
Deriving Domain Functional Requirements from Conceptual Model
Represented in OntoUML

Joselaine Valaski, Sheila Reinehr and Andreia Malucelli
Pontifical Catholic University of Paraná (PUCPR), Imaculada Conceição Street, 1155, Curitiba, Brazil

Keywords: Requirements Engineering, OntoUML, Conceptual Model, Functional Requirement.

Abstract: A conceptual model is an artifact that helps to understand a domain and therefore, may contribute with the
elicitation of related functional requirements. However, the expressiveness of this model depends on the
expressiveness of the language used. Considering that OntoUML is a language that proposes elements that
allow more semantics, it is possible to build models with better expressiveness which are more complete than,
for instance, models represented in UML language. For evaluating the possibility of deriving domain
functional requirements (DFR) from models represented in OntoUML, a heuristic was proposed. This
heuristic was obtained by reading and interpreting nine conceptual models represented in OntoUML. Once
the heuristic was obtained, it was applied in a systematized manner to six models. According to the results
obtained, using a conceptual model represented in OntoUML as a source to derive DFR is possible. In addition
to the identification of the DFR, the heuristic can identify possible faults in the model design, or even the
incompleteness of the model.

1 INTRODUCTION

Software Requirements Engineering (SRE) can be
defined as an iterative process of discovery and
analysis for producing a clear, complete, and concise
set of specifications about the software to be
developed (Robinson & Pawlowski, 1999;
Loucopoulos & Karakostas, 1995) During this
process, artifacts (documents, models, prototypes,
etc.) are built for the analysis of the domain and
design of the software that will be developed.
However, owing to changes in requirements or in
design and development decisions, there may be
erosion among these artifacts, and therefore, the loss
of conciseness and traceability between them
(Landhäußer et al., 2014).

One of the possible reasons for requirement
changes is the lack of understanding of the problem’s
domain for which the software will be developed. In
the early stages of SRE, the specification of the
software to be developed is often inaccurate and
inconsistent (Ding & Marchionini, 1997).
Requirement engineers’ lack of understanding of the
business and communication breakdown among the
stakeholders compromise the quality of information
(Jureta et al., 2010). Intensifying efforts to better

understand the domain before moving on to software
design and development is a practice that may
minimize future requirement changes.

One of the ways of understanding a problem is to
build conceptual models (Jalote, 1997). Conceptual
models have been an important resource not only for
requirement elicitation, but also for improving the
model transformation through the software phases
(Valaski et al., 2016). However, good models need
good modeling languages (Henderson-Sellers et al.
2015). A language that has flaws in expressiveness
may compromise the understanding of requirement
artifacts in later phases. According to Mylopoulos
(1992), the suitability of a conceptual modeling
notation is based on its contribution to the
construction of models that represent reality, thus
enabling a common understanding between their
human users. Henderson-Sellers et al. (2015) discuss
some of the most common problems about software
engineering modeling languages. Based on these
problems they claim to use a language with an
ontological commitment. Languages with an
ontological commitment can improve the
expressivity and quality of models (Valaski et al.,
2016).

In this regard, Guizzardi (2005) emphasizes the
use of languages with ontologically well-founded

Valaski, J., Reinehr, S. and Malucelli, A.
Deriving Domain Functional Requirements from Conceptual Model Represented in OntoUML.
DOI: 10.5220/0006290302630270
In Proceedings of the 19th International Conference on Enterprise Information Systems (ICEIS 2017) - Volume 2, pages 263-270
ISBN: 978-989-758-248-6
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

263

primitives that help represent the reality of a
problem’s domain as precisely as possible. Guizzardi
(2005) proposed OntoUML, a language used to
represent ontology-based conceptual models.
Because the language is ontology-based, the
conceptual models constructed in OntoUML are
assumed more expressive and to represent the real
world of the domain more faithfully than do other
languages of conceptual representation do. There are
practical situations where OntoUML is more
expressive than UML (Teixeira et al., 2014; Valaski
et al., 2016b).

