels beyond 64.

In Figure 6 we see that concurrency for this
particular test had no noticeable impact on
performance overall, but we do see Node.js
outperforming Apache/PHP in dramatic fashion,
again, by a constant factor. Monitoring system
performance during our tests at various
concurrencies, we have observed that over all of our
test runs, Node.js used 100% of all available
processing resources on a single core, and
Apache/PHP used 100% of all computational
resources on both of the cores available to our
virtual machine. In the case of Node.js, this took the
form of one, single process, occupying 100% of the
processor to which it had access, whereas
Apache/PHP spawned many processes, each of
which divided all available computational resources
among themselves.

In other words, when Apache/PHP received two
concurrent requests, our performance monitors
report two Apache/PHP processes, each occupying
99% of computational resources (effectively 100%
of all resources not demanded by the operating
system). Note that this totals 198% of resources,
this being due to the fact that our performance
monitor reports the percentage of a given processor
core’s utilization that is being used by a process, not
the percentage of all system-wide processor
availability. (This is why we know that Node.js only
occupied a single core, but did occupy the entirety of
that core’s computational resources, based on the
99% utilization drawn by a single process.)

Figure 6: Bandwidth for the String Search Service
(Requests per Second).

When Apache/PHP received four concurrent
requests, we saw reported four Apache/PHP
processes, each utilizing approximately 49.5% of
computational resources (again, totaling 198%,
meaning 99% of each of two cores). When
Apache/PHP received eight concurrent requests, we
observed eight Apache/PHP processes, each
utilizing approximately 24.7% of computational
resources, and so on. This reinforces our
understanding of the Apache/PHP model of handling
multiple concurrent client requests by dedicating one
process to each. Despite that, and the verification at
the system level that Apache/PHP was successfully
processing requests in parallel, Node.js still
managed to outperform Apache/PHP by a near
constant factor of more than 5 over tests at all
concurrency levels.

We attempt to explain this surprise in our results
as follows. First, it is possible that Node.js’s string
search and regular expression engine is far more
efficient for this particular type of task than
Apache/PHP’s. It is also likely that the cost to
Apache/PHP of building up and tearing down
threads and processes to carry out this parallelization
is damaging to its overall performance. The
constant and costly context switching among
Apache processes is potentially a contributing factor
as well. Regardless, the evidence suggests that, for
this particular type of computationally intensive
task, Node.js performance is superior to Apache.

We note that in this test, performance is not
impacted by increasing concurrency. We observe
that the performance of this test is not bound by the
efficiency of concurrency management, but by the
computation of the task itself. Even if we reduce our
concurrent load to a single outstanding request, the
server would still require approximately the same
time to service that single request, since it is the
string search itself that produces a response delay.

Figure 7: Concurrent Mean for the String Search Service
(in ms).

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

244

Figure 7 shows the concurrent means for the
large body string search tests, with results closely
tracking those in Figure 6. Differences in our
Node.js results are nearly indiscernible across the
board in this test. The same is true for Apache/PHP,
which takes a near-constant factor of 5 times longer
than Node.js per request.

4.3 Serving Large Static Files

Static file service is another application domain that
we investigate with respect to the performance of
our two web application engines under heavy
concurrent load. The goal in testing this particular
scenario was to evaluate whether Apache/PHP
would continue to be outperformed by Node.js in
this service domain, as in prior work (Chaniotis,
Kyriakou and Tselikas, 2015). Our strategy in
designing this test is to stress the servers by making
requests for large static files. For this test, we
selected a JPEG file of approximately 3.2MB in
size, representing the common transfer of profile
pictures and other photos in social media and similar
web service scenarios.

In Figure 8, we observe a more pronounced
effect on performance with increased concurrent
load for this test, as opposed to the results of the
string search results in Figure 6. However, the
results for both of our servers tracked more closely
to each other than in any other test. This close
tracking indicates that the server platform hosting
our application has less impact on performance in
this scenario than limitations of the host hardware.
Figure 9 shows that Node.js has a small performance
advantage at a concurrency level of 32 simultaneous
requests and beyond, beating Apache/PHP by more
than 100 ms per request (on average) at a
concurrency level of 128. In this test, we were
forced to limit the number of requests both in total,
and under heavy concurrency, due to the amount of
time required to serve static files of this size. We
believe that a similar test with much smaller static
files would yield results that highlight the
performance benefits and limits of our servers
themselves, rather than the hardware hosting them,
and we consider this a prime candidate for future
work.

4.4 Database Operations

The final benchmark used to compare Apache/PHP
to Node.js measures their performance in fielding
client requests for database operations. These
requests demand little computation from the

Figure 8: Bandwidth for Static Files (Requests per
Second).

