
A LRAAM-based Partial Order Function for Ontology Matching in the
Context of Service Discovery

Hendrik Ludolph1, Peter Kropf1 and Gilbert Babin2
1Institute of Computer Science, University of Neuchâtel, 2015 Neuchâtel, Switzerland

2Information Technologies, HEC Montréal, 3000, ch. Côte-Ste-Catherine, Montréal (QC) H3T 2A7, Canada

Keywords: Ontology Matching, Neural Network, Service, Integration.

Abstract: The demand for Software as a Service is heavily increasing in the era of Cloud. With this demand comes a
proliferation of third-party service offerings to fulfill it. It thus becomes crucial for organizations to find and
select the right services to be integrated into their existing tool landscapes. Ideally, this is done automatically
and continuously. The objective is to always provide the best possible support to changing business needs.
In this paper, we explore an artificial neural network implementation, an LRAAM, as the specific oracle to
control the selection process. We implemented a proof of concept and conducted experiments to explore the
validity of the approach. We show that our implementation of the LRAAM performs correctly under specific
parameters. We also identify limitations in using LRAAM in this context.

1 INTRODUCTION

Today, more than ever, Information Technology (IT),
and more specifically Information Systems (IS) are
necessary for an organization to succeed. An IS can
be defined as a specific assembly of applications to
support distinctive enterprise needs (Izza, 2009). As
an organization evolves, so does the IS supporting it.
Many factors put pressure on the organization, which
in reaction will evolve. The sources of this pressure
include, but are not limited to, competition, internal
and external politics, organizational evolution, tech-
nical progress, and cost containment. The changes
induced by these pressure sources lead to a reconfig-
uration of the organization, which in turns leads to a
reconfiguration of the IS supporting it. We anticipate
that these changes will tend to occur more frequently
and more rapidly. The high frequency of technolog-
ical innovations brought to the market illustrates this
tendency. This is further enhanced by the presence of
cloud-based solutions, i.e. SaaS. As a consequence of
this trend, we must find ways to increase our ability
to evolve the organization’s IS as often and as quickly
as it is required to maintain the stability of the organi-
zation. In a perfect world, the IS itself would “know”
when change is required and would “adapt” itself to
better fit the needs of the organization. This might
only occur if the IS has some understanding of what
the organization’s requirements were and how they

evolved. To adapt adequately, the IS must be able to
identify what are the alternatives from which to se-
lect the most appropriate response to the change. The
research presented in this paper is set in that vision
of autonomic IS adaptation in the context of service
oriented architecture (SOA).

The basic idea of SOA is to modularize and
wrap applications behind formally described access
points or interfaces, e.g., Application Programming
Interfaces (APIs) which follow more or less rigor-
ous protocols (e.g., SOAP, REST, JSON (Erl et al.,
2014)) and are accessible over the network. Through
the APIs, applications’ functionalities can be auto-
matically discovered (e.g., using UDDI registries;
see (Kale, 2014)) and consumed as a service. Ser-
vices can represent anything from simple service re-
quests to complicated business processes (Lehaney
et al., 2011). They can participate in many differ-
ent IS (Kale, 2014). With SOA, eventually, the ob-
jective is to lower integration hurdles and increase
reusability of applications. It empowers organizations
to assemble complex IS with unprecedented flexibil-
ity and sophistication as business requirements shift
over time (Erl, 2004).

The SOA principle is applicable beyond organi-
zational limits. Specialized service providers, such
as SalesForce, ServiceNow, Akamai, etc. emerged to
extend on-premise SOA to off-premise cloud-based
services. They commoditize and commercialize ser-

Ludolph, H., Kropf, P. and Babin, G.
A LRAAM-based Partial Order Function for Ontology Matching in the Context of Service Discovery.
DOI: 10.5220/0006294904210431
In Proceedings of the 7th International Conference on Cloud Computing and Services Science (CLOSER 2017), pages 393-403
ISBN: 978-989-758-243-1
Copyright © 2017 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

393



vices, such as Customer Relationship Management,
IT Service Management, Performance & Availability.
Other organizations request, contract, and integrate
these services into their internal IS instead of setting
up the functionality by themselves. This way, no ex-
pensive technical know-how for the service is needed.
If later the service is no longer useful, the contract is
cancelled. The service, technically and commercially,
disappears from the organizational scope. This flex-
ibility appeals to more and more organizations these
days to improve their IS (Cisco, 2014). Some authors
even claim that it becomes mandatory for keeping
a competitive advantage (Fensel and Bussler, 2002;
Hussain and Mastan, 2014). The commercial success
of some service providers, such as SalesForce, acts
as an incentive for new firms to enter the SaaS market
(see (Frank and Cartwright, 2013, Chapter 11) – long-
term zero-profit equilibrium) and offer similar (some-
times identical) services. This leads to a proliferat-
ing number of similar cloud-based services to choose
from (Bughin and Chui, 2010).

In this context, the organization’s IS is an assem-
bly of services (in-house or cloud-based). It provides
a more flexible and easier to adapt solution to support
all requirements of the organization. Hence, when-
ever a change in the organization’s requirements oc-
curs, the set of all services available is searched to
select those which may best support the changed re-
quirements, and to remove the obsolete/inappropriate
services from the IS scope, and finally integrate the
newly selected services.

Current industrial integration techniques, such
as traditional middleware (e.g., remote procedure
call mechanisms, data-oriented, component-oriented,
message-oriented, application servers), EAI tools
(e.g., MS Biztalk, Tibco), BPM (e.g., BPEL, BPMN),
or SOA (Oracle Service Bus) do support service in-
tegration. However, these approaches do not lend
themselves to autonomic IS adaptation. For many
authors (Izza, 2009; Fensel et al., 2011; Hoang
et al., 2014; Hoang and Le, 2009), these integra-
tion techniques are agnostic to the most crucial aspect
of autonomic IS adaptation, that is, understanding
the semantics of services. Indeed, these techniques
merely regulate information and focus on meta-data
exchange. They are syntactic in nature. The same au-
thors suggest using Semantic Web-based approaches,
which enable machines to “understand” the meaning,
i.e., the semantics of services. In our view, semantic
understanding is required both to determine changes
in requirements, comparing the old and the new re-
quirements, and how to resolve the differences, iden-
tifying and selecting appropriate services.