Considering that conceptual models represented
in OntoUML allow a better representation of a reality,
we believe they are an important instrument to
identify the first requirements. In this context, the
main goal of this study is to evaluate the possibility
of using conceptual models represented in OntoUML
as a support to derive domain functional requirements
(DFR). A DFR is a denomination used in this study
to refer to high level functional requirements
generated from the representation of the Problem
Domain. The present study is organized as follows:
Section 2 presents the main OntoUML concepts.
Section 3 describes the method applied to obtain the
heuristic for the DFR reading and listing from the
OntoUML model. Section 4 presents and discusses
the result of the heuristic application. Section 5
discusses the limitations of this study. Section 6
presents the landscape of related studies. Final
considerations are presented in Section 7.

2 OntoUML: BACKGROUND

This section presents a few of the main OntoUML
language concepts because presenting all OntoUML
language constructs is not possible owing to space
limitation. OntoUML was proposed by Guizzardi
(2005) based on the need for an ontology-based
language that would provide the necessary semantics
to construct conceptual models using concepts
faithful to reality. The classes proposed in OntoUML
are representations of the Unified Foundational
Ontology (UFO) constructs. These constructs are
represented using UML stereotypes.

In this study, only the main constructs that
comprise the object type category are presented
(Guizzardi, 2005). In this category, constructs are
more closely related to the static conceptual modeling
of a domain. The Figure 1 shows a fragment of a
metamodel OntoUML related to Universals
constructs. Universals are constructs related to types
(classes) while Individuals are constructs related to

instances. The main constructs of the metamodel
OntoUML are presented in the follow subsections.

2.1 Substantial

Substantial constructs are applied to represent classes
of elements that have high degree of independence.
Substantials are specialized in Sortal and Non-sortal.
Sortals provide identity and individuation principles
to their instances, whereas Non-sortals do not supply
any clear identification principles.

Figure 1 : Fragment of a metamodel OntoUML related to
Universals (Guizzardi, 2005).

Sortal constructs are classified as Rigid and Anti-rigid
Sortals. A Sortal is said to be rigid if it is necessarily
applied to all its instances in all possible worlds and
anti-rigid if it is not necessarily applied to all its
instances. Person is an example of Rigid Sortal and
Student is an example of Anti-rigid Sortal.

Rigid Sortals include Kind and Subkind
categories. A Kind is a Rigid Sortal and thus has
intrinsic material properties that provide clear identity
and individuation principles, for instance Person. It
determines existentially independent classes of things
or beings and are said to be functional complexes. A
Subkind is also a rigid type that provides an identity
principle and has some restrictions established and
related to the Kind construct. Man and Woman are
examples of Subkind category. Every object in a
conceptual model must be an instance of only one
Kind.

Two sub-categories of Anti-rigid sortals exist:
Phases and Roles. In both cases, instances may
change their types without affecting their identities.
During the Phase construct, changes may occur
because of changes to intrinsic properties. Teenager
and Living Person are examples of Phase category.
By contrast, in the Role construct, changes occur

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

264

because of relational properties. Student and Husband
are examples of role category.

2.2 Moment

Whereas the Moment is a construct used to represent
classes of elements which are existentially dependent
of other individuals. The Moment class is divided
into two categories, Intrinsic Moment and Relator.

The Intrinsic Moment class represents properties
that depend only on one individual. The Quality and
Mode Universal classes are specializations of the
Intrinsic Moment class. Weight, Color and Height are
examples of a Quality Universal class. Whereas,
Thoughts and Symptoms are examples of a Mode
class. The Relator class represents individuals who
depends of at least two distinct entities. Sale and
Registration are examples of adherent concepts to this
class.

2.3 Relation

The Relation construct represents relation categories
that may occur between Moments and Substantials.
The Relation class is divided into two general
categories: Material Relation and Formal Relation.

The Material Relation class has relations
mediated by a Relator. Relators (Moments) are
individuals with the power of connecting entities. The
Formal Relation class represents relations between
two or more direct entities without individual
mediation. Inherence and association are considered
Formal Relations. The Formal Relation can be
divided into basic formal and formal comparative
relations. For the basic formal relations, three
categories are proposed: Characterization, Mediation
and Derivation. The Formal Characterization relation
occurs between a Mode and a Universal; there is no
optional property in this relation. A Formal
Mediation relation occurs between a Relator and a
Substantial. A Derivation relation is the one between
a Material and a Relator from which this relation is
derived.

3 INTERPRETING OntoUML
MODEL

A method was defined with the purpose of obtaining
a heuristic able to extract possible DFRs in a
systematized manner from a conceptual model
represented in OntoUML.

