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Abstract: In this paper we propose a novel approach to reduce the complexity of the definition and implementation of a
medical document validation model. Usually the conformance requirements for specifications are contained
in documents written in natural language format and it is necessary to manually translate them in a software
model for validation purposes. It should be very useful to extract and group the conformance rules that have
a similar pattern to reduce the manual effort needed to accomplish this task. We will show an innovative
cluster approach that automatically evaluates the optimal number of groups using an iterative method based on
internal cluster measures evaluation. We will show the application of this method on two case studies: i) Patient
Summary (Profilo Sanitario Sintetico) and ii) Hospital Discharge Letter (Lettera di Dimissione Ospedaliera)
for the Italian specification of the conformance rules.

1 INTRODUCTION

The availability of medical information processing
systems and the digitalization of almost all informa-
tion in hospital and clinical processes provide an im-
portant support for the tasks of healthcare profession-
als. Dealing with digital documents and using custom
processing systems can improve their work, offering a
lot of innovative tools and instruments, ranging from
improved information retrieval systems to intelligent
image and text processing.

Focusing especially on text documents, we know
that an important part of the work of healthcare pro-
fessionals is the editing of many different clinical doc-
uments such as Patient Summaries, Laboratory Tests
Reports and Medical Prescriptions. All of them are
structured or semi-structured text documents and, fur-
thermore, they even require the presence of certain in-
formation, like, for example, a doctor name, a date or
a disease code. In addition, their structure and content
must respect official guidelines, often established by
law. These specifications propose to standardize the
structure of these digital documents, ensuring the cor-
rectness and the completeness of the content and of
the text format.

A standard like the ones promoted by HL7 not
only can ensure the semantic and formal correctness
of the digital version of these documents, but it sup-
ports an effective and reliable automatic processing

and the interoperability between different systems too
(Ciampi et al., 2016). In other words, it is crucial that
the exchanging of these documents between different
hospitals or physicians is error-free, without loss of
information.

Due to the importance of these tasks, the definition
of the conformance rules is a long and critical process,
that involves many specialists from medical, clinical,
legal and computer science fields and, of course, the
governments and health-care agencies. The results of
their work are usually documents written in natural
language, containing a set of conformance require-
ments rules for specifications that define the format
and the content each of them.

The need of conformance rule documents arises
from requirements of standards. Official medical nat-
ural language text documents must not only be auto-
matically processed easily, but even respect a format
and contain specific information. In Italy, Agencies
and government representatives, at this aim, have pro-
duced the conformance specifications documents for
the digital version of the Patient Summary, the Labo-
ratory Medicine Report, the Hospital Discharge Letter
and the Medical Prescription, that are actually part of
HL7 International standards in the Italian context.

As explained before, the specifications are docu-
ments written in natural language format, describing
the whole conformance rules for specifications and
the details of the implementation guide for each of

Gargiulo F., Silvestri S., Fontanella M. and Ciampi M.
A Methodology to Reduce the Complexity of Validation Model Creation from Medical Specification Document.
DOI: 10.5220/0006291404970507
Copyright c© 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



digital medical certificates listed above.
Among all the possible uses of conformance rules,

one of them could be the development of a validation
model, that ensures and tests the complete confor-
mance of the digital certificate to the standard state-
ments.

To implement this kind of functions, computer sci-
entists and engineers must perform a long and tedious
task, analysing the natural language text in the con-
formance specifications document to realize a com-
plete and reliable validation schema for each rule
listed in the standard (Gargiulo et al., 2016). This
task can be performed only by an hand-made trans-
lation of each natural language rule in a software
model for validation purposes, using, for example,
Schematron (ISO/IEC 19757-3:2016) (Jelliffe, 2001),
or other rule-based validation languages. Nowadays,
it is a critical task to extract automatically a valida-
tion schema from a set of rules described in natural
language.

A great boost in the realization of the validation
schema can be obtained simply reducing the complex-
ity of the problem, decreasing the number of asser-
tions that has to be manually built. This task can be
accomplished grouping the rules following the same
pattern: in this way, the same assertion function could
be applied to more rules, speeding up the develop-
ment of the validation model.