The work presented in this paper focuses on one

of the tasks that must be performed by the auto-
nomic IS system: service selection and composition
(SSC). In our view, SSC should (1) automatically se-
lect the “best” service available; (2) automatically in-
tegrate the selected service to the organization’s IS;
and (3) do this continuously as part of the autonomic
IS environment. All this is based on the premise that
we can automatically determine how well a service
supports requirements, and by extension, that we can
rank services by their level of support. It is clear that
the selection process goes beyond simple discovery
as it represents a degree of intelligence, namely iden-
tification and analysis towards synthesis of possible
actions (Zdravković et al., 2014). We further limit the
scope in this paper to the selection process itself. In-
deed, once selection is performed, existing SOA tech-
niques can be used to facilitate/automate the actual
integration process.

Specifically, the paper presents exploratory results
on a novel service selection approach which uses on-
tological description of services. That is, we assume
that both organization’s requirements and service of-
ferings are described and represented using an onto-
logical notation, such as OWL (Web Ontology Lan-
guage), in addition to the usual descriptions used for
SOA (e.g., UDDI, SOAP, etc.), which are by nature
syntactic, as they describe the APIs and the data struc-
ture, but do not provide any information about the
purpose of the service, at least not in a form that
can be processed by a computer. In (Ludolph et al.,
2011), the authors present a global service selection
algorithm. The algorithm assumes the existence of a
service matching function. In this paper, we focus on
the definition of the service matching function, which
lacked in (Ludolph et al., 2011), using an ontology
matching approach. The main issue addressed in the
paper, therefore, pertains to the specification and anal-
ysis of a partial order function used to rank services
from most appropriate to least appropriate based on
the similarity of their ontological description.

We first start with a brief analysis of the use of
ontology matching approaches in the context of ser-
vice composition (Sec. 2). This sets the context in
which the partial order function is required. We then
explore different alternative approaches to define such
a partial order function. Established symbol-driven
(Sec. 2.2) as opposed to neural network matching
techniques (Sec. 2.3) are discussed. From the latter
category, in Section 3, the LRAAM, a specific type
of artificial neural network, is further investigated. In
Sections 4 and 5, we describe experiments using an
LRAAM-based partial order function to perform on-
tology matching. The paper is concluded in Section 6
with a critical discussion of the results, the approach’s

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

394



limitations and a outlook on future research.

2 THE MATCHING PROBLEM

Following (Fensel et al., 2011) and (Born et al., 2007),
the semantic descriptions of services is necessary in
order to establish and warrant interoperability that
does not require a human to manually effect certain
integrations that will rapidly become obsolete, or non-
reusable in a dynamically evolving environment. The
approach described in this paper thus focuses on a
semantics-based approach towards more intelligent
SSC. We assume that business activities (e.g. a task
in BPMN terminology), and how they are related, and
that independent, competing services are described
using semantic descriptions. In our context, we fo-
cus on what a service provides as opposed to on how
to access it technically (e.g., its UDDI description).

A common approach to supply semantic decrip-
tions is the use of ontologies. An ontology is a formal
representation of some knowledge domain. It con-
tains relevant entities and their relations. It is based
on formal semantics, i.e., logic, allowing for machine
reasoning (see (Antoniou and van Harmelen, 2008;
Antoniou and van Harmelen, 2009) for a detailed in-
troduction). Figure 1 illustrates such an ontological
description, where we can identify five distinct in-
stances of Activity. A similar ontological description
is assumed for services.

Process

Ac vity

CreditApprovalMeetWithCustomer

RequestCreditAmount

CapturePersonID

CreditChecking

Figure 1: Simple ontology for related business activities.

Provided that the organizational requirements de-
scriptions are available in a standardized form (e.g.,
OWL-based ontologies), we assume that the descrip-
tion of a business activity will be more or less sim-
ilar to a corresponding service. Thefore, “similar-
ity” could be used as a selection criterion. It follows
that the most similar service for a certain business
activity will be the one selected. Eventually, once
all services required are selected, service composition
can be accomplished by adequate attribute mapping.
These mappings could be automatically constructed

or adapted through syntactic or semantic matching
techniques (Euzenat and Shvaiko, 2013).

2.1 Finding a Good Oracle for Ontology
Matching

Automatically establishing service–requirement map-
pings on a large scale remains a challenge (Diallo,
2014; Otero-Cerdeira et al., 2015). To this we add
other challenges: (1) the number of distinct ontolo-
gies to evaluate in a continuous manner, considering
the evolving organizational context described above,
(2) the efficiency in terms of search space and time
consumption, (3) the effectiveness in terms of correct
and complete identification of semantic correspon-
dences (Rahm, 2011), (4) the potential use of possibly
fragmented background knowledge, and (5) the user
involvement (Shvaiko and Euzenat, 2013).

Matching is the fundamental operation to identify
similarities (Rahm and Bernstein, 2001) between two
ontologies. It takes two ontologies as input and pro-
duces a mapping between semantically similar enti-
ties. Following the approach described in (Ludolph
et al., 2011), we start from an ontological description
of a business process (such as in Fig. 1) to identify
all activities (using a “is-a” relationship). Then, we
look at all valid pairs of consecutive activities {aa′}
in the business process (using a “preceeded by” rela-
tionship). In this context, activity a is a predecessor
of a′ in the process. We also consider their contextual
use within the business process. We seek to identify
a pair of services {ss′} that supports the most ade-
quately the sequence of activities {aa′}. Services are
also identified using a “is-a” relationship in the ser-
vice ontologies. A generic ontology fragment, called
a sequence ontology, is used to represent the prece-
dence relationship (Ludolph et al., 2011). The se-
quence ontology has two placeholders, one for the
predecessor activity (service), and one for the suc-
cessor activity (service). Using the sequence ontol-
ogy, we construct the set R = {raa′} of reference
ontologies by replacing both placeholders by a and
a′, respectively. In the same way, we construct the set
C = {css′} of compound ontologies representing the
composition of services s and s′, such that s 6= s′.