During the process of obtaining the heuristic,

three main activities were executed: the selection of
conceptual models represented in OntoUML
language, transcription and identification of patterns
in the interpretation of the models, and lastly, the
definition of the heuristic. Further details on these
activities are presented next.

3.1 Selection of Conceptual Models

Initially, the selection of conceptual models that
represented a domain was performed. The OntoUML
Model Repository was used to obtain such models.
The OntoUML Model Repository (http://
www.menthor.net/model-repository.html) is an
endeavor made by Menthor to put in one place all the
OntoUML models scattered around the web,
conferences, journals and books. In total, nine models
were found. The represented domain and number of
existent elements of the models are summarized in
Table 1.

Table 1 : Quantity of elements of conceptual models by
domain.

Stereotype
Domain/Quantity

A B C D E F G H I

Category 0 0 0 1 0 0 0 0 0

Collective 0 0 0 7 2 1 1 2 0

Kind 5 4 4 6 2 7 6 6 3

Mixin 0 0 0 0 0 0 1 0 1

Mode 0 0 2 0 0 0 0 0 0

Phase 2 0 2 5 3 2 5 0 2

Relator 2 6 1 1 3 14 3 3 5

Role 6 2 2 2 4 15 9 15 18

Role Mixin 0 0 1 0 0 0 0 0 2

Subkind 0 0 2 2 0 4 17 3 4

Characterization 0 0 2 0 0 0 0 0 0

Formal 0 0 2 4 0 1 1 0 0

Material 3 0 0 6 6 1 1 7 2

Mediation 6 13 2 2 6 37 7 6 15

Generalization 8 2 8 14 6 8 36 18 30

Unknown 0 0 0 0 0 1 2 0 3

Total 32 27 28 50 32 91 89 60 85

Domain: A: Electronic Proxy; B: Route Bus; C: Project
Management; D: Health Organization; E: Conference; F:

Library; G: Music; H: Online Mentoring; I: School
Transportation

The class stereotypes: enumeration, nominal quality,
non-perceivable quality, and perceivable quality and

Deriving Domain Functional Requirements from Conceptual Model Represented in OntoUML

265

quantity, were not evaluated because they were not
used in any of the nine models evaluated. The
associations stereotypes: componentOf, derivation,
memberOf, subColletionOf, and subQuantityOf,
were not included then, as they did not present
significant facts for this top-level DFR survey step.
However, these should be considered in future
evaluations.

3.2 Transcription and Identification of
Patterns

For each conceptual model, the reading and manual
transcription of the interpreted data was performed.
The aims of the reading were a) to identify a rule that
allowed navigation through all model elements with
no repetition; b) to transcribe the interpretation in the
reading; and c) to identify design patterns to define a
systematized heuristic. After many readings and
transcriptions, some patterns were identified, which
are summarized as follows:

 <<Relator>> is a class stereotype that always
groups the main domain functionalities. If the
reading always starts by the Relators, it is
possible to define a flow that runs through all
elements of the model. Owing to this
characteristic, the key word “control” was
attributed to describe the requirement;

 <<Category>>, <<Collective>>, <<Kind>>,
<<Mixin>>, and <<Subkind>> are class
stereotypes associated with entities that require
maintenance functionalities; therefore, the key
word “maintain” was attributed to describe the
requirement;

 <<Mode>> and <<Phase>> are class stereotypes
that require updating data from existing entities.
For the description of requirements associated
with these elements, the key word “inform” was
attributed;

 <<Role>> and <<Role Mixin>>: at first, these
class stereotypes no need to directly describe a
functional requirement, because the
identification of the relation between these
elements will generate a functional requirement;

 The association relationship
(<<Characterization>>; <<Formal>>,
<<Material>>, <<Mediation>>) generate
requirements to represent the association
between two elements (root and node). For this
situation, the key word “association” was
attributed; and

 The relationship of generalization does not
generate DFR when is related to a class that uses

the stereotypes: <<Category>>, <<Collective>>,
<<Kind>>, <<Mixin>> and <<Subkind>>. For
other situation, the key word “association” was
attributed.

3.3 Definition of the Heuristic

Based on the patterns mentioned in Section 3.2, the
heuristic was defined with the purpose of generating
the possible DFR.