Figure 9: Concurrent Mean for Static Files (ms).

web-server itself, but require a tremendous amount
of database communication by the servers to satisfy
client requests. We anticipated this test would stress
our server memory utilization, since state would
need to be maintained on outstanding database
requests, and in very large quantities as our
concurrency level ramped up into the thousands.
We intentionally designed the database queries to
perform relatively high-latency work, such as
complex join functions, in order to force our servers
to hold onto request state longer.

Figure 10 displays the bandwidth results for this
database scenario, and shows a pattern very similar
to that observed during our “no-op” testing in
Section 4.1. Performance for both platforms
improves early on as concurrency begins to ramp up,
then levels off. Later, when concurrency ramps
beyond 256 simultaneous client requests, we see
Apache/PHP take a precipitous dive in performance,
falling down to a plateau level very much like the
one we saw during “no-op” testing. Node.js
continues to perform admirably by comparison,
despite some heavy turbulence in results near the
same concurrency level where Apache/PHP
performance drops. The reason for this plateau level
cropping up in multiple test scenarios for
Apache/PHP, and the reason for turbulence in

Stack Wars: The Node Awakens

245

Figure 10: Bandwidth for Database Ops (Requests per
Second).

Figure 11: Concurrent Mean for Database Ops (ms).

Node.js’s results pattern at the same point in its
curve on our graphs, is a chief target for future work,
as discussed in our conclusion below.
 In Figure 11 we display the concurrent means for
the same database query carried out by our two
database benchmark applications on their respective
platforms. As observed in Figure 10, we see the
concurrent mean dropping (improving) with early
concurrency ramp-up, with some light turbulence.
 Later, once we reach our plateau level of 512
concurrent requests, the concurrent means for
Apache/PHP skyrocket beyond 14 ms per request.
Meanwhile, Node.js performance results
demonstrate some turbulence, but hover around 6 ms
per response as seen at lower concurrency, even as
Apache/PHP experiences a sudden performance
drop.

4.5 Heterogeneous Workloads

Our final test employs a heterogeneous mix of
concurrent requests, generated by three
simultaneously instantiations of Apache Bench –
one to make requests that require heavy
computation, one to make static file requests, and
one to make requests necessitating heavy database
interaction with the server. Instead of performing a

single test multiple times at varying levels of
concurrency, we ran three tests simultaneously at
constant concurrency levels. These include (for both
Node.js and Apache/PHP) 10,000 database
interaction requests at a constant concurrency level
of 64, 30 computationally heavy requests at a
constant concurrency level of only 1, and 30 large
static file requests at a constant concurrency level of
only 1.
 Since it is known to be poor practice to make the
event loop responsible for time consuming
computation, we employ better (if more complex)
practices by moving that computation off of the
Node.js event loop. This allows us to explore the
impact of good programming practice on Node.js
performance under a heterogeneous request load.
 We accomplish this by taking advantage of child
processes, which are supported by first-party
libraries in both Node.js and Apache/PHP. To begin,
we implemented a standalone version of our time
consuming, computationally intensive large string
search that could be executed from the command
line. We implemented this as a standalone string-
search script in PHP. Next, we adjusted our server
scripts (both Node.js and Apache/PHP) so that
incoming requests for this heavy computation would
be handled by child processes spawned by our
servers, rather than in code executed by the web
servers themselves. Also, by implementing the
string-search script in PHP, we remove any potential
advantage that Node.js may realize via better regular
expression implementation.
 Of particular note is that in Node.js, the function
that kicks off a child process is implicitly
asynchronous, meaning that Node.js spawns the
process, allowing it to run in parallel on the
operating system, then receives the result packaged
as a new callback event on the event loop. Thus, we
anticipated that Node.js would handle our
computationally heavy task in a dedicated process,
freeing the event loop to handle lighter requests
quickly in parallel, just as Apache/PHP does by
default at scale (for better or worse).
 In Figure 12, we compare bandwidth results for
heterogeneous workloads with and without child
processes, for both Apache/PHP and Node.js. In this
heterogeneous workload, Node.js trails behind
Apache/PHP with respect to database operations per
second, but with the use of child processes, the
margin of difference can be reduced from a gap of
over 15% (without child processes) to less than 2%
(with child processes). In this workload, Node.js
with child processes takes the lead over Apache/PHP
for static file requests, with a narrow advantage of