Reference and compound ontologies are com-
pared against one another to evaluate a matrix D =
[drc], where drc is the ontological distance between
reference ontology r and compound ontology c. In
this context, a distance drc = 0 would yield identi-
cal ontologies r and c, while the value of drc would
increase as the dissimilarity between r and c in-
creases. Using the ontological distance, the general
matching algorithm (Ludolph et al., 2011) then tries

A LRAAM-based Partial Order Function for Ontology Matching in the Context of Service Discovery

395



to find an optimal solution which identifies the best
matches amongR and C and which minimizes (1) in-
tegration costs, (2) costs of on-premise applications
packages/add-on’s providing services bundles, and
(3) costs of off-premise, cloud-based services. The
optimal solution must fulfill the following constraints:
(1) each r must be matched with exactly one c, (2) at
most one c is matched with an r, and (3) all service
sequences must be coherent with the business activity
sequences.

Under these conditions, a perfect set of services,
that is, one for which drc = 0,∀r ∈ R,∀c ∈ C,
would return an optimal, integrated sequence of ser-
vices to support a predefined business process. Inte-
gration costs would be negligible.

2.2 Symbol-based Methods to Match
Ontologies

The real challenge not addressed in (Ludolph et al.,
2011) is in defining explicitly a distance function drc.
Indeed, the authors hypothesize that such a function
exists. In general, distance can be defined and mea-
sured in different ways. An example is the Hamming
distance. To obtain it, one counts the minimum num-
ber of letter substitutions required to transform one
string into another string – the fewer the substitutions,
the more similar the strings, the smaller the distance.
For example, for two strings a = ’ibm’ and b = ’hal’,
d a,bHam = 3. Using a symbol-based approach, deter-
mining an ontological distance is somewhat equiva-
lent to calculating the Hamming distance.

Ontology matching designates the process of find-
ing semantic similarities. Following (Kotis et al.,
2006), the matching of two ontologies o and o′ can be
defined as a morphism from o to o′. One approach to
determine a distance would therefore be to determine
how many steps are optimally required to morph from
ontology o to ontology o′.

The associated matching task is to find an align-
ment A between o and o′ (Euzenat and Shvaiko,
2007). An alignment is a set of correspondences,
which in turn is a 4-tuple 〈id, eo, eo′ , r〉, with id as
correspondence identifier, eo and eo′ as entities (e.g.,
classes, properties) of the compared ontologies, and
r ∈ {6,=,1,⊥}1 the identified relation (Atencia
et al., 2011). Various techniques are used to find cor-
respondences. Table 1 presents a classification into
syntactic and (formal) semantic matching techniques.

These techniques focus on individual elements or
whole structures. They may analyze frequency dis-

1reads: is less general than, equal, is more general than,
disjoint from.

tribution or specific languages’ morphologies. They
introduce external data repositories. Eventually, they
all work on discrete arbitrary objects, that is, symbols.
They rely on the exactness of the analyzed represen-
tations to draw appropriate conclusions.

This, however, is at odds with the fact that the rep-
resentation of requirements is by nature imprecise.
These approaches are therefore insufficient to prop-
erly determine the distance.

2.3 LRAAM as Matching Function

To overcome the shortcomings of symbol-based
matching techniques in the context of impre-
cise requirements, we combine them with a non-
deterministic approach, namely an artificial neural
network (ANN (Hinton et al., 1986)) implemented
as LRAAM (Labelled Recursive Auto-Associative
Memory (Sperduti, 1993)). Typical symbols in a sym-
bolic model are letter strings. They may be placed
into structured relationships with other symbols, e.g.,
subsumption. However, they do not possess inter-
nal structure on their own (Blank et al., 1992). In
contrast, ANNs incorporate distributed representa-
tions (Chan, 2003), also called subsymbolic repre-
sentations. These representations might evolve into
different patterns, but nevertheless, still behave in
a way related to the original pattern. Structure is
thus inherent to the representation, also called micro-
semantic (see Tab. 2). Our view is that in a highly
dynamic environment it is not about finding an exact,
but rather a most similar service to support an activity.
To support this view, a fine-grained (continuous) dis-
tributed pattern as opposed to a coarse-grained (dis-
crete) symbolic pattern is evaluated. ANN’s proper-
ties do not arise from the nodes’ individual function-
ality but from the collective effects resulting from the
nodes’ interconnections. It amounts to the develop-
ment of distributed internal representations of the in-
put information (Blank et al., 1992).

An ANN has the ability to derive patterns from
complex or changing input data. In this context, it
is used to evaluate similarity of ontologies, such as
r and c, which may be too difficult to be noticed
by either humans or symbol-based computing tech-
niques (Li et al., 2012). Specifically, the ANN is able
to learn all of r’s, respectively c’s, ontological entities
and relations at the same time as distributed represen-
tations. It allows for changing the matching approach
from a coarse-grained drc ∈ {0, · · · , u} with u ∈ N
to a fine-grained drc ∈ [0, u] with u ∈ R (see also
Sect. 3).

The LRAAM is a particular implementation of an
ANN. Its most interesting feature is the potential to

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

396



Table 1: Classification of matching techniques (adapted from (Euzenat and Shvaiko, 2013)).

Syntactic Semantic
Element-
level

Informal resource-based directories, annotated resources
String-based name similarity, description similarity, global
namespace
Language-based tokenisation, lemmatisation, morphology,
elimination, lexicons, thesauri
Constraint-based type similarity, key properties

Formal resource-based upper-level ontologies, domain-specific
ontologies, linked data

Structure-
level

Taxonomy-based taxonomy structure
Graph-based graph homomorphism, path, children, leaves
Instance-based data analysis, statistics

Model-based SAT solvers, DL reasoners

Table 2: Symbolic vs. subsymbolic paradigm (Blank et al.,
1992).