In the proposed heuristic, all classes that use
stereotype <<Relator>> in the model are selected and
stored in an array. For each of these classes, a domain
functional requirement is generated. The classes that
use a stereotype <<Relator>> leads to the
identification of the relations between the dependent
elements. For each relation, a domain functional
requirement is generated. A domain functional
requirement is also generated according to the
dependent element (following the previously
mentioned patterns).

To illustrate the heuristic functions, a sketch of the
algorithm is presented in Algorithm 1. It is important
to emphasize that this algorithm does not represent
the implemented and complete version of the
proposed heuristic. Several rules were also added to
the algorithm to allow the systematized reading of the
model. The main rules are presented as follows:
 In the selection (DependElements) of the

dependent elements (classes and associations), if
the root element is a class that uses the stereotype
<<Relator>> and the node element is related to
the root element through an association that uses
the stereotype <<Material>>, this path is not
selected, since the association that uses the
stereotype <<Mediation>> meets the functional
requirement associated;

 In the selection of dependent elements, if the root
element is a class that uses the stereotype
<<Role>> and the node element is a
generalization related to another class that also
uses the stereotype <<Role>>, this path is not
selected. If the model design is correct, another
path (from another class that uses stereotype
<<Relator>>) will reach the specializations of
the class that uses the stereotype <<Role>>;

 The recursive call for print requirements verifies
if the node element is a class that uses the
stereotype <<Relator>>, if yes, the recursive call
is not performed. This rule is applied because all
relators have already been selected in the Main()
procedure. This rule guarantees the extraction of
requirements from the most relevant domain
functionalities. The recursive call is executed

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

266

until another class that uses the stereotype
<<Relator>> is reached or there are no more
dependent elements in the covered path. With
this rule it is possible to generate groups with the
requirement and their dependencies; and

 The recursive call for print requirements verifies
if the node element has already been covered. If
yes, the recursive call is not performed. This rule
avoids the duplication of the covered path.

procedure Main ()
begin
 relator = SelectAllRelator();
 for each relator do
 Writeln(‘RF .. control’ +
 relator.name);
 PrintRequirements(relator);
 end-for
end.
procedure PrintRequirements(rootElement)
begin
 nodeElement=DependElements(rootElement);
 for each nodeElement do
 Writeln(‘RF .. association’ +
 nodeElement+ to’+ rootElement.name);
 if nodeElement.type in [‘Category’,
 ‘Collective’, ‘Kind’, ‘Subkind’,
 ‘Mixin’]
 Writeln(‘RF .. maintain’+
 nodeElement);
 end-if
 if nodeElement.type in [‘Phase,
 ‘Mode’]
 Writeln(‘RF .. inform’+
 nodeElement);
 end-if
 if nodeElement.type not in [‘Relator´]
 or not ExistElement(nodeElement)
 AddElement(nodeElement);
 PrintRequirements(nodeElement);
 end-if
 end-for
end.
Continued ...

Algorithm 1 : Partial algorithm to read and extract domain
functional requirements from OntoUML conceptual
models.

4 DERIVATION OF DFR

With the heuristic defined in Section 3, its
systematized execution was evaluated. The heuristic
was applied in six conceptual models related in Table
1 (A: Electronic Proxy; B: Route Bus; C: Project
Management; D: Health Organization; E:
Conference; F: Library). The data presented in Table
1 indicates that the six selected models represent
different complexities (number of elements), and the
use of the different elements considered by the
heuristic.

4.1 DFR Listed by the Heuristic

Table 2 partially presents the list of DFR generated
by the Conference (ID: E) domain model. The
sequence of the requirement identifier helps to verify
the dependence and source, among other
requirements.

Table 2 : Partial DFR of Conference domain (ID: E).

ID Requirement description
RF1 System should control Review

RF1.1
System should provide the association of
Reviewer to Review

RF1.1.1
System should provide the association of
Person to Reviewer

RF1.1.1.1 System should maintain the data of Person

RF1.2
System should provide the association of
Paper to Review

RF1.2.1 System should maintain the data of Paper

RF1.2.1.1
System should allow to inform the Not
Evaluated Paper

RF1.2.1.2
System should allow to inform the
Rejected Paper

RF1.2.1.3
System should allow to inform the
Accepted Paper

RF2 System should control Submission

RF2.1
System should provide the association of
Author to Submission

RF2.1.1
System should provide the association of
Person to Author

RF2.2
System should provide the association of
Paper to Submission

continued...