In this paper we propose an innovative method-
ology based on unsupervised machine learning tech-
niques, namely clustering, that extracts automatically
the text of the rules from the specification documents
and groups them together. Each group contains all
the rules that belong to the same assertion schema.
The experiments have been performed on Italian lan-
guage specification rule documents of medical topic,
but the proposed techniques are language independent
and they can be applied on documents in different lan-
guages, or to any kind of specification document.

The paper is structured as follow: in Section 2
it will be given a critical review of the state of the
art related to automatically validation and clustering
optimization fields; in Section 3 it will be shown the
methodology and in Section 4 it will be detailed the
designed architecture; in Section 5 the methodology
correctness will be demonstrated for two use cases:
i) Patient Summary and ii) Hospital Discharge Let-
ter. Finally, in Section 6 it will be given the conclu-
sion and it will be draw up some key issues for future
works.

2 RELATED WORKS

Nowadays there is a big interest of scientists about
creation and automatic validation of conformance
rules in natual language, especially for medical do-
main. In (Boscá et al., 2015) the authors proposed and
described the archetypes to generate a rules in Natural
Language text and Schematron rules for the validation
of data instances. The goal was creating a formal doc-
ument with a formal value of archetype, but at same
time understandable by non-technical users.

In (Boufahja et al., 2015) the authors demon-
strated the conformance of their samples with HL7
CDA requirements and evaluated the capability of the
tools to check those requirements. They looked at the
conformance of the provided samples with the basic
HL7 CDA requirements as specified within the Clin-
ical Document Architecture, R2 Normative Edition,
and analysed the capability of the tools provided to
check the requirements. At the first time, the authors
revisited the CDA specifications and extract the re-
quirements not covered by the CDA Schema, then
they checked the coverage of the requirements with
another validation tools.

In (Hamilton et al., 2015) the authors described
a method in which users realize the benefits of a
standards-based method for capturing and evaluating
verification and validation (V&V) rules within and
across metadata instance documents. The rule-based
validation and verification approach presented has the
primary benefit that it uses a natural language based
syntax for rule set, in order to abstract the computer
science-heavy rule languages to a domain-specific
syntax. As a result, the domain expert can easily spec-
ify, validate and manage the specification and valida-
tion of the rules themselves.

In (Jafarpour et al., 2016) is evaluated the tech-
nical performance and medical correctness of their
execution engines using a range of Clinical Practice
Guidelines (CPG). They demonstrated the efficiency
of CPG execution engines in terms of CPU time and
validity of the generated recommendation in compar-
ison to existing CPG execution engines.

Clustering is an unsupervised machine learning
technique, that can well group together objects that
show similarity between each others. One of the main
problem in clustering, being unsupervised, is the clus-
ter validation, that, in fact, has long been recognized
as one of the crucial issues in clustering applications.
Validation is a technique to find a set of clusters that
best fits natural partitions without any class informa-
tion, finding the optimal number of clusters (Halkidi
and Vazirgiannis, 2001).

The measures used for cluster validation purposes



can be categorized into two classes: external and in-
ternal. The first case can be used when a gold case is
available, verifying the correctness of results through
measures like F-measure, Entropy, Purity, Complete-
ness, Homogeneity, Jaccard coefficient, Fowlkes and
Mallows index, Minkowski Score and others (Rendón
et al., 2011), (Wu et al., 2009), (Handl et al., 2005),
(Rosenberg and Hirschberg, 2007). These papers
analysed and compared all the aspects of each mea-
sure to understand how well it fits specific cluster al-
gorithm, application or topic, revealing the goodness
of the clustering. A common ground of external mea-
sures is that they can often be computed by the con-
tingency matrix (Wu et al., 2009).

When a gold case is not available, the second class
of cluster validation measures, namely the internal
ones, must be used. In this case, the goodness of
clustering results is based only on spatial character-
istics of cluster members, like their compactness or
separation. One of the first internal cluster measure
proposed in literature is the silhouette (Rousseeuw,
1987). The silhouette is a numeric parameter that
takes in account the tightness and separation of each
cluster, showing which objects lie well within their
cluster and which ones are merely somewhere in be-
tween clusters. Many other internal measures have
been defined in literature, like Dunns indices, SD and
SD bw validity indexes and others (Liu et al., 2010),
taking into account different aspects of the cluster-
ing results in addition to the separation and compact-
ness, like monotonicity, noise, density, sub-clusters
and skewed distributions, that can better show differ-
ent aspects of the results.