Subsymbolic Symbolic

Representation distributed atomic
continuous discrete
emergent static
use affects form arbitrary

Composition superimposed concatenated
context-sensitive systematic

Functionality micro-semantic macro-semantic
holistic atomic

encode (and decode for that matter) labeled directed
graphs of arbitrary size (de Gerlachey et al., 1994;
Sperduti, 1993). The resulting patterns are sensitive
to the graph they represent. Following (Ellingsen,
1997), these patterns can be exploited for similar-
ity analysis. They are thus used to calculate the
distance matrix D = [drc]. The general architec-
ture of an LRAAM is shown in Figure 2. It is a
supervised 3-layer feedforward network trained by
backpropagation. The dashed arrows indicate that
this auto-associative architecture2 must be used re-
cursively (Pollack, 1990). Certain node values from
the hidden and output layer are fed back to the input
data until the network has reached a steady state, that
is, until the activation thresholds remain stable even
when feeding new inputs to the network.

The training of the LRAAM is achieved through
backpropagation so it learns an identity function F :
x → x′, where x, x′ ∈ Rn. A node vector is com-
pressed by using the function Fc : x → z. Then, the
compressed representation is reconstructed using the
function Fr : z→ x. The node vector x′ is thus an ap-
proximated output equal to x. The network is trained
by presenting the input vectors repeatedly, one vector
at the time.

2The “auto-association” is a consequence of the equality
of input and output layers.

output vector x‘ (output layer)

input vector x (input layer)

hidden vector z (hidden layer)

x1

x2

.

.

.

xg

input data

Figure 2: LRAAMs network architecture.

3 INTEGRATING AN LRAAM
MATCHING FUNCTION IN THE
ONTOLOGY MATCHING
ALGORITHM

For each r ∈ R and c ∈ C, we construct a directed
acyclic graph G = (V,E), such that vertices (V )
correspond to concepts from the ontology and edges
(E) correspond to relationships between these con-
cepts (Eder and Wiggisser, 2007). In other words, G
is a conceptual graph. The vector z ∈ Rm serves as
comparison pattern and Z = [z1, z2, . . . , zĝ, . . . , zg]T
as a collection of comparison patterns, with g the
number of vertices in G. Vertices 1 through ĝ cor-
respond to the nodes from the generic sequence on-
tology from which both r and c were constructed.
We will note Zĝ the vector composed of values
[z1, z2, . . . , zĝ]T .

By construction of the LRAAM, we know that
each z in Zrĝ and Zcĝ contains (micro-semantic) in-
formation about the complete collections Zr and Zc,
notwithstanding the number of vertices in r or c.
Therefore, drc can be calculated as the Euclidian dis-
tance between Zrĝ and Zcĝ . The ontological distance

A LRAAM-based Partial Order Function for Ontology Matching in the Context of Service Discovery

397



between r and c is thus defined as:

drc =

√√√√
ĝ∑

i=1

(zri − zci )2

To construct the LRAAM, we proceed as follows
(Fig. 3). Each vertex within G serves as a single in-
put vector x = (x1, x2, . . . , xn) ∈ Rn. By exten-
sion, X = [x1, x2, . . . , xg]T , the collection of vertex
vectors for a specific r, respectively c, comprises the
complete input data to the network.

label
pointer

condition

, ) , )

, ) , )

real value in range [-1,1]

Figure 3: Experimental LRAAM implementation.

To obtain z of a vertex, part of the input (out-
put) vector is allocated to represent the vertex la-
bel and the existence of pointers p (edges3) to con-
nected vertices. There are q pointer slots reserved,
where q = max{degree(v)}, with v ∈ V . The
input vector is composed of th + q · m → Rn ele-
ments, where th is the number of elements used to
represent vertex information (label plus pointer ex-
istence), and m is the number of elements used to
represent pointer values. If a vertex has less than
q pointers, a nil pointer is used, to which a random
value is initially assigned (Ellingsen, 1997). The hid-
den representation z of a specific vertex is understood
as the pointer for that vertex. As part of other in-
put vectors, it will thus be used as pointer and it-
eratively fed to the network. Eventually, we obtain
the collection Z of fixed-sized vectors which rep-
resents all concepts/relationships from the ontology.
For each reference ontology r, we can thus determine
the most similar compound ontology c ∈ C, such that
d(Zrĝ,Z

c
ĝ),∀r ∈ R,∀c ∈ C : Zrĝ × Zcĝ → Rm is

minimized.
In a final step, c is selected for effective integra-

tion. Again, the assumption is that the selected ser-
vice sequence ss′ is semantically closer to the se-

3The pointer p represents an edge of the graph G.

quence of activities aa′ and thus better suited to sup-
port it.

4 EXPERIMENTAL
METHODOLOGY

We developed a prototype ontology matching tool in
order to assess the quality of the ontology distance
function. The next section describes the prototype.
Special emphasis is put on the list of parameters to the
LRAAM, as these will be investigated in the experi-
mental protocol. The experimental protocol is pre-
sented next. As this study is exploratory, the exam-
ples used are in their simplest form in order to control
all input parameters to better assess the quality of the
distance function, given known input ontologies.

4.1 Prototype Ontology Matching Tool

In order to test the LRAAM-based distance function,
a tool was developed to receive, transform, and pro-
cess the input, and determine the similarity score,
that is drc. The tool extends Neuroph4 to realize the
LRAAM topology. The tool receives the following
input data:

• A process ontology (such as Fig. 1) and two or
more service ontologies in order for the tool to
construct r ∈ R and c ∈ C.

• LRAAM-specific input parameters (see
also (Ellingsen, 1997)):

– ε: total error to reach before training stops.
– η: backpropagation learning rate.
– σz: slope of hidden layer activation function
ϕ(υ) = 1/(1 + eσzυ), with υ the sum of in-
put to the unit.

– σh: slope of the activation function ϕ(υ) =
1/(1 + eσhυ) of the label part of input/output
vector x, being xh.

– σp: slope of the activation function ϕ(υ) =
1/(1+ eσpυ) of the pointer part of input/output
vector x, being xp.