The extracted requirements were listed in different
colors to emphasize the source; in black,
requirements extracted from classes that use
stereotype <<Relator>>, in blue, requirements
extracted from relations (association or
generalization), in purple, requirements extracted
from stereotypes: <<Category>>, <<Collective>>,
<<Kind>>, <<Mixin>>, and <<Subkind>>, and in
orange requirements extracted from stereotypes:
<<Phase>> and <<Mode>>.

Through the list presented in Table 2, it is possible
to observe that DFRs are generated from classes that
used stereotype <<Relator>> grouping other DFR.
The list might suggest sub-modules or groups, from
which uses cases and interface prototypes, among
others, can be generated. Figure 2 partially illustrates
the conceptual model represented in OntoUML
related to the Conference domain.

Deriving Domain Functional Requirements from Conceptual Model Represented in OntoUML

267

4.2 Verification of DFR Listed

With the result from the heuristic, two surveys were
performed with the aim to verify the consistency of
the results: 1) unidentified DFR due to fault in the
heuristic; 2) unidentified DFR due to fault in the
model design. To perform these verifications, three
variables were used for each one of the six domains
evaluated: the number of DFRs listed by the heuristic,
the number of DFRs not listed by element, and the
number of elements in the conceptual model. Table 3
presents these results.

Figure 2: Partial OntoUML conceptual model of
Conference domain (ID: E).

Table 3: Quantity of DFR listed, elements without DFR
listed and elements from conceptual model by domain.

ID Description
Domain/Quantity

A B C D E F

x DFR listed 25 25 22 35 22 71

y Elements without DFR 7 2 5 15 10 17

z Elements from conceptual
model

32 27 28 50 32 91

4.2.1 Unidentified DFR Due to Fault in the
Heuristic

First, it was verified if any DFR was left unidentified
owing to a fault in the heuristic. All “elements
without DFR” were identified and grouped by type in
Table 4. After the individual and manual verification
for each element, the following analysis was
obtained: 1) The class that used the stereotype

<<Collective>> (domain ID: F) did not generate DFR
because it was related to an association that uses the
stereotype <<MemberOf>>, as predicted by the
heuristic; 2) The classes that used the stereotypes
<<Role>> and <<Role Mixin>> do not generate
DFR, as predicted by the heuristic; 3) The association
that used the stereotype <<Material>> do not
generate DFR. In such cases, the association that uses
the stereotype <<Mediation>> generates the
necessary DFR, as predicted by the heuristic; and 4)
The relationship of generalization does not generate
DFR, as also predicted by the heuristic.

Table 4 : Quantity of elements without DFR listed by
domain.

Stereotype
Domain/Quantity

A B C D E F

Collective 0 0 0 0 0 1

Role 6 2 2 2 4 15

Role Mixin 0 0 1 0 0 0

Characterization 0 0 0 0 0 0

Material 1 0 0 1 6 1

Generalization 0 0 2 12 0 0

Total 7 2 5 15 10 17

These analyses led to the conclusion that all situations
with no DFR generation were predicted by the
heuristic. Within the scope proposed for this first
version, the heuristic fulfilled its role. Improvements
should be proposed as the heuristic is applied to
models with different complexity.

4.2.2 Unidentified DFR Due to Fault in
Model Design

Considering that the heuristic generates the maximum
of one DFR for each element in the model and that
the number of unlisted DFR in Table 3 (line y) is
correct, we suppose that the sum of the listed DFR of
Table 3 (line x) and unlisted DFR of Table 3 (line y)
must be equivalent to the number of elements in the
conceptual model of Table 3 (line z). According to
this premise, in five of the six domains evaluated, this
verification was true. Only the Library domain (ID:
F) was missing three requirements.