Internal cluster measures have been often used to
set the correct cluster number, not only optimizing
their global value (Kaufman and Rousseeuw, 2009),
but even obtaining some specific new measures from
the classical ones, to identify cluster characteristics of
a specific domain, as, for example, they did in (Pol-
lard and Van Der Laan, 2002). In (Dhillon et al.,
2002) an iterative clustering method is proposed to
improve spherical K-means algorithm results, that,
when applied to small cluster sizes, can tend to get
stuck at a local maximum far away from the opti-
mal solution. They presented an iterative local search
procedure, which refines a given clustering by incre-
mentally moving data points between clusters, thus
achieving a higher objective function value.

3 METHODOLOGY

In this Section we explain the details of the method-
ology applied in our experiments. We developed an

iterative cluster strategy, that aims to obtain the best
clustering solution. This is achieved through an in-
ternal measure cluster selection, described in 3.1 and
in 3.2. Then, to assess the whole methodology, we
manually built a gold case, validated using a custom
cluster external validation measure described in 3.3.
Gold case construction and validation assessment are
described in Section 5

3.1 Clustering Algorithm and Internal
Measures

Following the literature (Alicante et al., 2016a), we
decided to use the spherical K-means cluster algo-
rithm, a slight variation of the K-means algorithm,
and the cosine similarity. It has been shown that the
optimal distance for K-means based cluster applica-
tions for Italian natural language text of medical topic
is the cosine distance (Alicante et al., 2016b), that is
equals to inverse cosine similarity (eq. 1).

1−
M

∑
i=1

xi · yi

| xi || yi |
(1)

The cosine similarity measure allows to use the
spherical K-means (Zhong, 2005) algorithm, that uses
a slight variation of the K-means algorithm exploiting
the cosine similarity measure: the classical K-means
minimizes the mean squared error from the cluster
centroid (eq. 2)

1
N ∑

x
‖x−µk(x)‖ (2)

where N is the total number of feature vectors and
µk(x) is the most similar centroid; instead, in spherical
K-means the objective function is defined as (eq. 3)

∑
x

x ·µk(x) (3)

that is strictly related to the cosine similarity. Our
experiments confirm the goodness of these choices
(see Section 5).

The determination of optimal partition is per-
formed through an iterative loop, based on cluster in-
ternal measure, described in details in Section 3.2.

As assessment of clustering results we can only
use internal measures, having no labelled data. For
validation purposes we have chosen the silhou-
ette (Rousseeuw, 1987), a classic cluster internal val-
idation measure, that takes into account two impor-
tant aspects of a clustering solution: i) the similarity
among elements of the same cluster and ii) the dissim-
ilarity among elements belong to different clusters.

Let call i a generic point of the data set and a(i) the
average dissimilarity of the point with the elements



of the same cluster. Dissimilarity is calculated with
inverse cosine similarity. A small a(i) means that the
point is quite close to all the other points in the cluster.
We define b(i) as the smallest average dissimilarity
between i and the elements of any cluster different
from the one i belongs, estimating how far the current
point is from the closest point not in the same cluster.

Then the silhouette s(i) of each point of a cluster
is defined as:

s(i) =
b(i)−a(i)

max(a(i),b(i))
(4)

where the opposite of a(i) is considered so that
its effect is in favour of compactness. The silhouette
value is in the range [−1,1], and a larger silhouette in-
dicates a better assignment of that point to its cluster.
The silhouette is negative whenever the other points
in the cluster are, on average, farther from the point i
than the closest point outside of the cluster. Silhouette
can then be averaged on all points of a cluster to as-
sess the compactness of that cluster with respect to the
others. In this case, a negative number of silhouette
means that the diameter of the cluster is larger than
the distance from the closest point out of the cluster.