– m: freely defined number of hidden layer
nodes, with m < |x|. Note: It determines the
size of the input vector x (see again Fig. 3).

Based on this input data, the tool initializes the fol-
lowing variables, which are described and discussed
in the subsequent sections:

4http://neuroph.sourceforge.net/

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

398



• Vr = {vr}, the set of vertices of a reference on-
tology, where vr is a vertex in the graph represen-
tation of reference ontology r ∈ R.

• Vc = {vc}, the set of vertices of a compound on-
tology, where vc is a vertex of the graph represen-
tation of compound ontology c ∈ C.

• Evr = {v′r}, the set of edges in a reference ontol-
ogy, such that an edge starts from vr and ends at
v′r.

• Evc = {v′c}, the set of edges in a compound on-
tology, such that an edge starts from vc and ends
at v′c.

• q ← maxOutDegree(Vr ∪ Vc), the maximum
number of connection slots to include in the input
and output vectors of the LRAAM.

• lmax ← maxLabelLength(Vr ∪ Vc), the maxi-
mum number of {−1, 0, 1} values required to en-
code the labels of the vertices.

• th = q + lmax, the number of {−1, 0, 1} values
required in the input and output vectors to encode
the different vertices.

• tp ← m · q, the number of real values required in
the input and output vectors to encode the connec-
tions between vertices (pointers).

• zivr is the reduced representation of vertex vr ∈
Vr at the beginning of a training iteration. It is a
vector of m values.

• zovr is the reduced representation of vertex vr ∈
Vr at the end of a training iteration. It is a vector
of m values.

• xivr = (xih,vr ,x
i
p,vr ) is the input vector of vertex

vr ∈ Vr at the beginning of a training iteration,
where xih,vr is a {−1, 0, 1} value vector encoding
the label and pointer conditions of vertex vr and
xip,vr is a real vector encoding the pointers outgo-
ing from vertex vr.

• xovr = (xoh,vr ,x
o
p,vr ) is the output vector of vertex

vr ∈ Vr at the beginning of a training iteration,
where xoh,vr is a {−1, 0, 1} value vector encoding
the label and pointer conditions of vertex vr and
xop,vr is a real vector encoding the pointers outgo-
ing from vertex vr.

• zivc is the reduced representation of vertex vc ∈
Vc at the beginning of a training iteration. It is a
vector of m values.

• zovc is the reduced representation of vertex vc ∈ Vc
at the end of a training iteration. It is a vector of
m values.

• xivc = (xih,vc ,x
i
p,vc) is the input vector of vertex

vc ∈ Vc at the beginning of a training iteration,

where xih,vc is a {−1, 0, 1} value vector encoding
the label and pointer conditions of vertex vc and
xip,vc is a real vector encoding the pointers outgo-
ing from vertex vc.

• xovc = (xoh,vc ,x
o
p,vc) is the output vector of vertex

vc ∈ Vc at the beginning of a training iteration,
where xoh,vc is a {−1, 0, 1} value vector encoding
the label and pointer conditions of vertex vc and
xop,vc is a real vector encoding the pointers outgo-
ing from vertex vc.

4.2 Experimental Protocol

The experiment is divided into a preliminary and three
main phases. In the preliminary phase, a simple
process ontology composed of the last two activities
from Figure 1 is constructed, namely activities Cred-
itChecking and CreditApproving. In addition, two
simple service ontologies are created. Each service
is described by exactly one label. The labels are also
CreditChecking and CreditApproving. We used
Protégé5 to construct the different ontologies.

The ontologies are loaded into the tool,
which then generates new composed ontolo-
gies r: CreditChecking × CreditApproving,
c1: CreditApproving × CreditChecking, and
c2: CreditChecking × CreditApproving. As we
explore the potential of LRAAM as a classification
tool at this time, the experiment is not extended to
more than two related activities.

In a further step, the ontologies r and ci are used
to implement the LRAAM to calculate drci , with i =
{1, 2}.

For the analysis, the following variables are de-
fined:

• w: the expected best (winning) service, with w ∈
{1, 2}. For the controlled experiment, we expect
w = 2, as r ≡ c2.

• di: distance of service combination ci, with i =
{1, 2}, and r.

• dw: distance of expected winning service combi-
nation cw and r

• ri: ranking of service combination i out of all
combinations.

• rw: ranking of expected winning service combi-
nation out of all combinations.

• b: 1 if correctly matched, i.e., w = 2, 0 otherwise.

In Phase 1, the relationship between the LRAAM
input ε, η, σz, σh, σp,m and output di is analyzed.
For each parameter, interval and tick size is fixed to

5http://protege.stanford.edu/

A LRAAM-based Partial Order Function for Ontology Matching in the Context of Service Discovery

399



explore reasonable, yet limited, parameter combina-
tions within LRAAM’s large state space. Tick size
is the value of each increment of the parameter value
from lowest to largest value in the interval. For exam-
ple, an interval from 0 to 10, with tick size of 5 would
test values in the set {0, 5, 10}.

All parameter values are thus recombined with
each other. To control processing time, one LRAAM
instance per combination is executed. A multiple lin-
ear regression is conducted to identify the parameters
having a significant correlation with di. These param-
eters will be analyzed further in subsequent phases.
The other parameters are then fixed heuristically at a
value which maximizes b for dw (i.e., the number of
good classifications). At this point, classification per-
formance is not evaluated.

In Phase 2, we further explore the impact of
parameters with a significant correlation with di.
Specifically, the interval is increased and the tick size
is decreased. More of LRAAM’s state space is thus
explored, this time to find optimal parameter values.
All resulting parameter values are recombined with
each other. Similar to Phase 1, one LRAAM instance
per combination is executed. Each variable parameter
is heuristically analysed for promising values which
maximize b for dw. Classification performance is still
not evaluated.

In Phase 3, 2000 LRAAM runs are executed for
the promising values found in Phase 2, which are
analysed for classification performance. Specifically,
each list is transformed by assigning a ranking ri to
di. The smallest of two di per run is given a ranking
ri = 1. The other ranking (ri = 2) is transformed
into a weighted ranking, normalized over the maxi-
mum distance spread over all runs, which gives a finer
account of the classification performance.