After the manual analysis, it was possible to verify
a non-generated DFR from an “unknown” relation,
not predicted in the OntoUML, a situation that must
be corrected in the model. Two DFRs were not
generated due to the presence of an association that
used the stereotype <<Mediation>> between one
class that used the stereotype <<Role>> and one class

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

268

that used the stereotype <<Kind>>. It is a problem in
the model design because in OntoUML specification
is said that an association that use the stereotype
<<mediation>> must have in the origin a class that
uses a stereotype <<Relator>>. The results obtained
indicate that it is possible to use a conceptual model
represented in OntoUML as a source of DFR
derivation. Moreover, the heuristic can identify
possible faults of the model design or even the
incompleteness of the model. The results also indicate
that the conceptual model may represent an
instrument to support the traceability of the DFR, in
addition to generate metrics to estimate the
complexity of the domain.

5 LIMITATIONS OF THIS STUDY

The presented heuristic had the purpose of evaluating
the possibility of deriving DFR from OntoUML
conceptual models. Due to the presented results, we
consider its application to be possible. However, we
also believe that the present study has limitations and
that future studies are necessary to improve the
proposed heuristic. Although the location of
conceptual models with domain represented in
OntoUML is not trivial, it is necessary to find other
models, more complex, to apply the heuristic and
obtain new results.

It is also considered important to perform
experiments with domain specialists to evaluate the
completeness of the DFR. Although the entire process
presented here (reading, interpretation and extraction
of requirements from the models) is systematized, it
was generated manually. Computational tools are
being implemented to facilitate the processing of
conceptual models for the generation of the DFR list,
identification of sources and dependence, faults in the
model design or incompleteness of the model, as well
as some metrics. As the last item, we observed that
the quality of the terms used by the model designer,
as well as the proper use of the OntoUML constructs,
interfere directly on the quality of the DFR
transcriptions.

6 RELATED WORK

The concept of model transformation has been
proposed with the general purpose of maintaining the
consistency and traceability of the artifacts produced
during the software development. Three types of
approaches can be found in this concept: textual

requirements into analysis models and textual
requirements specification from software engineering
models, and textual requirements into analysis
models and back. An overview of each approach is
presented next.

Yue et al. (2011) performed a systematic literature
review with the aim of identifying the proposals
related to the generation of analysis models from text
requirements. With this purpose, 20 primary studies
were identified. Most studies presented proposals for
the generation of models in UML language, including
class diagrams, state diagrams and sequence
diagrams. The texts used for the generation of the
models were mostly extracted from use cases. Among
the main conclusions indicated by the review, despite
a significant amount of research, we still do not have
a practical, workable automated solution and most of
the approaches do not address traceability.

Nicolás and Toval (2009) present a systematic
review of the literature related to the generation of
textual requirement specifications from software
engineering models. In the present work, 25 primary
studies were identified with this approach. Most of
these cases utilized use case models or scenarios with
textual requirements generation source. Goal oriented
as i* and KAOS models were also used for the
generation of textual requirements. In this review,
five proposals for the derivation of requirements from
Software Product Lines (SPL) models were also
identified. The models used for the derivation were
the Feature model and Variability model. Among the
main conclusions from the review, in this approach
the effort of specifying those requirements is reduced.
However, without proper tools support these
approaches are not truly applicable in practice.

The textual requirements specifications into
analysis models and back approach proposes the
combination of the two previous approaches, i.e.,
mechanisms to allow the transformation of textual
requirements specifications into analysis models and
vice-versa. With this purpose, Landhäußer et al.
(2014) propose the Requirements Engineering
Feedback System (REFS), which automates the
process of keeping textual specification and models
consistent when the models change. The generated
models include class, activity and state diagrams
represented in UML. Several NLP tools for the pre-
processing of natural language texts are applied to
identify the changes and to suggest the update of the
models and textual requirements specification.

This brief review indicates that most
transformation processes proposed use models
represented in UML or languages without
compromising the ontology. Hence, there are efforts

Deriving Domain Functional Requirements from Conceptual Model Represented in OntoUML

269

to maintain the consistency and integrity of artifacts.
Part of the challenge stems from the fact that
requirements and architectures use different terms
and concepts to capture the model elements relevant
to each (Grunbacher et al., 2004). Because OntoUML
is ontology-based, the conceptual models constructed
are assumed to be more expressive and to represent
the real world of the domain more faithfully than do
other languages of conceptual representation.

7 FINAL CONSIDERATIONS

In the study presented by Henderson-Sellers et al.
(2015), one of the items in the authors’ wish list is for
conceptual models to have more semantics. A recent
review (Verdonck et al., 2015) also indicated that,
although ontology-oriented conceptual models are
proposed, which allows more semantics, people do
not know the reason for their application. Our study
has a very clear view of the purpose of using
OntoUML.