The average silhouette over all elements i could
be used to compare clustering results and to select
the optimal number of clusters k by maximizing it
over a range of possible values for k (Kaufman and
Rousseeuw, 2009). The method of maximizing av-
erage silhouette can be used with any clustering al-
gorithm and any distance metric, but it has the dis-
advantage that measures only the global structure of
the solution. To take in account finer behaviour we
have proposed an alternative parameter. Let con-
sider the average silhouette of the jth cluster as S j.
We then call MAS the median of average silhouettes
S = {S1,S2, . . . ,Sk}, a value equals to:

MAS = median(S) (5)

The MAS can give a synthetic clue about the good-
ness of the entire cluster solution, but, differently
from the simple average of all silhouettes s(i), it can
take into account each cluster validity.

3.2 Iterative Cluster Optimization

To obtain a more precise clustering we proposed an
iterative clustering optimization algorithm, based on
MAS optimization. In Figure 1 is depicted flow chart
diagram, representing the proposed methodology.

After constructing a Vector Space Model (VSM)
of the Conformance Rules, we have defined an it-
erative cycle. The first task is a de-noising of the
input data, using a Principal Component Analysis

Figure 1: Flow chart of the methodology used to cluster the
conformance rules.

(PCA) methodology for feature reduction (Cao et al.,
2003). We set the selection of information content of
PCA at 96%: this value has been obtained observing
the higher mean silhouette value of clustering exper-
iments. The feature reduction is performed at each
step of the iterative cluster algorithm, reducing each
iteration the number of extracted features.

Then, an Iterative Spherical K-means algorithm,
depicted in Figure 2, is applied to evaluate the opti-
mal cluster solution. We perform Spherical K-means
with cluster number ranging from 2 to total Confor-
mance Rules number. The optimal cluster solution
is the one with highest MAS value in the range of
all solutions obtained during the iteration. From the
whole solution with highest MAS we select only clus-
ters whose mean silhouette is bigger than MAS (in-
ter cluster selection); then, in these selected clusters,
we filter out the elements whose silhouette is smaller
MAS (intra cluster selection). The clusters obtained
with this filtering operations are selected as part of
the final solution and the remaining elements are iter-
atively re-processed in the same way, until the num-
ber of remaining documents is smaller than a given
threshold #minCR or the number of iterations is big-
ger than a threshold #maxCycle (see Figure 1).

When the termination condition is reached, the



Figure 2: Flow chart of the implemented Iterative Spherical
K-Means.

residual conformance rules are assigned to their own
cluster (one element cluster), considering that each
rules have a low silhouette value.

3.3 Cluster Validation Measure

The evaluation of the clustering goodness consider-
ing an handmade gold case is obtained using external
measures, that are often computed by the contingency
matrix (Wu et al., 2009).

The contingency matrix (see Tab.1) is defined as
follow: given a data set D with n objects, assume that
we have a partition C = {C1, . . . ,CK′} of D, where⋃K′

i=1 Ci = D and Ci
⋂

C j = /0 for 1 ≤ i 6= j ≤ K′ , and
K′ is the number of clusters. If we have a Gold Case,
we can have another partition on D : P= {P1, . . . ,PK},
where

⋃K
i=1 Pi = D, Pi

⋂
Pj = /0 and K is the number of

classes. Each element ni j of the matrix denotes the
number of objects in cluster Ci from class Pj.

Table 1: The Contingency Matrix.

C1 C2 . . . CK′ ∑
P1 n11 n12 . . . n1K′ n1·
P2 n21 n22 . . . n2K′ n2·
· · · . . . · ·

PK nK1 nK2 . . . nKK′ nK·
∑ n·1 n·2 . . . n·K′ n

From the contingency matrix it is possible to de-
fine for each obtained cluster C j and for each gold
case cluster Pi the following two measures (Rosen-
berg and Hirschberg, 2007):

• Homogeneity Hom(C j): a clustering must assign
only those data-points that are members of a sin-
gle class to a single cluster. It can be calculated
as:

Hom(C j) =
1

n· j
max

j
(ni j) (6)

• Completeness Com(Pi): a clustering must assign
all of those data-points that are members of a sin-
gle class to a single cluster. Completeness is sym-
metrical to Homogeneity.