The general success criteria is defined as, µrw <
µri ,∀i 6= w which in the experiment is µr2 < µr1 .
In other words, the mean ranking of the expected win-
ning service combination cw must be smaller than the
respective means of all other service combinations ci.

If a list respects the criterium, it is selected and
tested for statistical significance. To this end, an inde-
pendent samples t-test is used, as the sample groups
i are independent of each other. Furthermore, as no
experiment is conducted on the same subjects before
and after some event, a paired t-test is not applicable.
If the null-hypothesis (α = 0.05) can be rejected, dw
is correctly classified. In that case, the best combina-
tion of services (c) to support related business activi-
ties (r) could be identified.

5 EXPERIMENTAL RESULTS

In Phase 1, a list of 12,636 di is generated, corre-
sponding to 6,318 parameter value combinations. The
model summary of the conducted multiple regression
is shown in Table 3:

Table 3: Multiple regression model summary.

Predictors R R2 Adj. R2 Std.Err.
η 0.857 0.735 0.735 0.58527

η &m 0.915 0.838 0.838 0.45722

η &m & σh 0.949 0.900 0.900 0.35947

η &m & σh & σp 0.949 0.900 0.900 0.35935

The predictive capacity of η (learning rate) and m
(number of hidden layer nodes) is high as these pa-
rameters explain a large part of d’s variability (R2 =
83.8%). Both parameters are promoted to Phase 2.
As the other parameters (IO layer binary slope σh,
IO layer real slope σp) do not have a significant im-
pact on d, they are fixed based on suggestions made
in (Ellingsen, 1997). We have ε = 0.15, σh = 6 (IO
layer binary slope), σp = 0.5 (IO layer real slope),
and σz = 0.5 (hidden layer slope).

For σz, σh, and σp, the values selected also yield
the highest count of correctly matched c in the list (see
marked area in Table 4).

Table 4: Parameter combination with highest count of cor-
rectly mapped c (framed).

Epsilon IO layer
binary slope

IO layer
real slope

Hidden layer
slope

Correct
matches

0.15 6 0.50 0.50 29
0.20 6 1.50 0.40 26
0.20 7 1.00 0.70 26
0.15 5 1.50 0.70 25
0.25 5 1.00 0.30 25
0.25 7 0.50 0.70 25

In Phase 2, the interval of m and η is increased to
cover more of LRAAMs state space. A list of 6,060 di
is generated, corresponding to 3,030 parameter value
combinations. From this list, zones of promising
matching performance are identified (Fig. 4 and 5).

The values η = {0.09; 0.20} and m =
{22; 42; 105} are fixed for further processing. Con-
sequently, six combination trials of 2,000 runs are ex-
ecuted during Phase 3. The results are shown in Ta-
ble 5. The classification passed the success criterium,
namely, µrw < µri , in four of the six parameter
combinations (in bold).

The significance of the results is verified by an in-
dependent samples t-test (see Tab. 6). As we can see,
we only have a significant classification for the pa-
rameter combination (0.20,22), where a very low p-
value of 0.002 is obtained. It suggests that the mean

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

400



35

40

45

50

55

60

65

0
,0

5

0
,0

6

0
,0

7

0
,0

8

0
,0

9

0
,1

0

0
,1

1

0
,1

2

0
,1

3

0
,1

4

0
,1

5

0
,1

6

0
,1

7

0
,1

8

0
,1

9

0
,2

0

0
,2

1

0
,2

2

0
,2

3

0
,2

4

0
,2

5

0
,2

6

0
,2

7

0
,2

8

0
,2

9

0
,3

0

0
,3

1

0
,3

2

0
,3

3

0
,3

4

C
o

rr
e

c
t 

m
a

tc
h

e
s

Learning rate

Sum of correct matches

Figure 4: Phase 2: Correct matches for η’s tested interval.

5

7

9

11

13

15

17

19

21

23

1
0

1
2

1
4

1
6

1
8

2
0

2
2

2
4

2
6

2
8

3
0

3
2

3
4

3
6

3
8

4
0

4
2

4
4

4
6

4
8

5
0

5
2

5
4

5
6

5
8

6
0

6
2

6
4

6
6

6
8

7
0

7
2

7
4

7
6

7
8

8
0

8
2

8
4

8
6

8
8

9
0

9
2

9
4

9
6

9
8

1
0

0

1
0

2

1
0

4

1
0

6

1
0

8

1
1

0

C
o

r
r
e

c
t
 m

a
t
c
h

e
s

Number of hidden layer nodes

Correctly matched

Figure 5: Phase 2: Correct matches for m’s tested interval.

ranking of compound ontology c2 = 1.89 is signifi-
cantly different from the mean ranking of c1 = 2.02.
With α = 0.05, in this case, the null-hypothesis is
thus rejected. In other words, with 2,000 runs, the
combination correctly classifies the input. However,
SPSS only allows for 2-tailed t-tests, whereas we are
interested only in the left tail of the t-distribution.
Since the t-test supposes a symmetrical distribution,
in this case, the “significant” tail will reflect signifi-
cance at p/2 = 0.025 or below6. As 0.002 < 0.025,
the validity of rejection holds.

6 DISCUSSION AND
CONCLUSION

In this paper we introduced a service selection and
composition approach towards automatic, yet flexible
integration of applications wrapped into services. We
discussed its necessity for organizations to cope with
an increasing number of modularized and decentral-

6http://www-01.ibm.com/support/docview.wss?
uid=swg21476176 (visited May 19, 2015).

Table 5: Classification results for fixed parameter value
combinations.

Parameters Matches
η m c1 c2 (cw)

0.09 22 989 1,011
0.20 22 949 1,051
0.09 42 996 1,004
0.20 42 1,005 995
0.09 105 974 1,026
0.20 105 1,042 958

Table 6: t-test for significance of µrw < µri .