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

246

less than 0.1 requests per second. However, without
employing child processes, Node.js falls behind
Apache/PHP by approximately 0.2 requests per
second. Interestingly, though both Node.js and
Apache/PHP are spawning identical PHP child
processes to perform the string search task, Node.js
performs slightly worse than Apache on this
workload, losing the entire advantage it had when
executing the regular expression in its own engine
(without child processes).
 In Figure 13 we observe that the mean time for
concurrent database interactions is nearly
indistinguishable between Node.js and Apache/PHP
with child processes, though Apache/PHP does have
a slight advantage (barely lower time per request).
The mean time per static file request tracks very
closely between our two applications with child
processes, with Node.js eking out a narrow lead
here. Comparing the mean time per string search
request, however, shows a more dramatic advantage
of nearly 10% for Apache/PHP with child process.
This margin of victory is particularly large as the
performance bottleneck for this task lies in a
separate child process executing in parallel to our
web applications. Moreover, this 10% advantage
amounts to nearly a full second of time per request,
which is significant.
 We identify two potential reasons for this result.
First, it is possible that the libraries used by Node.js
to spawn child processes, and pass data between the
Node.js context and the context of a child process
itself, is itself slow, resulting in the lag time of
nearly a full second when compared to Apache/PHP
with child processes in Figure 13. Second, this may
be an artefact of implementing the child processes in
PHP, as the Apache server already has the PHP

engine loaded to handle other service requests when
the child process is spawned. Thus, the ready
availability of the PHP engine may save time
creating the child process context, as caches and
other system resources are warmed-up and ready for
the child code to execute. By comparison, Node.js
must spin up this PHP engine from scratch when the
child process is executed. This may account for the
nearly full second of lag time between the two
engines.

5 CONCLUSION AND FUTURE
WORK

In this study, we design and execute a number of
benchmark tests against Node.js and its most
popular competitor and predecessor, Apache/PHP.
These benchmarks are designed to determine which
of these web application engines is best suited to a
variety of common server-side tasks. We identify
three major types of server tasks for examination,
these being database interaction, heavy computation,
and static file service. We compare these against a
baseline “no-op” benchmark, wherein the web server
always responds with a short constant string literal.
 We have found that database interactions
considerably favor Node.js, as do computationally
heavy tasks (as represented by pattern matches on a
long string). No distinguishable difference in
performance was experienced between Apache and
Node.js engines when serving large static files,
although Node.js enjoys a modest lead at higher
levels of concurrency.
 We further benchmark our server engines by

Figure 12: Bandwidth for Heterogenous Workloads with and without Child Processes (Requests per Second).

0

20

40

60

80

100

120

Database bandwidth

R
eq

ue
st

s
pe

r
se

co
nd

0

0,2

0,4

0,6

0,8

1

1,2

String search bandwidth Static file bandwidth

R
eq

ue
st

s
pe

r
se

co
nd

Node.js Node.js w/ child
Apache/PHP Apache/PHP w/ child

Stack Wars: The Node Awakens

247

employing a heterogeneous mixture of request types
– database, static file, and heavy computation– all
being executed concurrently by each of our server
stacks. In this scenario, Node.js demonstrates
sensitivity to good coding practices, as
computationally heavy tasks will block the
synchronous event loop unless child worker
processes are employed.
 With the Node.js event loop freed from burden of
heavy computation, Node.js falls behind
Apache/PHP in performance with respect to the
management of string search tasks in child
processes, but manages to nearly match the
performance of Apache/PHP on database
interactions, and maintains a modest performance
edge in static file service.
 Our conclusion from the generated test data is
that Node.js is the clear winner in homogeneous
workload cases, i.e. wherein the web-server
performs the same type of work repeatedly for
numerous clients. In some tests, Apache/PHP
outperforms Node.js at very low levels of
concurrency, though in such cases the difference in
performance between the two server stacks was
insignificant. At higher concurrency levels, the
advantages enjoyed by Node.js become apparent.
 Although Node.js and its associated libraries
enjoy growing community support and a rich
repository of ready source code, PHP has a long
history and a breadth of existing libraries and open
templates that can be leveraged by industry adopters.
We note that if abundant legacy code is an issue, or
a team consists of developers with a strong
background in one language or framework and no
experience with another, then performance may not

be the sole factor on which to base the selection of a
server technology. However, all other things being
equal, we can report that Node.js is the more
performant server when compared with
Apache/PHP. We have shown that Apache/PHP is
capable of very slightly outpacing Node.js under
certain types of light load, but we have also shown
that Node.js is capable of keeping pace with – and
sometimes dramatically outshining – its most
popular competitor.
 We hope to strengthen our claims in future work
by experimenting with the fine-tuning of server
configurations – for example, experimenting with
multi-processing modules other than prefork in
Apache, or tinkering with server caching settings.
Moreover, exploration of this configuration space
may yield custom tuning of these server engines to
best suit each application type. In future work we
also aim to characterize the “plateau level” exhibited
by Apache/PHP, at which point performance drops
and levels off with increasing concurrency. By
exploring the shape of the performance curve in the
neighbourhood of this plateau level, we aim to better
understand Apache’s behaviour at this level of
concurrency, and gain further insight about its
performance when hosting contemporary web
services.