Com(Pi) =
1
ni·

max
i
(ni j) (7)

These two measures are both needed to character-
ize the goodness of the clustering partition, taking into
account two complementary aspects. Using them, we
defined a new measure for the whole dataset parti-
tion named as Clustering Goodness (CG) defined as
the weighted mean of the Hom and Com (see eq. 8).
The weighting is necessary because the goodness of
cluster solution is related even to the correct choice
of cluster number and not only to Hom and Com.
In other words, if clusters number is close to docu-
ments number, the mean(Hom) value tends towards
one; on the other hand, if the clustering solution is
made by only one cluster, the mean(Com) tends to-
wards one. This extreme cases demonstrate that an
arithmetic mean of these measures does not capture
clustering goodness in every case.

CG(C) =
1

K +K′
K

∑
i=1

K′

∑
j=1

α ·Com(Pi)+(1−α) ·Hom(C j) (8)

The α value must balance the negative effects
previously described, taking into account the cluster
number in function of the gold-case cluster number.
So we defined α as:

α =

{
1

2·K′ , if K ≤ K′
1

2·(n−K′) , otherwise
(9)

In this way, the value of equation 8 varies in range
(0,1] and a perfect clustering solution has a CG value
equal to 1, meaning that the clustering is identical to
gold case partition, but the α value as defined in 9 can
weight the importance of Hom and Com in function
of optimal cluster number too. We used the CG in
the experimental assessment in Section 5, showing the
effectiveness of the proposed methodology.

4 SYSTEM ARCHITECTURE

The system architecture is divided into six different
blocks, as shown in Figure 3.



Figure 3: Main System Architecture. In purple, the input
data; in grey, the blocks that are evaluated in this paper
and in light-blue the blocks that will be considered as fu-
ture works.

The first block consists in a pre-processing stage
where the input specification document is converted
into a more structured file, extracting and normaliz-
ing the conformance rules from the text. In the sec-
ond block, a vector space model is created, extract-
ing the features from the text of conformance rules
and the iterative clustering technique, previously de-
scribed, is applied, to obtain the group of rules that re-
spect the same pattern. In the third block, a clustering
evaluation is made considering hand-made gold cases.
In the fourth block, an implementation of an abstract
rule for each cluster is defined. In the fifth block we
plan to create a module that implements each confor-
mance rule according with its own abstract rule and,
finally, in the last block is planned to evaluate the cor-
rectness of the final model obtained using hand-made
gold cases.

The whole pipeline has been implemented in Kn-
ime environment (Berthold et al., 2007), an open
platform for machine learning that natively supports
external scripts in the most common language (C,
Python, Java, R, Matlab, Weka and other). Using
Knime is possible to integrate many tools in a sin-
gle environment and design an optimized pipeline. In
Figure 4 is shown the workflow implemented for the
experiments.

The following subsections 4.1, 4.3, 4.4 describe
the details of each block and the tools used to realize
the system.

Figure 4: Example of Knime workflow. The grey blocks
represent a metanode that is a group of nodes which perform
complex operations.

4.1 Conformance Rule Extraction and
Normalization

The first task of the system is the extraction of rules
text and its normalization, obtained after an analysis
of documents and conformance text structure. A spec-
ification document is often in pdf file format and the
first operation needed to perform any kind of process-
ing is the conversion in a plain-text UTF-8 file.

We converted the conformance rule documents
used in our experiment using pdftotxt1, an open
source command-line utility, included by default
within many Linux distributions. The text file out-
putted from pdftotxt preserves most of the indentation
and the structure of the original pdf file and this is re-
ally important for the subsequent task of the system.
In fact, we need to extract only the natural language
text where each rule is defined and stated. This task
has been accomplished writing some Python scripts
that, using the regular patterns of the text, extract the
index of the document, the paragraph names and the
rule texts. In our case, for example, all the confor-
mance rules have a well-defined pattern: their defini-
tions start with a tag (CONF-xx-yy) and end with an-
other rule tag (CONF-xx-zz) or a dot sign. The next
Figure 5 shows an example of the regular pattern from
the original conformance rules file.