Parameters Levene’s test t-test for equality of µ
η m F Sig. t df Sig.(2-tailed)

0.09 22 0.792 0.374 1.122 3,998 0.262
0.20 22 2.232 0.135 3.025 3,998 0.002∗

0.09 42 0.368 0.544 0.587 3,998 0.557
0.09 105 0.000 0.991 1.148 3,998 0.251

∗ H0 rejected.

ized services from which to choose, especially in the
context of the proliferation of cloud-based services.

As other authors (e.g., (Born et al., 2007; Fensel
et al., 2011)), we believe that ontologies lend them-
selves naturally as building blocks. The idea is that
business experts may use ontologies to describe cor-
porate business activities, on the one hand, and ser-
vice providers use ontologies to describe their service
offerings, on the other hand, so machines can com-
pare them automatically. It is a reasonable conjecture
that an ontology describing a credit checking activ-
ity uses “similar” entities and relations as the needed
credit checking service. In our example, both possibly
contain the entities Person and Customary credit reg-
ister, including a relation hasEntry between them. In
turn, an ontology describing a weather forecast ser-
vice most probably does not contain an entity Cus-
tomary credit register.

With the implemented LRAAM oracle, we con-
ducted experiments to verify similarity of services.
The results obtained are limited, as only one pair of
parameters in the space investigated yielded signif-
icant results. Consequently, no general conclusions
may be drawn from these experiments. This however,
does not imply that LRAAM should not be consid-
ered altogether to perform service selection. Indeed,
we feel that the implemented tool needs further devel-
opment and pruning to increase its performance. The
following points caught our attention:

• As part of the sigmoid activation function, a
higher impact of σ on d was anticipated. This
could however not be shown and warrants further
investigation.

• The significant parameter combination (0.2; 22)

A LRAAM-based Partial Order Function for Ontology Matching in the Context of Service Discovery

401



leads to a ratio m/n = 22/151 = 0.15. Based
on (Ellingsen, 1997), a good classification perfor-
mance was expected at a higher ratio of ≈ 0.25.

• Ontologies c and r contain the same labels by de-
fault, namely those representing the sequence on-
tology, which we use to calculate the Euclidean
distance. In the experiment, only two labels are
added to it to construct c, respectively r. These
labels may not have sufficient impact to signifi-
cantly alter the LRAAM’s rather volatile steady
state. In other words, distinctiveness, which is
sought, gets lost (see next point).

• We do not think that the current LRAAM im-
plementation exhibits a sufficiently trustworthy
steady state. Instead of initializing the input vec-
tor x with values from the interval [−1, 1], similar
to (Al-Said and Abdallah, 2009), it may be ben-
eficial to use a smaller interval, e.g., [−0.5; 0.5],
to decrease potential variability, such as described
in (Sperduti, 1993). Nevertheless, in light of the
similarity already given between the two particu-
lar input strings, the results seem promising.

• Narrowing down the LRAAM’s state space is
time-consuming. However, further intervals or
parameters need to be explored, also combined
with the above mentioned adaptations. One fur-
ther parameter may be the number of consecutive
times the LRAAM’s establishes a steady state (ex-
pressed in Z) based on the error tolerance ε, before
it is chosen to calculate d. It would increase con-
fidence in the validity of the steady state.

The above list mainly points towards improve-
ments of the LRAAM’s existing architecture, i.e., tun-
ing the activation function, varying the ratio of in-
put and hidden layer, etc. However, a further route
to enhancing classification performance may reside
in changing the LRAAM’s architecture altogether.
Specifically, the idea would be to couple the LRAAM
with the Deep Learning (DL) approach. The latter
represents an ANN with up to 20 hidden layers (in-
stead of only one). In total, such an ANN may con-
tain tens or hundreds of thousands of units. Follow-
ing (LeCun et al., 2015), a DL system can implement
extremely intricate functions of its inputs that are si-
multaneously sensitive to smallest variations. It ex-
ploits the property that many input signals are com-
positional hierarchies, in which higher-level features
are obtained by composing lower-level ones. The au-
thors continue to state that similar hierarchies exist in
speech and text from sounds to phones, phonemes,
syllables, words and sentences. Clearly, this may
prove beneficial to our approach. Finally, for DL,
poor local minima are rarely a problem. Notwith-

standing the initial conditions, i.e., the initialized ran-
dom values, the system nearly always reaches high
quality solutions.

In Figure 6, a possible realization is sketched. In-
stead of initializing the label part of LRAAM’s in-
put vector with binary information, one could use the
Deep Learning approach to preprocess those concept
labels.

output vector x‘ (output layer)

hidden vector z (hidden layer)

input vector x (input layer)

Label feature vector (pixel intensity)

Label feature vector (curves)

Label feature vector (letters)

Label feature vector (syllables)

Label feature vector (label)

Figure 6: Deep Learning (DL) and LRAAM. Concept la-
bels are preprocessed by DL before participating in the in-
put vector x.

Summarizing, in this paper, we explored ontol-
ogy matching as a means towards dynamic service
integration. Thereby, we limited our focus on on-
tological descriptions about what a service actually
does. We followed the premise that the richer a ser-
vice is described, the better it can be evaluated and
selected, provided a holistic (micro-semantic) match-
ing method.

REFERENCES

Al-Said, G. and Abdallah, M. (2009). An arabic text-
to-speech system based on artificial neural networks.
Journal of Computer Science, 5(3):207–213.

Antoniou, G. and van Harmelen, F. (2008). A Semantic Web
Primer. The MIT Press, Cambridge Massachusetts, 2
edition.

Antoniou, G. and van Harmelen, F. (2009). Ontology web
language: Owl. In Staab, S. and Studer, R., editors,
Handbook on Ontologies, pages 91–110. Springer.

Atencia, M., Euzenat, J., Pirrò, G., and Rousset, M.-C.
(2011). Alignment-based trust for resource finding in
semantic p2p networks. In The Semantic Web–ISWC
2011, pages 51–66. Springer.

Blank, D., Meeden, L. A., and Marshall, J. B. (1992). Ex-
ploring the symbolic/subsymbolic continuum: A case
study of RAAM. In The Symbolic and Connection-
ist Paradigms: Closing the Gap, pages 113–148. Erl-
baum.