Considering that OntoUML is a language that
proposes elements that allow more semantics, there is
the possibility of building more expressive models
than, for instance, models represented in UML
language. The result of a more expressive conceptual
model reflects the better domain representation,
which can consequently reduce the requirement
changes and the efforts to maintain the traceability of
the generated artifacts.

With the purpose of evaluating the possibility of
deriving DFR in a systematized manner, a heuristic
was proposed. This heuristic was obtained with the
reading and interpretation of nine conceptual models
represented in OntoUML. After the heuristic was
obtained, it was applied in a systematized manner to
six models. The heuristic allowed the navigation
through all elements in the model and the extraction
of related DFR. As mentioned in the introduction
section, the proposal intention is to use ontological
conceptual models to derive the possible high level
functional requirements. To generate a detailed and
complete list of functional requirements it is needed
to move on to the next phases of software
development.

REFERENCES

Ding, W., Marchionini, G., 1997. A Study on Video
Browsing Strategies. Technical Report UMIACS-TR-
97-40, University of Maryland, College Park, MD.

Grunbacher P., Egyed, A., Medvidovic, N., 2004.
Reconciling software requirements and architectures
with intermediate models. Software and System
Modeling (SoSyM), v 3, n 3, Springer, pp 235-253.

Guizzardi, G., 2005. Ontological Foundations for Structural
Conceptual Models. Telematica Institut Fundamental
Research Series 15, Universal Press.

Henderson-Sellers, B., Gonzalez-Perez, C., Eriksson, O.,
Ågerfalk, P.J., 1992. Software modeling languages: a
wish list. In Seventh International Workshop on
Modeling in Software Engineering, pp 72-77.

Jalote, P., 1997. An Integrated Approach to Software
Engineering, Springer, New York.

Jureta, I.J., Borgida, A., Ernst, N., Mylopoulos, J., 2010.
Techne: Towards a New Generation of Requirements
Modeling Languages with Goals, Preferences, and
Inconsistency Handling. In International Requirements
Engineering Conference, pp 115–124.

Landhäußer, M., Körner, S. J., Tichy, W. F., 2014. From
requirements to UML models and back: how automatic
processing of text can support requirements
engineering. Software Quality Journal, 22, 1, pp 121-
149.

Loucopoulos, P., Karakostas, V., 1995. System
Requirements Engineering. McGraw-Hill.

Mylopoulos, J., 1992. Conceptual modeling and Telos,
In Conceptual modeling, databases and CASE: An
Integrated View of Information Systems Development,
Wiley, New York, pp 49-68.

Nicolás, J., Toval, A., 2009. On the generation of
requirements specifications from software engineering
models: A systematic literature review. Information and
Software Technology, v 51, i 9, pp 1291–130.

Robinson, W., Pawlowski, S., 1999. Managing
requirements inconsistency with development goal
monitors. IEEE Transactions on Software Engineering
25(6), pp 816-835.

Teixeira, M.G.S., Falbo, R., Guizzardi, G., 2014. Analyzing
the Behavior of Modelers in Interpreting Relationships
in Conceptual Models: An Empirical Study, In 3rd
International Workshop on Ontologies and Conceptual
Modeling, Rio de Janeiro, Brazil.

Verdonck, M., Gailly, F., de Cesare, S., Poels, G., 2015.
Ontology-driven conceptual modeling: A systematic
literature mapping and review. Applied Ontology, v 10,
n 3-4, pp. 197-227.

Valaski, J., Reinehr, S., Malucelli, A., 2016. Which Roles
Ontologies play on Software Requirements
Engineering? A Systematic Review. In International
Conference on Software Engineering Research &
Practice, pp 24-30, Las Vegas.

Valaski, J., Reinehr, S., Malucelli, A., 2016b. Evaluating
the Expressiveness of a Conceptual Model Represented
in OntoUML and UML. In ONTOBRAS, Curitiba,
Brazil.

Yue, T., Briand, L. C., Labiche, Y., 2011. A systematic
review of transformation approaches between user
requirements and analysis models. Requirements
Engineering, v.16, i.2, pp 75–99.

ICEIS 2017 - 19th International Conference on Enterprise Information Systems

270