Different conformance documents can be pro-
cessed only analysing their specific patterns. Python
scripts have in input the start and end rule delim-
iter, but they can be easily modified to be applied
to different and more complex patterns. The scripts
perform a normalization phase too, deleting punctu-
ation, the not-standard characters, symbols and stop
words (a list of Italian language stop words is pro-
vided by Lucene2). Then, using regular expressions,

1http://www.foolabs.com/xpdf/home.html
2https://lucene.apache.org/core/4 4 0/analyzers-

common/org/apache/lucene/analysis/it/ItalianAnalyzer.html
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Figure 5: An example of input document used for experi-
ment assessment. It is possible to observe the regular pat-
tern of conformance rules to be extracted. In addition, each
rules lies on a grey background.

we replace Logical Observation Identifiers Names
and Codes (LOINC3), TemplateId codes, Paragraphs
and Key Names with a generic identifier (i.e. LOINC
33882− 2 is substituted with the word *LOINC*).
We did this further normalization to reduce the noise
induced by different terminology associated to the
same concept, obtaining a better clustering results.

The output of this module is an xml file, whose
structure is depicted in Figure 6. As shown, the body
of CONF tags contains only the normalized text of
each conformance rule. The used tags are the follow-
ing:

• documento: the xml root, its body contains the
document title and all the paragraphs will be its
children;

• paragrafo: it contains the paragraph name in its
body and the paragraph number as id attribute. All
the CONF associated to it are its own children;

• CONF: it contains in its body the normalized text
of the original conformance rule. Its attributes are:
i) num in which is indicated the rule number and
ii) par that indicates the paragraph number.

Figure 6: Part of the output xml file obtained from text ex-
traction and normalization module.

3http://loinc.org/

4.2 Feature Selection

The input to machine learning applications is repre-
sented through a Vector Space Model (VSM). In VSM
a vector is associated to each sample (in this case the
Conformance Rule) in which the elements of the vec-
tor correspond to the feature values.

Vectors of size M correspond to points in an M-
dimensional space; the main hypothesis underlying
the VSM is that similar objects are represented by
points which are closed in the M-dimensional space.
Achieving optimal results with a machine learning
technique based on VSM is strictly related to the cor-
rect choice of feature space (Amato et al., 2013).

In our case, the entity to be clustered are the con-
formance rules in natural language text, identified by
their name. The rules in a VSM are mapped as n-
grams of words. The correct selection of the n-gram
size, namely the length of n, is both language and
topic dependant (Cavnar and Trenkle, 1994) and so
there is not an absolute rule (Eder, 2011). In our case
we selected all n-grams with n ranging from 2 to 6,
observing the highest MAS (see equation 5) obtained
in different clustering experiments, varying both n
and the number of n-grams together. The high value
of n obtained (often only uni-grams, bi-grams and tri-
grams are used in literature) can be explained by the
repetitive structure of the patterns in the description of
a rule. We extract the features using internal KNIME
modules.

The VSM obtained can be represented by a high
dimensional sparse matrix. To reduce the noise
caused by not discriminant features and consequently
the space dimension, improving clustering perfor-
mance and providing a faster computation, we ap-
plied Principal Component Analysis (PCA) as feature
reduction method. The PCA has been implemented
through the Cran R built in function prcomp, a really
fast and accurate PCA algorithm. We set the selec-
tion of information content of PCA at 96%: this value
has been obtained observing the higher mean silhou-
ette value within all clustering experiments. The fea-
ture reduction is performed at each step of the itera-
tive cluster module, described in the next Section 4.3,
reducing each time the number of extracted features.

The use of n-grams directly extracted from the
dataset makes the whole process totally language in-
dependent; the same methodology can be applied on
conformance rules in any language and even to mixed
languages, or medical slang documents. Changing the
input dataset affects only the scripts for the normaliza-
tion and rule extraction, that must be slightly modified
as described in previous Section 4.1, but none of the
other modules, included the feature extraction one.