Born, M., Drumm, C., Markovic, I., and Weber, I. (2007).
SUPER - raising business process management back
to the business level. ERCIM News, 2007(70).

CLOSER 2017 - 7th International Conference on Cloud Computing and Services Science

402



Bughin, J. and Chui, M. (2010). The rise of the networked
enterprise: Web 2.0 finds its payday. McKinsey quar-
terly, 4:3–8.

Chan, S. W. K. (2003). Dynamic context generation
for natural language understanding: A multifaceted
knowledge approach. IEEE Transactions on systems,
man, and Cybernetics - Part A: Systems and Humans,
33(1):23–41.

Cisco (2014). Cisco global cloud index: Forecast and
methodology: 2013 - 2018. White paper, Cisco Sys-
tems Inc.

de Gerlachey, M., Sperdutiz, A., and Staritaz, A. (1994).
Using labeling raam to encode medical conceptual
graphs. NNESMED’94 proceedings.

Diallo, G. (2014). An effective method of large scale on-
tology matching. Journal of Biomedical Semantics,
5:44.

Eder, J. and Wiggisser, K. (2007). Detecting changes in
ontologies via DAG comparison. In Lecture Notes in
Computer Science 4495, pages 21–35.

Ellingsen, B. K. (1997). Distributed representations of
object-oriented specifications for analogical mapping.
Technical report, Citeseer.

Erl, T. (2004). Service-oriented architecture: a field guide
to integrating XML and web services. Prentice Hall
PTR.

Erl, T., Chelliah, P., Gee, C., Kress, J., Maier, B., Normann,
H., Shuster, L., Trops, B., Utschig, C., Wik, P., and
Winterberg, T. (2014). Next Generation SOA: A Con-
cise Introduction to Service Technology & Service-
Orientation. The Prentice Hall Service Technology
Series from Thomas Erl. Pearson Education.

Euzenat, J. and Shvaiko, P. (2007). Ontology Matching.
Springer.

Euzenat, J. and Shvaiko, P. (2013). Ontology Matching.
Springer, 2 edition.

Fensel, D. and Bussler, C. (2002). The web service model-
ing framework wsmf. Electronic Commerce Research
and Applications, 1(2):113–137.

Fensel, D., Facca, F. M., Simperl, E., and Toma, I. (2011).
Semantic web services. Springer Science & Business
Media.

Frank, R. and Cartwright, E. (2013). Microeconomics and
Behaviour. McGraw Hill.

Hinton, G., McClelland, J., and Rumelhart, D. (1986).
Distributed representations, volume 1, pages 77–109.
MIT Press.

Hoang, H. H., Jung, J. J., and Tran, C. P. (2014). Ontology-
based approaches for cross-enterprise collaboration:
A literature review on semantic business process man-
agement. Enterprise Information Systems, 8(6):648–
664.

Hoang, H. H. and Le, M. T. (2009). Bizkb: A concep-
tual framework for dynamic cross-enterprise collabo-
ration. In Nguyen, N. T., Kowalczyk, R., and Chen,
S.-M., editors, ICCCI, volume 5796 of Lecture Notes
in Computer Science, pages 401–412. Springer.

Hussain, M. A. and Mastan, M. (2014). A study on se-
mantic web services and its significant trends. IJCER,
3(5):234–237.

Izza, S. (2009). Integration of industrial information
systems: from syntactic to semantic integration ap-
proaches. Enterprise Information Systems, 3(1):1–57.

Kale, V. (2014). Guide to Cloud Computing for Business
and Technology Managers: From Distributed Com-
puting to Cloudware Applications. Taylor & Francis.

Kotis, K., Vouros, G., and Stergiou, K. (2006). Towards
automatic merging of domain ontologies: The hcone-
merge approach. Journal of Web Semantics (JWS),
4:60–79.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learn-
ing. Nature, 521(7553):436–444.

Lehaney, B., Lovett, P., and Shah, M. (2011). Business in-
formation systems and technology: a primer. Rout-
ledge.

Li, W., Raskin, R., and Goodchild, M. F. (2012). Se-
mantic similarity measurement based on knowledge
mining: An artificial neural net approach. Interna-
tional Journal of Geographical Information Science,
26(8):1415–1435.

Ludolph, H., Kropf, P., and Babin, G. (2011). SoftwIre
integration - an onto-neural perspective. In Babin,
G., Stanoevska-Slabeva, K., and Kropf, P., editors, E-
Technologies: Transformation in a Connected World -
5th International Conference (MCETECH 2011). Les
Diablerets, Switzerland, January 23-26, 2011, Re-
vised Selected Papers, number 78 in Lecture Notes
in Business Information Processing, pages 116–130.
Springer.

Otero-Cerdeira, L., Rodríguez-Martínez, F. J., and Gómez-
Rodríguez, A. (2015). Ontology matching: A lit-
erature review. Expert Systems with Applications,
42(2):949–971.

Pollack, J. B. (1990). Recursive distributed representations.
Artificial Intelligence, 46:77–105.

Rahm, E. (2011). Towards large-scale schema and ontology
matching. In Schema matching and mapping, pages
3–27. Springer.

Rahm, E. and Bernstein, P. A. (2001). A survey of ap-
proaches to automatic schema matching. The VLDB
Journal, 10(4).

Shvaiko, P. and Euzenat, J. (2013). Ontology match-
ing: state of the art and future challenges. IEEE
Transactions on Knowledge and Data Engineering,
25(1):158–176.

Sperduti, A. (1993). On some stability properties of the
lraam model. Technical report, International Com-
puter Science Institute.

Zdravković, M., Trajanović, M., and Panetto, H. (2014).
Enabling interoperability as a property of ubiquitous
systems: towards the theory of interoperability-of-
everything. In 4th International Conference on In-
formation Society and Technology, ICIST 2014, vol-
ume 1, pages 240–247, Kopaonik, Serbia.

A LRAAM-based Partial Order Function for Ontology Matching in the Context of Service Discovery

403