ACKNOWLEDGEMENTS

The authors wish to thank Professor Steven
Fitzgerald of CSUN, who suggested the “no-op”
scenario as a starting point, and who identified a set

Figure 13: Concurrent Mean for Heterogenous Workloads Workloads with and without Child Processes (ms).

0

2

4

6

8

10

12

14

Database concurrent
mean

M
il

li
se

co
nd

s

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

String search concurrent mean

M
il

li
se

co
nd

s

Node.js Node.js w/ child
Apache/PHP Apache/PHP w/ child

0

500

1000

1500

2000

2500

3000

Static file
concurrent mean

M
il

li
se

co
nd

s

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

248

of representative web-service operations that
informed our benchmark selection.

REFERENCES

Apache Software Foundation, 2016. ab – Apache HTTP
server benchmarking tool. Available at:
http://httpd.apache.org/docs/2.2/programs/ab.html.

Appuswamy, R., Gkantsidis, C., Narayanan, D., Hodson,
O., Rowstron, A., 2013. Scale-up vs scale-out for
Hadoop: time to rethink? In 4th Annual Symposium on
Cloud Computing. ACM.

Chaniotis, I., Kyriakou, K., Tselikas, N., 2015. Is Node.js
a viable option for building modern web applications?
A performance study. In Computing (Vol. 97, No.
10m pp. 1023-1044). Springer.

Charland, A., Leroux, B., 2011. Mobile application
development: web vs. native. Communications of the
ACM (Vol. 54, No. 5). ACM.

Economou, D., Rivoire, S., Kozyrakis, C., Ranganathan,
P., 2006. Full-system power analysis and modeling for
server environments. In Proceedings of the
International Symposium on Computer Architecture
(ISCA). IEEE.

Ferdman, M., Adileh, A., Kocberber, O., Volos, S.,
Alisafaee, M., Jevdjic, D., Kaynak, C., Popescu, A.D.,
Ailamaki, A., Falsafi, B., 2012, March. Clearing the
clouds: a study of emerging scale-out workloads on
modern hardware. In ACM SIGPLAN Notices (Vol.
47, No. 4, pp. 37-38). ACM.

Github, 2016. Projects, Applications, and Companies
Using Node. Available at: https://github.com/
nodejs/node/wiki/Projects,-Applications,-and-
Companies-Using-Node.

Haddad, I., 2001. Open-Source Web Servers: Performance
on a Carrier-Class Linux Platform. Linux Journal
(Issue No. 91). Belltown Media.

Libuv, 2016. Design overview – libuv API documentation.
Available at: http://docs.libuv.org/en/v1.x/design.html.

MEAN.JS, 2014. MEAN.JS – Full-Stack JavaScript Using
MongoDB, Express, AngularJS, and Node.js.
Available at: http://meanjs.org.

Menasce, D.A., 2003. Web Server Software Architectures.
In IEEE Internet Computing (Vol. 7, No. 6). IEEE.

Nahum, E., Barzilai, T., Kandlur, D.D., 2002.
Performance issues in WWW servers. IEEE/ACM
Transactions on Networking (TON) (Vol. 10, No. 1).
IEEE.

Netcraft, 2015. September 2015 Web Server Survey.
Available at:
http://news.netcraft.com/archives/2015/09/16/septemb
er-2015-web-server-survey.html.

Pokorny, J., 2013. NoSQL databases: a step to database
scalability in web environment. In International
Journal of Web Information Systems (Vol. 9, No. 1,
pp. 69-82). Emerald Group.

Ratanaworabhan, P., Livshits, B., Zorn, B.G., 2010.
JSMeter: Comparing the Behavior of JavaScript

Benchmarks with Real Web Applications. WebApps
(vol. 10). Usenix.

SPECjbb, 2015. SPECjbb®2015. Available at:
https://www.spec.org/jbb2015/.

SPECweb, 2009. SPECweb2009. Available at:
https://www.spec.org/web2009/.

Tilkov, S., Vinoski, S., 2010. Node.js: Using JavaScript to
Build High-Performance Network Programs. IEEE
Internet Computing (Vol. 14, No. 6). IEEE.

Transaction Processing Performance Council, 2016. About
the TPC. Available at: http://www.tpc.org/
information/about/abouttpc.asp.

Welke, R., Hirschheeim, R., Schwarz, A., 2011. Service
Oriented Architecture Maturity. In IEEE Computer,
(Vol. 47, No. 2). IEEE.

Stack Wars: The Node Awakens

249