4.3 Iterative Clustering

As described in Section 3, to group the confor-
mance rules we applied iteratively a spherical K-
means algorithm, selecting at each step the best so-
lution according to MAS (equation 5), a cluster in-
ternal measure based on silhouette. After applying
PCA feature reduction, we used the Cran R skmeans
package (Hornik et al., 2012) with CLUTO algo-
rithm (Karypis, 2002) to iteratively calculate spher-
ical K-means with a cluster number range between 2
and the total number of rules, as described in Sec-
tion 3.2. To speed up the iterative clustering process
we used the doParallel Cran R package (Weston and
Analytics, 2014), running more cluster processes in
parallel.

4.4 Abstract Model Definition

The last implemented module performs the abstract
model definition. At this aim we use a functionality
of the standard Schematron that allows to define ab-
stract patterns. In this way, it is possible to implement
for each obtained cluster only one abstract model, ob-
taining a reduction of the complexity evaluable as:

∆(Complexity) =
(

1− Cluster Number
Conf. Rules Number

)
·100 (10)

The Figure 7 represents the conceptual schema for
the creation of a Final Implemented Rule starting from
a Clustered Conformance Rule and an Abstract Pat-
tern Template.

An abstract pattern template is a way to general-
ize a class of possible instances of conformance rules
and, like the concept of Abstract Class in the Object
Oriented paradigm, it is possible to instantiate a spe-
cific Final Implemented Rule starting from it. The

Figure 7: Main Schema of the Conformance Rule Imple-
mentation starting from an Abstract Pattern Template and a
Clustered Conformance Rule.

Figure 8: Main Schema of the Conformance Rule Imple-
mentation starting from an Abstract Cluster Template.

Figure 8 shows a generic example written accord-
ing to the standard Schematron where, considering a
cluster partition identified by Cluster ID, it is created
an abstract pattern with all the parameters defined as
generic variables (ex. $Context, $par1, $par2, etc.).
In the example we also defined a generic function
assertion(·) to obtain complex tests using the defined
variables.

In Figure 9, the abstract pattern is used to instan-
tiate a specific conformance rule that belongs to that
cluster. In this case the instantiation consists to de-
clare the abstract pattern to use and to specify each
parameter involved.

Figure 9: Main Schema of the Conformance Rule Imple-
mentation starting from an Abstract Cluster Template.

At the moment the abstract pattern template im-
plementation is manual and involves a human pro-
cessing. As future work, we are planning to autom-
atize this task, using NLP tools. In details, the use
of a Part of Speech (PoS) tagger and of a depen-
dency parser will automatically identify the subject,
the main verb and its objects of each cluster member.
In addition, a dedicated entity extraction can help to
classify the object types. Then, a rule based system
can build a pattern for each cluster.

5 EXPERIMENTAL RESULTS

To verify the effectiveness of described approach we
will show the application of the proposed method-
ology on two case studies, namely the Italian local-
ization of specification of the conformance rules of:
i) Patient Summary4(in Italian Profilo Sanitario Sin-
tetico, PSS) and ii) Hospital Discharge Letter5(in Ital-
ian Lettera di Dimissione Ospedaliera, LDO). The
conformance requirements and specifications are part

4Patient Summary: http://www.hl7italia.it/sites/default/
files/Hl7/docs/public/HL7Italia-IG CDA2 PSS-v1.2-S.pdf

5Hospital Discharge Letter: http://www.hl7italia.it/
webfm send/1709



Table 2: Gold case cluster number of each dataset.

Specification Rules number Gold case Cluster number
LDO 104 42
PSS 259 129

PSS+LDO 363 159

of HL7-Italia (see Section 1 for more details). PSS
and LDO are both conformance requirements and
specification documents written in semi-structured
natural language text. PSS contains 259 conformance
rules, while LDO a total number of 104. To ex-
tend the experimental assessment, we have applied
our methodology even to the sum of the rules from
both documents, clustering a new data set with a total
of 363 rules, named PSS+LDO. It could be useful in
real application group together similar conformance
rules documents, identifying the rules with the same
patterns from different documents.

The assessment is based on gold cases, formed by
the ideal grouping of the conformance rules of each
dataset belonging to the same pattern. The goodness
of the cluster results have been measured through the
CG (equation 8) applied on those gold cases. Each
gold case has been manually built by the software de-
velopers who previously implemented the whole con-
formance rule validation schema: they well know the
rules text and their patterns and so they produced a
reliable gold cases for each dataset used. The num-
ber of conformance rules grouped in each gold case is
shown in next Table 2.

We have compared the results obtained with our
approach, namely Iterative Spherical K-Means (IT-
SKM), with the ones obtained using a One Iteration
Spherical K-Means (1-SKM) method. In this case,
only one step of iteration process is performed, choos-
ing the cluster number of the partition with the MAS
function (equation 5), without selecting the elements
to be clustered in the following steps.

In Table 3 is shown the effectiveness of using IT-
SKM for evaluating the optimal number of clusters
through the synthetic external measure CG (eq. 8),
previously defined in Section 3.3. We compared the
IT-SKM results with the 1-SKM results through the
CG measure for PSS, LDO and PSS+LDO cases. In
all experiments the best results have been obtained
with iterative approach IT-SKM. It is even worth not-
ing that cluster number obtained with IT-SKM is re-
ally close to the gold case.

To better understand and explain the results of our
experiments, we show in Figure 10 the Hom (in red)
and Com (in blue) percentage value distribution for
1-SKM and IT-SKM for all data sets. In details, the
figures depict the cluster distribution whose Hom and
Com have a certain value. All 1-SKM experiments
have an high number of clusters whose Hom is high,

due to the fact that the number of clusters obtained is
close to the total conformance rules number and many
clusters have only one element. So the high value of
Hom is caused simply by cluster formed by only one
element, not by a good cluster solution. On the other
side, the number of clusters with an high Com value is
only a little fraction of the whole partition, suggesting
a bad clustering.

Instead, IT-SKM experiments show in all cases a
very high fraction of clusters with both Hom and Com
equal to 100%. A perfect solution (identical to gold
case) has Hom and Com equal to 100% for each clus-
ter. The results in Figure 10 for IT-SKM show that
this condition is verified for an high number of clus-
ters, demonstrating the effectiveness of the proposed
methodology. In addition, the figure confirms that CG
measure follows the correct behaviour and it is an use-
ful external measure.

6 CONCLUSION AND FUTURE
WORK

In this paper we proposed a novel approach to reduce
the complexity of the definition and implementation
of a medical document validation model.

We defined an architecture to automatically pro-
duce a software specification starting from a set of
conformance rules in semi-structured natural lan-
guage format. At this aim, we presented an innova-
tive cluster approach that automatically evaluates the
optimal number of groups using an iterative method
based on internal cluster measures evaluation.

The effectiveness of the proposed approach is
evaluated on two case studies: i) Patient Summary
(Profilo Sanitario Sintetico) and ii) Hospital Dis-
charge Letter (Lettera di Dimissione Ospedaliera) for
the Italian localization specification of the confor-
mance rules.

As future works we are planning to realize the re-
maining blocks of the architecture depicted in the Fig-
ure 3 and, in particular, the Final Model Creation and
Model Validation (the blocks have light-blue back-
ground in the Figure). Furthermore, we are consider-
ing to automatize the creation of the abstract pattern
template starting from a cluster, with the support of
natural language tools. At least, we are also investi-
gating more deeply on other unsupervised methods to
automatically grouping the conformance rule and in
particular on deep-learning approaches.



Table 3: Results. The best results are highlighted in bold.

Specification Method Mean(CG) Mean(COM) Mean(HOM) #Cluster #Gold #Conf ∆(Complexity)

LDO
Iterative 74.21% 70.00% 76.77% 46

42 104
55.77%

One Iteration 70.85% 53.85% 98.72% 77 25.96%

PSS
Iterative 67.17% 75.88% 63.53% 108

129 259
58.30%

One Iteration 65.36% 58.37% 95.48% 211 18.53%

PSS+LDO
Iterative 66.88% 64.90% 68.16% 167

159 363
53.99%

One Iteration 60.34% 50.00% 98.43% 313 13.77%

Figure 10: Hom and Com value distributions for all experimental assessment.
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